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ABSTRACT

Ha, T., Choi, Y., Shin, C.S. and Min, D.-J., 2009. Numerical modeling for 3D acoustic wave
equation in the frequency domain. Journal of Seismic Exploration, 18: 57-79.

We investigate a frequency-domain finite-element method for three-dimensional modeling
of the acoustic wave equation. Frequency-domain modeling has several advantages over time-domain
modeling, even though it requires huge computational memory compared to time-domain modeling.
One of these advantages is that multi-shot modeling can be performed more efficiently in the
frequency domain than in the time domain, and another is the ability to work on a
frequency-by-frequency basis, which makes it possible to distribute frequencies across processors.
Considering that frequency-domain modeling is popular in waveform inversion because of source
wavelet estimation and multi-shot modeling, 3D frequency-domain finite-element modeling can be
effectively used in 3D waveform inversion. We derive a numerical dispersion relationship for the
3D frequency-domain finite-element method and then analyze numerical dispersion on the basis of
dispersion curves. From the dispersion analysis, we determine the minimum number of grid points
per wavelength. The validity of the 3D finite-element modeling algorithm is examined for a
three-layered model and the SEG/EAGE salt model.

KEY WORDS: 3D modeling, acoustic wave equation, frequency-domain, finite-element,
numerical dispersion.
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INTRODUCTION

Several numerical methods have become standard tools for seismic
migration, modeling, and inversion. These technologies are frequently based on
finite differences, pseudo-spectral techniques, boundary elements, prolate
spheroidal wave functions and occasionally finite elements (Claerbout, 1971;
Kelly et al., 1976; Marfurt, 1984; Reshef et al., 1988; Carcione et al., 2002;
Beylkin and Sandberg, 2005). It is clear that, of these, the finite element
approach is not the most popular. Far fewer papers have been published on this
subject than on almost any of the other techniques. Primarily because of the
enormous size of the matrix inversion problem required to accurately implement
this methodology, frequency-domain finite element techniques have found little
use in three dimensions. In contrast, finite difference methods have become one
of the more dominant techniques for precisely the opposite reason.
Space-time-finite-differences are relatively easy to parallelize and execute on
large modern cluster computers. Although transform methods, including
pseudo-spectral and more recently prolate-spheroidal methods, usually have an
advantage in both accuracy and stability, they are generally more difficult to
implement than finite-differences and so have not enjoyed wide use in 3D
seismic modeling or wavefield inversion.

Three-dimensional-space-time numerical modeling is fairly easy to
implement. Even when individual cluster-computer nodes have significant
memory limitations, domain decomposition can effectively solve problems of
almost any size. While domain decomposition requires a stable and fast
network, careful programming mitigates communication by coupling
double-buffering with careful data transfers during extensive computations.
From a single synthesis point of view, the only serious issue with regards to
space-time algorithms is the fact that maintaining stability requires tiny
evolutionary time-steps and consequently results in very large computational
demands. Three-dimensional synthesis of a single reasonably large artificial
seismic survey is rapidly becoming within reach of modern cluster-computer
environments. If the focus is on full waveform adjoint-state inversion, the
situation changes dramatically. Synthesis of a single survey is not sufficient to
produce a solution of the posed inverse problem. Iteratively estimating source
wavelets is complicated by the need to unwrap phases and consequently usually
requires forward and backward transformation between time and frequency.
Time domain convolutions require more resources than frequency domain
multiplications. Computation of multiple approximate inverse Hessians,
partial-derivative wavefields, source wavelet estimation, and backward-
propagated residuals over a broad spectral range renders 3D space-time
inversion virtually impossible to perform.

