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ABSTRACT

Chen, J., Bording, J.P., Liu, E., Zhang, Z. and Badal, J., 2010. The application of the nearly
optimal sponge boundary conditions for seismic wave propagation in poroelastic media. Journal of
Seismic Exploration, 19: 1-19.

Absorbing boundary conditions (ABC) play an important role in eliminating artificial
reflections from the edges of the seismic model. In this paper, we present a modified nearly optimal
sponge boundary condition. Utilizing the measure of reflected wave energy it is possible to construct
a contour map for a range of sponge absorption coefficients and numbers of grid points at tapered
zone, and determine the best set of parameters to minimize this energy metric. We apply this optimal
scheme to the numerical simulation of seismic wave propagation in 2D transversely isotropic
poroelastic media using staggered-grid finite-difference operator. We consider a first-order
hyperbolic system that is equivalent to Biot/squirt equation. The vector of unknowns in this system
consists of the solid and fluid particle velocity components, the solid stress components and the fluid
pressure. Eighth-order accuracy in space and second-order accuracy in time are used in our
numerical computation. Modeling studies indicate remarkably good results, the nearly optimal
sponge boundary conditions is simple and effective enough to eliminate the artificial reflections from
the boundaries of the model.

KEYWORDS: boundary conditions, numerical modeling, poroelastic media, Biot/squirt mechanism,
staggered-grid finite-difference.
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INTRODUCTION

Seismic numerical simulation is an effective method to help us understand
the elastic seismic wave responses (e.g., amplitude, frequency, attenuation, and
dispersion) for different environments of reservoir rocks. However, for the
limitation of the computational domain, we often treat seismic waves
propagation in truncated domain with boundaries. Thus, One of the tough
problems arises in application of seismic numerical modeling is the presence of
reflections from the edges of the seismic model (Cerjan et al., 1985). These
undesired events eventually override the actual seismic signals that propagate in
the modeled region.

During the last 30 years, numerous techniques have been developed for
dealing with the problem of existing artificial reflections mentioned above:
absorbing layers and absorbing boundary conditions (ABC). In the context of
absorbing layers, Bérenger (1994) introduced a technique called the perfectly
matched layer (PML) that has the remarkable property of generating no
reflection at the interface between the free medium and the artificial absorbing
medium. This method has been proven to be more efficient and has become
widely used. Another approach to improve PML absorbing behavior has been
developed for Maxwell’s equations by Kuzuoglu and Mittra (1996) and Roden
and Gedney (2000) and named convolutional-PML (C-PML). Komatitsch and
Martin (2007) further improved this technique to unsplit C-PML. In the C-PML
it is only necessary to store the memory variables in the absorbing strips, and
its cost in terms of memory storage is similar to that of the classical PML
(Komatitsch and Martin, 2007). All numerical results (Komatitsch and Martin,
2007; Martin et al., 2008) demonstrated the efficiency of this improved C-PML.

Absorbing boundary conditions (ABC) are an alternative to absorbing
layers. Many authors introduced various boundary conditions in numerical
modeling, for instance, paraxial conditions (Clayton and Engquist, 1977;
Higdon, 1991; Quarteroni et al., 1998), the eigenvalue decomposition method
(Dong et al., 2005), continued fraction absorbing boundary conditions(Guddati
and Lim, 2006). Cerjan et al. (1985) introduced sponge boundary condition
specified an operator length (grid points at tapered zone) and absorption
coefficient for the exponential weight, this boundary condition is commonly used
in seismic numerical modeling because of its simplicity and validity. The
heuristic given by Cerjan uses a zone of 20 grid points and an exponential
weight based on an initial value of 0.015 (Bording, 2004). What are the values
(operator length and absorption coefficient) to use in given problems? Or how
to use these values effectively. Bording’s paper (Bording, 2004) further
discussed its effect in acoustic media by minimizing wavefield energy and
optimizing the parameters of absorption coefficient and the width of tapered
zone. Here, we will apply modified Bording’s method to the numerical modeling
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of seismic wave propagation in the transversely isotropic poroelastic media
based on Biot/squirt flow theory.

