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ABSTRACT

Ikelle, L.T., 2009. Reducing the pressure on data acquisition and processing: I - Multishooting
processing of single-shot data. Journal of Seismic Exploration, 18: 93-102.

In some E&P organizations, the amount of data required to image the subsurface has now
risen to several terabytes per survey, especially when multiple azimuths are considered. For the
processing of converted-wave data, this amount of data rises even further, by twofold or threefold,
depending on the components of particle velocity under consideration. The processing time also
increases severalfold. In other words, petroleum seismologists are close to reaching a brick wall,
if we have not already done so, in regard to the amount of data that we can realistically collect and
properly process. In my recent book on coding and decoding, I introduced the concept of
multishooting to address the problem. The idea is that seismic waves can be generated from several
locations simultaneously (or nearly simultaneously, by introducing small time delays between the
shooting points) instead of one single-source location at a time, as is currently the case. Significant
savings in time and money in acquiring, processing, and even storing seismic data can be achieved
by using this concept. However, the implementation of this concept in actual data acquisition and
data processing may take some time, as a number of the solutions associated with multishooting
acquisition and with the processing of multishot data require significant modifications of our current
practices. In this series of papers, we propose some ideas which may be less effective than the
multishooting concept, but can readily be implemented without significant new developments in
acquisition or processing.

In this first paper, we consider data collected in the standard form (i.e., from one
single-source location at a time). We propose to group these data as if they were acquired with the
multishooting technique and process them as multishot data. By doing so, we reduce the size of our
data and processing time.

KEY WORDS: multishooting acquisition, multishooting processing, multiple attenuation,
Kirchhoff scattering series, coding, decoding.
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A BRIEF REVIEW OF THE MULTISHOOTING ACQUISITION

Before we go further in this discussion, let us introduce some
terminologies which help us differentiate the multishooting acquisition process
from current acquisition practices. Again, we will call the concept of generating
waves simultaneously from several locations simultaneous multishooting, or
simply multishooting. The data resulting from multishooting acquisition will be
called multishot data, and those resulting from the current acquisition approach,
in which waves are generated from one location at a time, will be called
single-shot data. So multishot data are the coded data, and the decoding process
aims at reconstructing single-shot data. The single-shot data are made of shot
gathers, which we will call here single-shot gathers. The multishot data are also
made of shot gathers. But this time, a shot gather is a response of multiple
single-shot points. We will call the shot gathers in the multishot data multishot
gathers. We will often use the notation 1mls to indicate that the multishot
gathers are mixtures of I single-shot gathers. For example, 1m4s means that
each multishot gather is a mixture of four single-shot gathers.

Let us return to the processing of multishot data. Existing data-processing
algorithms can be used to process multishot data as long as they do not requires
CMP gathers, receiver gathers, or offset gathers as inputs, because such gathers
are not readily available from multishot data. Also, the algorithms which contain
numerical operators in these domains, even if their input data are in the
shot-gather domain, may not be directly applicable to multishot data. It turns out
that multiple-attenuation algorithms are most affected by this restriction. We
describe one way of overcoming this difficulty for the particular class of
demultiple algorithms, which are based on the predict-then-subtract approach.
Our solution does not require any new algorithm development other than
grouping single-shot data into multishot gathers.

We have here opted to reformulate one of the algorithms of the
predict-then-subtract approach, namely the Kirchhoff inverse scattering
algorithm developed by Ikelle et al. (2001), for the demultiple of multishot data.
The predict-then-subtract approach consists of predicting multiples from the
actual data and then subtracting them from the same data. The advantage of this
approach is that it does not require any knowledge of the subsurface and that it
is valid for multidimensional data. Note that this demultiple can also be derived
from the Lippmann-Schwinger equation, which leads to the Born series, or from
Huygens principles [see Ikelle and Amundsen (2005) or Weglein and Dragoset
(2005) for references and a description of these alternative approaches]. Our
formulation here will focus on towed-streamer acquisition geometry but can
easily be extended to all marine-acquisition geometries.
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A BRIEF REVIEW OF KIRCHHOFF-BASED FREE-SURFACE MULTIPLE ATTENUATION

Let ¢, = {P,, V,} be the two-component vector of towed-streamer data,
where P, represents the pressure and V,, represents the vertical component of the
particle velocity. The inverse Kirchhoff scattering series for attenuating
free-surface reflections from, say, pressure seismic data in the F-X domain can
be written as follows:

PP(Xs’w’Xr) = PO(Xs’w’Xr) - a(xs,w)Pl(xS,w,xr)
+ 2 (X,W)Py(Xew,X,) — ... (1)

where P, represent the data without free-surface-reflection events, a(x,,w) =
1/s(x,,w) is the inverse source signature, with s(x,,w) being the source signature,
X, the shot point and x, the receiver point. Note that the source can vary with
the single-shot point. The first term of the scattering series, P,, is the actual
data. The other terms P,, P,,etc. are given by

Pj(xs’w,xr) = SSdS(X) Pj~1(xs’w9x)vénd)(X3w’xr) 1) j = 132’3"" ) (2)

where x = (X,y), S, is the surface in which sources and receivers are located,
and V§"(x,w,x,) is the vertical component of the particle velocity without the
direct wave. The second term, P,, is computed as a multidimensional
convolution of the data P, sorted in shot gathers, by the vertical component of
the particle-velocity data, which we denote V,, in receiver gathers. The resulting
field is in shot gathers and aims at attenuating events which correspond to one
bounce at the sea surface; the next term, P,, which is computed as a
multidimensional convolution of P, by V,, aims at attenuating events which
correspond to two bounces at the sea surface; and so on. In summary, the terms
P,, P,, P;, etc., allow us to predict free-surface multiples, whereas the inverse
source a(x,,w) allows us to properly scale the predicted multiples in such a way
that the result of the scattering series in (1) can produce data without
free-surface-reflection events. Notice that the application of this series does not
require any knowledge of the subsurface.

In most practical applications of the series in (1) today, we are concerned
with data in which direct-wave arrivals have been muted. The ghost reflections
are treated as part of the source signature. In this case, the series in (1) allows
us to remove free-surface multiples and ghosts of free-surface multiples from the
data while preserving primaries and ghosts of primaries. Let us illustrate the
application of the series in (1). We consider the 2D model in Fig. 1. We have
used a finite-difference algorithm to 320 single-shot gathers with 12.5 m spacing
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Fig. 1. The 2D model used to generate the data used in this paper.

between single-shot points. One of these single-shot gathers is shown in Fig. 2a.
We use 320 receivers to record data generated by each single-shot point. The
receiver spacing is also 12.5 m. Actually, the 320 single-shot points are
locations at the same points near the sea surface as the receivers are. We started
the demultiple process by computing the terms P, and P, of the series in (1).
Single-shot gathers associated with P, and P, are shown in Figs. 2b and 2c,
respectively. The Matlab code used for computing P, and P, is given in Table
1. We then obtain the demultiple results in Fig. 2d by using the first three terms
of the series in (1).

A REFORMULATION OF THE KIRCHHOFF DEMULTIPLE FOR MULTISHOT DATA

Let us start by describing some additional quantities and variable
coordinates that we need for reformulating the Kirchhoff series in (1) for
multishot data. We denote the various positions of multishot arrays in seismic
surveys by x,; X,, can be the centers of multishot arrays, the positions of the
first single-shot in multishot arrays, etc. We denote the fields corresponding to
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Fig. 2. (a) A single-shot gather of a 2D dataset before the demultiple process. (b) The field of
predicted free-surface multiples (P,); the second term of the Kirchhoff series. (c) The field of
predicted free-surface multiples (P,); the second term of the Kirchhoff series. (d) The single-shot
gather in Fig. la after the demultiple process. We have used the first three terms of the series in (1).

multishot data with a tilde and those corresponding to single-shot data without
the tilde. For example, Pi(X,,w,x;) will represent the multishot data, and
P,(x;,w,x,) will continue to represent the single-shot data, as introduced earlier.

We also find it useful to identify each single-shot point of our
multishooting survey. So we introduce an additional variable, x,,, where the
index n indicates the multishooting array under consideration and the index m
indicates the single-shot point of the n-th multishooting array, as illustrated in
Fig. 3. If we have a survey of N multishot gathers, and if each multishot array



98 IKELLE

Table 1. A Matlab code for computing the terms of the Kirchhoff series.

function [m1,m2]=predmult(frmax, dt, pres, vz, N)