Finite-element-frequency-domain modeling has several potentially
significant advantages over space-time finite difference or transform methods.
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One of the most important is that the entire modeling algorithm can, in theory,
be posed so that data is synthesized for all shots at once. Another practical
advantage is the ability to work on a frequency-by-frequency basis. Matrix
inversions at one frequency can be extrapolated to inversions at the next. The
fact that one need not use every frequency (Pratt et al., 1998; Shin and Min,
2006) implies the potential for very efficient solutions of very difficult 3D
inversion problems. Once the appropriate computations are complete, calculating
steepest descent directions and source wavelets (Shin et al., 2001; Shin and
Min, 2006) in both logarithmic and traditional least squares is fairly
straightforward. A third and perhaps more esoteric advantage lies in the ability
to formulate acoustic, elastic, and coupled acoustic-elastic modeling and
inversion algorithms within the same general scheme. Once the
complex-impedance matrix formulation is available, the route to modeling and
inversion is clearly defined and virtually identically in operation.

By far the biggest disadvantage of the frequency-domain technique arises
from the phrase "once the appropriate computations are complete.” The
computational and storage resources (fast as well as slow disk) required to invert
the resulting matrix-like equations and complete the "appropriate computations”
is truly enormous. A secondary issue is the fact that the higher order finite
element method results in a parasitic dispersion analysis mode (Belytschko and
Mullen, 1978), but this is completely swamped by the resources required to
solve the complex-impedance matrix equations.

We believe that 3D-frequency-domain-finite-element formulation of wave
equation synthesis is of significant potential value and worthy of considerable
study. Nevertheless, because of the severe computational limits imposed by
available hardware and software, initial steps must be somewhat limited.
Consequently in the following sections, we focus on the 3D acoustic equation
and exploit the Galerkin (variational) approximation procedure to derive the
complex-impedance matrix equation specifying a full 3D finite element modeling
algorithm. We derive the appropriate dispersion analysis endemic to specifying
accurate boundary conditions and demonstrate the feasibility of 3D frequency
domain finite-element modeling by displaying low frequency synthetic
seismograms for the SEG/EAGE 3D model.

GOVERNING EQUATION AND FINITE ELEMENT METHOD

Governing equation

For our purposes, the three dimensional scalar wave equation in
time-domain is given by

[1/v(x)][0%u(x,0)/dt2] — VZu(x,t) = f(x,t) , 1)
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where
Viu(x) = [0*u(x)/ax?] + [0*u(x)/dy*] + [0*u(x)/dz°] ,

and u(x) is the pressure, v(x) is the sound speed, and f(x,t) is the impulsive
force. Taking the Fourier transformation of eq. (1) yields

—[w*vx)Ti(x,w) — Vix,w) = f(xw) , )

where

o

i(xw) = | uxpe“dt |

— oo

fxw) = | foxpedt .

Weak formulation in Helmholtz equation
In a bounded computational domain, equation (1) becomes
—[w*vX)Ti(X,w) — VAX,w) = 7f(x,oo) , inQ (3a)
Bi(x,w) =0 , inT (3b)
where Bj, J = 1,2,3 are given (Clayton and Engquist, 1977) by eq. (A-9) in

Appendix A. For our numerical experiments, we use the second order absorbing
boundary condition specified by B,. The weak formulation of eq. (3) is

—o? | IV we®dx + | [IVEPIVER,0)-Vex)dx
Q Q

+ SFPru(x)go(x)dI‘ = Snf(x,w)go(x)dx , 4)
where ¢(x) is a weighting function and

Vu(x) = {[du(x)/0x],[0u(x)/dy],[0u(x)/dz]} ,
and Py is determined from the boundary condition B,. For example, suppose the

computational domain is [0,X.] X[0,Y1max] X [0,Znay]. From eq. (A-9b), Pru(x)

on the surface z = z,, is

Pru = (iw/v)i + (v/20)(, + b,) . 5)
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In our numerical simulation, shape functions are linear polynomials, and
therefore,

§ Prue(odr
T
= § T e + @v26)(E,00 + B,00)le(dxdy
0 0

Xmax  n Ymax
= | lhemam — (v20)@,@e,6) + B,x)¢,0)ldxdy

0 0

X

Ymax max
= | Tliv2wn,me®l dy + | 1iv20)8,®e,0] ~dx |

0 0

where [f(x)]? means f(b) — f(a). The standard Galerkin approximation (Marfurt,
1984; Zienkiewicz and Taylor, 2000) yields the discrete system

Su=K+M+ CQu-=f, 6)

where the stiffness matrix K, the mass matrix M, and the damping matrix C are
given by

K=kl . k= Ve®Vemdx .
Q

M=m], m=- | [INxle®emdx

Q

C= g » ¢ =-— 5 Prux)p(x)dl’ .

r

Here, f is the source vector and ¢;(x) are shape functions.