The Biot theory (Biot, 1956a,b, 1962) has long been regarded as a basis
for solving wave-propagation problems in fluid-filled porous media. Biot’s
mechanism is responsible for the observed values of attenuation in reservoir
rocks at seismic frequencies (Carcione, 2007). Many papers discussed the
proper uses of the Biot’s theory (White, 1975; Carcione et al., 2003; Pride et
al., 2004; Carcione and Picotti, 2006). Many investigators have shown that the
squirt-flow mechanism can be responsible for the observed large attenuation and
velocity dispersion (Dvorkin et al., 1994; Yang and Zhang, 2000, 2002). A
consistent theory dealing simultaneously with Biot and squirt-flow (BISQ)
mechanisms has been presented by Dvorkin and Nur (1993). The theory
includes those mechanisms by considering the fluid motion parallel (the Biot
mechanism) and transverse (the squirt-flow mechanism) to direction of a planar
P-wave. Many authors have made contributions on Biot/squirt theory and
applications. Parra (1997) extended this BISQ theory to frequency domain
include the transversely isotropic poroelastic medium. Yang and Zhang (2000,
2002) developed a generalized poroelastic equation to relate wave propagation
with the solid/fluid coupling anisotropy and both mechanisms. Although it is
known now that the squirt-flow mechanism has no influence in the seismic and
sonic bands (Pride et al, 2004), we still use the BISQ theory in this paper based

on mainly discussing the application of boundary conditions in the complex
poroelastic media.

Regarding the numerical modeling, the finite-difference method has been
used to simulate wave propagation in poroacoustic media by Hassanzadeh (1991)
and in heterogeneous poroelastic media by Dai et al. (1995). Biot’s equations
in anisotropic media have been solved numerically by Carcione (1996). The
poro-viscoelastic case has been discussed in Carcione (1998) including the BISQ
and in Carcione and Helle (1999). Because central finite-difference operators for
the first derivatives are less accurate than staggered-grid finite-difference
operators, many authors have used staggered operators to simulate seismic wave
propagation (Faria and Stoffa, 1994; Carcione, 1998; Carcione and Helle, 1999;
Moczo et al., 2000; Zeng and Liu, 2001; Mittet, 2002; Sheen et al., 2006).

In this paper, we apply the modified Bording’s absorbing boundary
condition to eliminate artificial reflections from the boundaries of the numerical
model. Biot/Squirt equations (Biot, 1956a, b, 1962, Yang and Zhang, 2000,
2002) are reformulated into a first-order system whose vector of unknowns
consists of the solid and fluid particle velocity components, the solid stress
components, and the fluid pressure. For the implementation of the
staggered-grid finite-difference method, eighth-order accuracy in space and
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second-order accuracy in time are used, and a harmonic average scheme is
applied for effective media parameters. The results of modeling test show us
that this method is effective to eliminate the reflections from the edges of model
after using the optimal operator length and absorption coefficient.

BIOT/SQUIRT MECHANISM

Yang and Zhang (2000, 2002) extend the Biot/squirt (BISQ) theory to
include the solid/fluid coupling anisotropy and develop a general 3D poroelastic
wave equation in time domain including both mechanisms simultaneously.

3
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where i,j = 1,2,3. The parameters describing the physical properties of the
medium are defined as follows:

7; denotes the total stress component of the bulk material; u; is the displacement
component for solid; w; = ¢(U; — u;) represents the displacement component
for the fluid relative to that for the solid; U; is the displacement component for
fluid; ¢ is the porosity; p is the overall density of the saturated media
determined by p; + p,, p; = (1 — ¢)p, and p, = ¢p;; p; and p, are the density
of the fluid and the solid, respectively; P denotes fluid pressure;  represents the
viscosity of the pore fluid; m; denotes the component of coefficient constant
introduced initially by Biot (1962); k; denotes the permeability of the matrix,
these two are 3 X 3 diagonal matrixes.

The expression of the stress-strain relation in terms of the effective stress
or total stress is defined as

7 =Ae — P , 3)

where 7 = (7)) indicates the total stress tensor of the saturated porous medium,
A denotes the solid-frame stiffness tensor containing 21 independent drained
elastic coefficients for general anisotropic media, a = (o) is the poroelastic
coefficient tensor of the effective stress, e = (e;) represents the strain tensor of
the porous medium, e; = %2[(du; /9x;) + (du/dx), i,j = 1,2,3.

We can also get the expression of fluid pressure P in 3D,
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where F; and S; are the Biot-flow coefficient and the characteristic squirt-flow

coefficient, respectively. The two coefficients are defined by the following
equations:
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where K; and K are the bulk moduli of the pore fluid and solid material,
respectively, K;is set by V,; = \/(K/py), V,; is the acoustic velocity of the fluid,
Jo and J, are the Bessel functions of zero-order and first-order, respectively, the
parameter R; represents the average characteristic squirt-flow length of fluids
squirting in the j-th direction, the parameter (3 indicates the ratio of the
transversely average displacement of solid to that of the fluid, r, is the vector
of fluid impedance.