% frmax: maximal frequency

% dt: time interval

% pres: pressure data

% vz: The vertical component of the particle velocity

% N: time length plus padding

% m1: predicted multiples, starting with first-order multiples

% m2: predicted multiples, starting with second-order multiples

[nt,nr,ns] = size(pres); ifrmax=1+floor(frmax*N*dt);
if(nr~=ns); error('no of receivers= no of shots should’); end;
cpres=fft(pres,N,1); cvz=fft(vz,N,1);

for iom=1:N
iom
cp=squeeze(cpres(iom,:,:)); cv=squeeze(cvz(iom,:,:));
cmi(iom,:,:)=cp*cv;
cm2(iom,:,:)=cp*cv*ey;
end
m1=ifft(cm1,[],1); m2=ifft(cm2,[],1);

has I single-shot points, then m will vary from 1 to I, and n will vary from 1
to N. The number of single-shot points in the entire survey will be N X 1. The
position of the multishot arrays can be described by either x,, or x,,. The
variable x, will still denote the receiver positions, as in the previous subsection.
We assume that receiver-point locations are chosen to coincide (or interpolated
to coincide) with shot-point locations through the entire survey. Therefore, we
can describe the receiver points by the variable x,,,. Using these notations, the
term of the Kirchhoff scattering series which allows us to predict free-surface
reflections from single-shot seismic data can be rewritten as follows:

N I
PJ(XS,Q),X,) = Z Z Pj—[(Xvw’Xnm)VO(xnm’w’xr) . (3)
n=1m=1
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Fig. 3. A description of notations of single-shot points and receiver points in a Im4s multishooting
configuration. (a) Single-shot-point distribution and their nomenclature. (b) receiver-point distribution
and their nomenclature.

Passing from (1) and (3) to the Kirchhoff scattering series for attenuating
free-surface reflections from multishot data, we simply have to sum the
single-shot gathers associated with each multishot location. Thus we arrive at

1S)P(Xsn’w’Xr) = lso(xsn’wvxr) - a(xs,w)f)l(xsn,w,xr)

+ a’(x,,w)P,(X,w,X,) — ... , )
with

N 1

Pj(xsmwaxr) = Z Z j—1(Xsmw’xnm)vo(xnmawsxr) ’ (5)
n=1m=1
I

PO(xsnvw9Xr) = Z PO(xnm’var) . (6)
m=1

The function ~(n,m) describes the encoding coefficients of the various
single-shot points. Notice that all the fields in (4) and (5) correspond to a
multishooting experiment except one, the vertical component of the particle
velocity, V§(x,w,X,).
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One way of verifying the accuracy of predicted multiples in Fig. 5a is to
compare them to the encoded version of the predicted multiples in Figs. 1b and
lc of single-shot data. In other words, for each field of predicted multiples, we
sum four shot gathers with the same encoding time delays as those of the data
in Fig. 4a and compared them to the predicted multiples in Fig. 5a of the
multishot data. The difference between predicted multiples from multishot data
and mixtures of predicted multiples from single-shot data in Fig. 5c are almost
null; that is,

I
P (Xo,X,) — 3 ¥(0,M)P(Xy0,X) = O ()

m=1

thus confirming that we can indeed predict multiples of multishot data using (5),
as long as V(X,,,w,X,) is known. The demultiple results of multishot data are
shown in Fig. 4b. We have used the first three terms of the series in (4). We
can see that this demultiple process is quite effective.
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Fig. 5. A comparison of predicted multiples of multishot data using (5) and the encoded version of
the predicted multiples of single-shot data. (a) Predicted multiples of multishot data (i.e., P, and (P,).
(b) Encoded version of the predicted multiples of single-shot data; i.e., we sum four shot gathers
of each of the fields P, and P, with the same encoding time delays as those of the data in Fig. 4a.
(c) The difference (a)-(b) at the same scale as (a).
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Let us emphasize that the demultiple solution described in (4) and (5) and
illustrated in Figs. 4 and 5 is valid, irrespective of the encoding system of
mixtures. For example, we can encode the mixtures with time delays associated
with single-shot points varying from one multishot array to another, even
randomly varying, or with no time delays between single-shot points at all.
Table 2 summarizes the key steps of this demultiple. Let us also emphasize that
after the demultiple process, we can throw away the only single-shot data,
Vo(Xum»@,X,), involved in these computations and carry on the imaging with
demultiple multishot data only.

Table 2. A summary of the key steps in demultipling single-shot data in a multishooting form.

Step I: Input N X I single-shot gathers.

Step 2: Create a second dataset by grouping the N X [ single-shot gathers into N multishot gathers,
as described in (6).

Step 3. Use a demultiple algorithm like the one in (4)-(6) to attenuate free-surface multiples of
multishot data. Throw away any single-shot data and carry on the remaining with multishot
data only.

Step 4. Use any migration algorithms for which the input data are in the shot-gather domain to
estimate the velocity model and the final migration.

CONCLUSIONS

We have described one way of decreasing the pressure of data processing
by reducing the amount of data that are output from the demultiple process and
by reducing the computation time of the demultiple process. We also suggest
that the imaging process occurring after the demultiple be carried out with
multishot data rather than reverting to single-shot data.
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