Comparison with the analytic solution

The analytic solution of the direct wave and the free surface reflected
wave in three dimension (Officer, 1958) are

yp = (U/nf(t = rlc) (7

Ve = —(1/E)Hf(t — 1'lc) 8)
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where f(t) is a source function, r is the distance between source and receiver,
r’ is the distance between source and receiver via the reflection path, and c is
the velocity as in Fig. 1. The total received signal will then be simply

Vo= yp + ¥, = (Dt — t/c) — (Ui — t'/c) . 9)

Fig. 2 shows a comparison between our 3D acoustic modeling results and
analytic solution. For this comparison, we use the first derivative of Gaussian
function as source wavelet and locate a source at the depth of 20 m below the
free surface and a receiver at the depth of 700 m on the same vertical line with
the source position. From Fig. 2, we note that the 3D acoustic modeling
solution coincides well with analytic solution. So we assert that our 3D acoustic
modeling algorithm has no blemish in theoretical aspects.

The dispersion analysis of 3D acoustic problem concerned with eq. (6) is
expressed in Appendix B.

/N
(O.h)}.

Free S N
surface | 7 X

Receiver

Source 4
(O.-h)

Fig. 1. Wave path from a point source to a receiver in a constant velocity medium bounded by a free
surface.
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Fig. 2. Comparison between 3D acoustic modeling solution and analytic solution at a receiver placed
at the depth of 700 m.

NUMERICAL EXPERIMENTS

Homogeneous model

Our first priority was to test the validity of our code. To do this, we
generated data over a simple homogeneous model with a sound speed of 2
km/sec. In our all examples, we divided models by cubes for finite-element
formulation and used the first derivative of Gaussian function as source wavelet.
With a uniform grid spacing of 20 m, the computational region of 2 km by 2
km by 1 km in x-, y- and z-axes resulted in a model of size 101 X 101 X 51.
The source maximum frequency, the frequency interval, and the sampling rate
were 10 Hz, 1 Hz, and 0.05 sec, respectively. The source was located at a
depth of 10 m at the center of the model. With these parameters, the single
CPU time to solve for a single frequency was about 80 minutes. This seems
long in comparison to what might be achievable with finite-difference methods
until one realizes that this would be the time required to generate data from a
multiplicity of sources. Figs. 3 and 4 show the wavefront at 0.5 and 1 sec. In
both figures, the vertical sections are taken at 1 km in the x and y directions,
while the depth slice is at 0.1 km.
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Fig. 3. Time slice section at 0.5 sec in (a) x-z plane wheny = 1 km, (b) y-z plane when x = 1 km,
and (c) x-y plane at the depth of 0.1 km.



NUMERICAL MODELING FOR 3D 65

X (km)
1.0
N
€
=3
<
(=%
[h]
[ |
(a)
Y (km)
‘II.O ‘1;5 2[0
N
€
=3
o om
=
Q
(|
(b)
X (km)
0 ‘I 2
£, ™
)_
2
(c)

Fig. 4. Time slice section at 1 sec in (a) x-depth slice at y = 1 km, (b) y-depth slice at x = 1 km,
and (c) x-y slice at the depth of 0.1 km.
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Fig. 5. Synthetic seismograms measured at the depth of 20 m along (a) the x line at y = 1 km and
(b) the y line at x = 1 km.