Considering the simple anisotropy situation, 2D (xz-plane) wave
propagation in the transversely isotropic media with a horizontal symmetry axis
(HTT). Egs. (1)-(4) can be written as a set of first-order hyperbolic differential
cquations in time domain for v, V, 7 and P:
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dP/dt = —F,S,[(V,/0x) + ({ay, — &}/d)@v, /0%)]
— F,S,[(0V,/02) + ({oss — 0}/d)v,132)] | (5h)

where v, = du,/dt, v, = du,/ot, V, = dU,/ot, V, = dU, /at, A; = 1/[p,¢m;
= paloy — émy)], by = né/k;, k; = 1/r; is the permeability vector of porous
media, i = 1,3, C,,, Cy3, C;,, C;; and Cs; are elastic coefficients of solid media,
oy =1—=(Cyy +2C5)/3K, o33 = 1 = (C3 + Cp3 + C3)/3K, my; = (dp; +
P/ P%, myy = (dp; + p,,)/d?%, p,, and p,, are the additional coupling densities
along the x- and z-directions in the system of Cartesian coordinates.

FINITE-DIFFERENCE IMPLEMENTATION

The system of eq. (5) is easily solved using a staggered-grid finite-
difference technique (Virieux, 1986; Levander, 1988; Graves, 1996; Moczo et
al., 2000). Details of this type of formulation can be found in the above articles,
along with numerical accuracy and stability analyses. Because the item S, is
frequency-dependent, we deal with this in the time domain by considering it as
quasi-constant during numerical computation. Fig. 1 illustrates the layout of the
wavefield variables and media parameters on the staggered-grid mesh. One of
the attractive features of the staggered-grid approach is that the various
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In the above equations, the superscripts denote the time step, and the
subscripts denote the spatial indices. The symbol L, and L, represents the
discrete form of the spatial differential operator along x- and z-coordinates
direction, for 2L-order accuracy along the x-direction as example,

L
Lxuli,j = (1/Ax) E am(ui+(2m—1)/2,j = Ui_om-nnj) > (7

m=1

and the differential coefficient (Mou and Pei, 2005)

L-1

L
a, = (-D™TIei - nvem - DIem - 12 - @i - 17,

i=1,i#m i=1

where Ax is grid spacing, and Ax = Az in this paper. V denotes the arithmetic
average in time domain, (V"** + V"~")/2, and the coefficients A, B,, C,, D,
E, and F, are defined as

A, = Ao s

B, = Aoy, ,

C = Ao >

D, = A(er — @myy,)

E, = Ao,

F, = A -

The effective media parameters yield a more accurate representation in the

region near interfaces (Zahradnik et al., 1993; Graves, 1996). The parameters
are given by the harmonic average:

o = A{(Up, ) + (o, N

sz = [1/2{(1/p1u) + (l/pfi,j_kl)}]Al )

(8)

for the fluid density in porous media. Similar averages are applied for other
media parameters, like A;;, Aj;, by, by; and p,. The anisotropic elastic
parameters are obtained by

C = [%{(1/Ci,j) + (1/C1+1,j) + (I/Ci,j+1) + (1/Ci+1,j+l)}]_1 s (9)
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this harmonic averaging scheme is effective for simulating seismic wave
propagation in heterogeneous media (Moczo et al. , 2002).

NEARLY OPTIMAL ABSORBING BOUNDARY CONDITIONS

Sponge absorbing boundary conditions (Sochacki et al., 1987; Cerjan,
1985; Bording, 2004) is the commonly used technique in numerical modeling
to eliminate the artificial reflections from boundaries of the model. It is based
on the gradual reduction of wave amplitudes in the vicinity of artificial
boundaries. This reduction is tapered gradually by the use of a weighting
function W(x,z) of the form

exp—[a(b—x)]* , x <borx>L —b
W(x,z) =4 exp—[a(b—2)]* , z<borx>L,—-b , (10)
1 elsewhere

where a is the absorption coefficient, b is the width of tapered zone, and L, and
L, are the model sizes of the x- and z-direction.