Fig. 5 shows the seismogram observed at 20 m depth from the center on
the surface. Fig. 5(a) represents the xz plane along the y = 1 km and Fig. 5(b)
represents the yz plane along the x = 1 km. When the wave equation is solved
in the frequency domain, there is a singular point corresponds to the shot
position. In Fig. 5 and other figures of seismograms, the artifacts along vertical
lines are caused by containing the signals of the singular point (the shot
position). From Figs. 3, 4 and 5, note that the boundary conditions are working
as required and that the waveforms show little or no dispersion. Fig. 6 compares
traces obtained from centrally placed receivers at depths of 700 and 900 m.

Three layered model

Following the success of the simple experiment in the previous subsection,
we generated a single synthetic wavefield using the three layered model shown
in Fig. 7. The size of model is 3.2 X 3.2 X 1.6 km, and the model is sampled
with the grid spacing of 60 m, which produccs a spatial grid set of 161 X 161
% 81 nodes. Again, a source with a maximum frequency of 7.5 Hz was located
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Fig. 6. Time trace obtained on the mid-point of xy plane at the depths of 700 m and 900 m.

X (km)

Vp=1.5 km/s

Fig. 7. Geometry of the 3 dimensional three layered model.
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Fig. 8. Wave front by acoustic modeling for the 3 dimensional three layered model on a rectangular
parallelepiped split by the x-z plane when y = 1.6 km at times of (a) 0.5, (b) 1.5, (c) 2.5 and (d)
3.5 sec.

at the center of the top surface at a depth of 20 m. The frequency interval and
the sampling rate were 0.25 Hz and 0.0666 sec, respectively. In this case, it
took 27 hours on 20 CPUs to perform the LU decomposition and generate 4
seconds of data. Fig. 8 shows three-dimensional views of wavefronts at 0.5,
1.5, 2.5 and 3.5 sec. Fig. 9 is a display of a vertical seismogram observed at
a depth of 20 m at the center of the model. When we take the Fourier transform
of the frequency-domain data into the time-domain, the ‘wrapping around’
effect, which occurs due to non-causal events leading the first arrival events,
appears in the seismogram. In Fig. 9 and other figures of seismograms, we note
that the ‘wrapping around’ effect appears.



NUMERICAL MODELING FOR 3D 69

4

Fig. 9. Synthetic seismograms measured near the surface along the x line wheny = 1.6 km.

SEG/EAGE 3D salt model

In our final example, we subsampled the 3D SEG/EAGE salt model to 60
m, producing a grid of 226 X 226 X 70 nodes. For this case, the maximum
frequency of source, the frequency interval, and the sampling rate were 5 Hz,
0.125 Hz, and 0.1 sec, respectively. The approximate CPU time per frequency
was 3600 minutes. Fig. 10 shows the velocity model and Figs. 11 and 12 show
snapshots at 2, 4 and 6 sec. Fig. 13 shows seismograms from a source at a
depth of 60 m at the center of the model’s surface.
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(c)

Fig. 10. 3D SEG/EAGE salt model. (a) x-z, (b) y-z, and (c) x-y slice section when y = 6.72 km,
X = 6.72 km, and x = 2.1 km, respectively.
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Fig. 11. Wave propagation for the 3D SEG/EAGE salt model on (a, c, €) the x-z plane at y = 6.72
km and (b, d, f) the y-z plane at x = 6.72 km at times of (a, b) 2, (c, d) 4 and (e, f) 6 sec.

CONCLUSION

We investigated three-dimensional frequency-domain modeling using the
finite-element method. Although frequency-domain modeling requires a huge
computer memory (especially in three dimensions), it has several advantages for
waveform inversion over time-domain modeling. Multi-shot modeling, source
estimation problem and parallel jobs for waveform inversion can be easily

implemented in the frequency domain.
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Fig. 12. Wave propagation for the 3D SEG/EAGE salt model on the x-y plane when (a, ¢, e¢) z =
1.2 km and (b, d, f) z = 2.4 km at times of (a, b) 2, (c, d) 4 and (e, f) 6 sec.
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Fig. 13. Synthetic seismograms measured on the surface along (a) the x-axis wheny = 6.72 km and
(b) the y-axis when x = 6.72 km.

In this paper, we derived the numerical dispersion relationship for the 3D
frequency-domain finite-element method and determined the minimum number
of grid points per wavelength by dispersion analysis for 3D frequency-domain
finite-element modeling. For unbounded boundary condition, we expanded
Clayton and Engquist’s 2D absorbing boundary condition to 3D and adapted this
condition to the finite-element method. We validated the 3D frequency-domain
modeling algorithm by applying it to homogeneous, three-layered and
SEG/EAGE salt models. From the numerical experiments, we noted that the
numerical results are little dispersive and the boundary condition works well.
Using our computing capability, we proved that frequency-domain modeling is
feasible even for large scale 3D models like the 3D SEG/EAGE salt model of
60 m. We feel that, in the near future, frequency-domain modeling for the 3D
SEG/EAGE salt model of 20 m will be possible using the direct matrix solver
with the advent of enhanced computer technology.
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APPENDIX A

HIGHER ORDER BOUNDARY CONDITION FOR 3D ACOUSTIC
PROBLEMS

To assure stability of time extrapolation, based on equation (1) we
consider the trial solutions

u(x,w) = exp(ikx + iky + ik,z — iwt) ,
from which we obtain the approximate dispersion relation

w= vk + Kk + k)" . (A-1)
Extrapolating in the z-direction produces

k, = (W[l — (V) K + k)" . (A-2)
Using

VI =x)=1-Y%x + O(x?) , (A-3)
we arrive at two approximations

(viwk,

Il

1 + O[(v/w)’(ki + k)1 , (A-4a)
(Viwk, = 1 = WB(v/wl(k: + k) + O[(v/w)(k: + k)] (A-4b)
Using the Padé’s method we get
g =1-[x(1+a_)+0x», a=1, (A-5)
and then obtain a third approximation

VIwk, = 1 — (/)& + KL + [1 — BhV/wkE + K]}

+ O[(v/w)(K: + K] ,

Il

1 — (viw(k: + K)/[2 — Ya(viw) (K + 9]

+ O[(v/w)’(k} + k)] ,

[1 — B/ (viw)*K: + KDI/[1 — B4 (viw) (kK + kD]

+ O[(v/w)’(k; + K2)*] . (A-6)
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Rearranging eqgs. (A-4) and (A-6), we get
Al 1 k, = w/v , (A-7a)
A2 @ wk, = (*v) — vk + k) (A-7b)
A3 :vok, — 1AWVEKE + k) = o — BV + k) . (A-To)
Multiplying both sides of eq. (A-7) by u = exp(k,x + kyy + k,z — iwt) yields
Al :u, = —(1/v)u, , (A-8a)
A2 iy, = —(/v)u, + (v2)(u,, + uy) , (A-8b)
A3 —u, + (VA (U, +u,) = (), + Gv/4)(u,, + u,,) (A-8c)
In the frequency domain, eq. (A-8) becomes
Bii =1, — (iw/V)i =0, (A-9a)
B,i = @, — (iw/V)i — (iv/2w)(d,, + i, =0, (A-9b)
Bji = @, + (v/4w)(b,,, + U,,) — i(w/v)i

— Gividw)(i,, + §,) =0 . (A-9¢)

APPENDIX B
DISPERSION ANALYSIS FOR 3D ACOUSTIC PROBLEM

Our dispersion relation is obtained by setting the source term in eq. (3)

to zero and ignoring the boundary condition (see also (Marfurt, 1984)). From
eq. (6), the result is

—w’Dyu — v?Dyu = 0 (B-1)

where D¢ = D,, + Dy, + D,, and

Dyu = h3[(1/64)ui-1.j-1,k-1 + (1/32)ui»1,j,k-1 + (1/64)ui-1.j+1.k-1 + (1/32)ui-1,j-l,k
+ (1/16)u; 5 + (1/32)uy 0 + (1/6D)uyy i + (132044