Cerjan (1985) specified the above operator length b and absorption
coefficient a for the exponential weight. These variables are dependent on the
wave equation formulation and numerical implementation. Bording (2004)
developed and presented an energy metric to obtain the optimal parameters of
absorbing boundary condition, in fact, the similar method of minimizing the
amount of energy had been introduced in an earlier paper by Collino and Monk
(1998). However, only one-way acoustic equation was adopted in Bording’s
paper, and determining the best set of unknown parameters to minimize the
energy of the whole wave field. We know that the media in the earth are
complex and anisotropic, the velocities along different directions of seismic
wave propagation are different. Especially, they are more challenging in
poroelastic media, the seismic waves propagating in this kind of media will
become more complex including fast and slow quasi-compressional waves,
quasi-shear wave, even wave scatters. Clearly, this optimal scheme has some
limitations to poroelastic media. For simplicity, we divide the whole wave field
into two domains (Fig. 2), one is along the x-direction, another is along the
z-direction. To determine the best parameters for this implementation, the
operator length and absorption coefficient are varied over a range of values. We
sum up all energies of all reflections from boundaries and determine the best set
of parameters to minimize this energy metric along the two directions based on
grids, respectively. Fig. 2 gives three lines (x1, x2, x3; z1, z2, z3) along x- and
z-directions, respectively, these lines cover ranges of reflections from small
angles to the vertical angle.
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Fig. 2. The configuration of the measured lines. The solid lines represent the measured lines, and
the zones between dash lines and model boundaries denote the tapered zone. The solid circle
indicates the source position, and the solid squares indicate the receivers.

SOURCE IMPLEMENTATION

The source time function used in this paper is a band-limited Ricker
wavelet (Lou and Rial, 1995), which is distributed over a small region of the
grid, that is:

fit,x,z) = |1 — 2@2f(t — to)2] exp | —mw2f2(t — t,)2]
exp{—AL(x — x)? + (z — ZO)ZJ} , 11

where t, is the original time of the source function, f is the dominant frequency
of the source, x, and z, are the central position of source, and \ determines the
degree of concentration of the source function. In this study, we choose t, =
0.05s, f =25 Hz, X\ = 0.1 as a common source signal in modeling seismic
exploration.
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NUMERICAL TEST

In our water-saturated model, we select Taylor sandstone as solid HTI
media (Sedimentary rock) based on data from Thomsen (1986). Measured
anisotropic parameters are available in Table 1, then we use following equations
to get the elastic coefficients of the HTI media:

Cy3 = Vi, Cu = Vi, Cpp = Cy3 + 2Cy¢, Cyp = Cyy + 2vCy,

Ci3 = V{(Cs3 — Cyy)? + 2Cy;(Cy3 — Cuy)d} — Cy,

Table 1. Measured anisotropic parameters of Taylor sandstone (Thomsen, 1986).

Sample V, (m/s) V (m/s) € 5 ¥ o (g/cm®)
Taylor 3368 1829 0.110 —-0.035 0.255 2.500
sandstone

Table 2. All physical properties (rock and fluid) of Taylor sandstone used in two examples.

Solid Fluid
Properties
Taylor sandstone Water Gas
V; (m/s) 3368 1500 630
Vs (m/s) 1829 - -
p (g/cm®) 2.500 1.000 0.140
Paehy, (g/cm’) 0.300, 0.33 - :
¢ (%) 19 - -
K (Pa) 12.402E+9 - -
n (Pa *s) - 1.000E-3 2.200E-5
B 0.4
k;1kyy (md) 100,100 - i
R..R, (mm) - 55 55
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(a)
Absorption coefficient
0.001  0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
| | | | | | |

S ‘

Tapered zone, Grid points

Y1)
90
o

1 ‘ \ \

Wave field measure (Z)

(b)
Absorption coefficient
0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
|

U |

Tapered zone, Grid points

Wave field measure (X)

Fig. 3. Wavefield energy contour plot of tapered zone grid points versus absorption coefficient. (a)
denotes energy measurement along z-direction, (b) represents energy measurement along x-direction.
The cross symbols denote the optimal parameters.
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where V,, Vg, are vertical velocities of the P-wave and S-wave in anisotropic
media, respectively, €, § and v are Thomsen’s anisotropic parameters, Thomsen
(1986) provides the detailed description, in addition, the elastic coefficients have
some features in HTI media, C,, = C;3, Cs55 = C4 and C,3 = C,, — 2C,,. All
the physical properties of the Taylor sandstone used in the model are given in
Table 2.