+ (1/64)ui-1,j+1,k+1 + (1/32)ui.j-l.k-1 + (1/16)ui,j,k-l + (1/32)ui,j+l‘k»l
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+ (1/16)u;; + (/85 + (1/16)u; 541 + (1/32)u; 14 k4
+ (U/16)u; 441 + (1/32)0; 541 441 + (/6D g4 + (1/32)ui4 4
+ (1/64)ui+1,j+1,k4 + (1/32)ui+1,y1‘k + (1/16)ui+1,j,k + (1/32)ui+1.j+1,k

+ (1/64)ui+1,j—1‘k+1 + (1/32)ui+1,j,k+1 + (1/64)ui+1,j+1,k+1] s (B-2)

Dyu = (W3)[AN2)u;, 5,500 + ABU 0 + A2 400 + A3,
+ @3 + B e + W20 0 + B0
+ (V12 iy — WO — @B — (/O 4 4y
= @B — @B — @B — (/O ks
= @B — VO iy + (V12 gy + B
+ (205, g + B + @30 + B 4
+ (V12 g B + W2 ey ] s (B-3)
and Dy, and D,, are calculated similar to eq. (B-3). In a homogeneous medium,
let u,, , be expli(kx, + kyy,+ k;z,)], so that egs. (B-2) and (B-3) become
Dyu = (0’/8)expli(k,x, + Ky, + k,z,)]
X [cos(ksh) + 1][cos(k,h) + 1][cos(k,h) + 1] , (B-4)
D,,u = (2/3)hexplik,x, + kyy,+ k,z,)]
X [cos(kh) — 1][cos(k,h) + 2][cos(k,h) + 2] , (B-5)
Dyu = (2/3)hexplikx; + kyy,+ k,z,)]
X [cos(k,h) + 2][cos(k/h) — 1][cos(k,h) + 2] (B-6)
D,u = 2/3)hexplikkx, + kyy,+ kz,)]
X [cos(kh) + 2][cos(kh) + 2][cos(k,h) — 1] (B-7)

where h is the size of the spatial grid. In this case, eq. (B-1) becomes
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—(«’’/8)[cos(k,h) + 1][cos(kh) + 1][cos(kh) + 1]

— (2v*h/3){[cos(kh) — 1][cos(k,h) + 2][cos(k,h) + 2]

+ [cos(k,h) + 2][cos(k/h) — 1][cos(k,h) + 2] ,

+ [cos(ksh) + 2][cos(k,h) + 2][cos(kh) — 1]} = 0 .

(B-8)

Let 6 be the azimuth, i.e., the angle that k forms with the k, axis and ¢
be the angle that k forms with the k, axis. Then, the relation between wave
numbers and angles is as follows:

Fig. B-1. Dispersion analysis when 8§ = 0, /12, #/6, and =/4 and = 0, «/12, /6, and /4.
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k.h = kcosepcosd = (27/G)cospcosh (B-9)
ksh = kcospsinf = (27/G)cosesing (B-10)
k,h = ksing = 27/G)sing (B-11)

where k = 27/N, N is the wave length, and G denotes the grid points per
wavelength. The phase velocity is

vivy = [UQ/G)VIP,, + P, + P,)/P.] , (B-12)
where
P, = (1/8)[1 + cos(k,][1 + cosk,m][1 + cos(kh)] |, (B-13)
P, = (2/9)[1 — cos(k,I[2 + cosk,m][2 + cos(kh)] | (B-14)
P, = (/912 + costk,][1 — cosk,m][2 + cos(kh)] | (B-15)
P, = /92 + cosk][2 + cosk,m][1 — cos(k,h)] (B-16)

Fig. B-1, showing the dispersion relation at § = 0, 7/12, 7/6, /4 and
¢ = 0, /12, /6, w/4, allows us to conclude that we need 5 grid points per
wavelength to maintain a phase velocity dispersion error of less than 2%.