The size of the model with water-saturated porous media is N, X N, =
240 X 240 nodes. The spatial grid spacings are 10 m and 10 m whereas the
time step is 1 ms. The explosive source with 25 Hz of dominant frequency is
located at the center-grid position of the model, the red sold circle indicates the
source position in Fig. 2. When seismic wave propagates 360 ms after the
source is generated, we compute the total energies of reflections from
boundaries along x- and z-directions, respectively. In Fig. 2, the solid lines
represent the measured lines, and the zones between the dashed lines and the
model boundaries denote the tapered zone. The contour plot of the energy
metric shown in Fig. 3; Fig. 3a denotes the measurement of the wave field
energy along the z-direction, Fig. 3b denotes the x-direction. The cross symbol
denotes the optimal parameters, Fig. 3 clearly indicates an optimal operator
length and absorption coefficient at 25 and 0.0007 along the z-direction, 22 and
0.0009 along the x-direction. To compare the effectiveness of the absorbing
boundary condition, two cases of the model were run, one without the sponge
boundary applied, and another with the optimal parameters, shown in Figs. 4
and 5 at the snapshots time 360 ms, respectively. In Figs. 4 and 5, (a) and (b)
are the horizontal and vertical components of the solid particle velocity,
respectively, (¢) and (d) are the horizontal and vertical components of the fluid
particle velocity, respectively. Fig. 5 indicates our modified boundary condition
is extremely effective to eliminate the reflections from boundaries. In these
diagrams, the wave type is indexed as qP or qS, for a quasi-compressional or

a quasi-shear wave; a superscript is used for the phase velocity, for fast and
for slow.

To test our nearly optimal boundary condition, we also compare with the
C-PML boundary condition and the exact solution as described in Komatitsch
and Martin (2007). Fig. 6 illustrates the seismograms (the recording time is
470ms) at the receiver position (60,100) as the green solid square indicates
nongrazing incidence, where the grid number is 60 along the z-direction, 100
along the x-direction. Fig. 6a shows the horizontal component of the solid
velocity. Fig. 6b shows the vertical component of the solid velocity. Fig. 6¢
shows the horizontal component of the fluid velocity. Fig. 6d shows the vertical
component of the fluid velocity. Fig. 7 illustrates the seismograms (the
recording time is 470 ms) at the receiver position (30,200) as another green
solid square indicates grazing incidence. Fig. 7a shows the horizontal
component of the solid velocity. Fig. 7b shows the vertical component of the
solid velocity. Fig. 7c shows the horizontal component of the fluid velocity.
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Fig. 4. Snapshots (t = 360 ms) of the horizontal (a,c) and vertical (b,d) components for the solid
and fluid particle velocities based on BISQ mechanism without applying boundary conditions.
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Fig. 5. Snapshots (t = 360 ms) of the horizontal (a,c) and vertical (b,d) components for the solid
and fluid particle velocities based on BISQ mechanism with applying boundary conditions.
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Fig. 6. The seismograms (the recording time is 470 ms) at the receiver position (60, 100). (a), (b),
(c) and (d) show the horizontal and vertical components of the solid velocity and horizontal and
vertical components of the fluid velocity, respectively. The solid lines indicate the exact solution,
the dash lines indicate the numerical solution with C-PML, and the dotted lines represent the
numerical solution with our nearly optimal boundary condition.
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Fig. 7. The seismograms (the recording time is 470 ms) with the receiver grid (30,200). The details
are the same as Fig. 6.
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Fig. 7d shows the vertical component of the fluid velocity. In Figs. 6 and 7, the
solid lines indicate the exact solution, the dashed lines indicate the numerical
solution with C-PML, and the dotted lines represent the numerical solution with
our nearly optimal boundary condition. All graphs show that our optimal
boundary condition has the good performance as the C-PML does, and show
that our nearly optimal boundary condition is an alternative effective tool. To
showing the details, we separate the results into a, b, ¢, d in Fig. 8, using the
horizontal component of the solid velocity at the position (30,200) as an
example. Fig. 8a indicates the numerical solution without boundary condition,
Fig. 8b indicates the exact solution, Fig. 8c indicates the numerical solution
with C-PML, Fig. 8d indicates the numerical solution with our nearly optimal
boundary condition. gP'p indicates boundary reflections from qP".
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Fig. 8. The horizontal component of solid velocity at the position (30,200). (a), (b), (c) and (d)
indicate the numerical solution without boundary condition, the exact solution, with C-PML, and
with our nearly optimal boundary condition, respectively. qP'p indicates boundary reflections from
qP".

CONCLUSIONS

We present a modified nearly optimal sponge boundary condition. By
minimizing energies of reflections from the boundaries across the model along
x- and z-directions, respectively, we can find nearly optimal sponge length and
absorbing coefficients. Finally, this method is applied to numerical simulation
of seismic wave propagation in transversely isotropic poroelastic media based
on Biot/squirt theory. The model test illustrates that this method can effectively
eliminate the reflections from the edges of model.
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