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ABSTRACT

Hu, Y. and McMechan, G.A., 2010. Theoretical elastic tensor models at high crack density. Journal
of Seismic Exploration, 19: 43-68.

Elastic stiffness tensor values in cracked rocks depend on the crack density, and on the
shapes, fluid content, orientation, and spatial distribution of the cracks. The mathematical expression
of anisotropy is embedded in the elastic stiffness tensor. Thus, in reservoir characterization by
anisotropic seismic modeling, inversion and interpretation, a key step is to represent the rock
properties in terms of the equivalent anisotropic elastic stiffness tensor.

We compare the strengths, limitations, and relationships between the anisotropic elastic
stiffness tensor elements predicted for a transversely isotropic medium with a horizontal symmetry
axis,using a variety of theoretical formulations, including equivalent single inclusion approximations,
smoothing, self consistent approximation (SCA), differential effective medium (DEM) methods,
linear slip (LS), and T-matrix methods. These formulations differ in their crack parametrizations,
the assumptions and approximations involved, and the corresponding consequences of these.

All the formulations involve theoretical extrapolations. Absolute accuracy is not known for
high crack density because, while there is substantial internal consistency between the theoretical
results when crack interactions are included, there is to date, only limited external validation in
terms of physical and numerical experiments at high crack densities. At high crack densities, where
crack interactions are important, physically reasonable values are expected to be predicted only by
the formulations that implicitly or explicitly consider these effects. These methods are the SCA,
DEM, LS and T-matrix methods. For a coal example, all these four methods predict similar elastic
stiffness tensor values up to volume crack densities of <0.3, beyond which, the spatial distribution
of cracks in the various models becomes increasingly important. In a medium with perfectly aligned
fractures, the shear modulus normal to the symmetry plane shows the greatest relative variation
between models at high crack density.
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INTRODUCTION

The presence of fractures in rocks affects the propagation of seismic
waves in a variety of ways. If the fractures are aligned, the velocities of seismic
waves will be functions of polarization directions, resulting in anisotropy.
Fractures generate seismic anisotropy, unless the fracture orientations are
random. The simplest type of seismic anisotropy, transverse isotropy (TI), can
be caused by aligned fractures in an isotropic host rock. A TI medium has five
independent elements in the elastic stiffness tensor (Thomsen, 1986). The
anisotropic elastic stiffness tensor is the mathematical expression of anisotropy.
Thus, a key step is to represent the crack properties in terms of the equivalent
anisotropic elastic stiffness tensor. The main motivation for the present work
is to produce the input needed for numerical simulation of the seismic responses
of anisotropic media (e.g., Ramos-Martinez and McMechan, 2000). Thus we
limit our examples to a single set of aligned cracks, rather than considering an
assemblage of randomly oriented cracks that is isotropic on the macro scale.

Seismic wavelengths are typically substantially (tens of times) larger than
the fracture dimensions (Liu et al., 2000). Dimensions of fractures that are
likely to cause seismic anisotropy usually range from microns to a few meters.
A fracture may be composed of a single large crack or several small cracks (Liu
et al., 2000). This implies that the effective elastic anisotropy is insensitive to
the size of the individual cracks (Crampin, 1994). A fractured medium can be
modeled as an effective elastic medium with anisotropic symmetry
corresponding to the particular crack distribution and orientations. Much of the
theoretical basis for the study of moduli of cracked media has been done in the
solid mechanics and mechanical engineering communities (e.g., Bristow, 1960;

Kachanov, 1980, 1992, 1994). Early geophysical examples are in Walsh
(1965a, b).

Because of the importance of the effective anisotropic elastic properties
for seismic modeling, inversion and interpretation, several theoretical models
have been proposed. These models include the equivalent single inclusion
(Eshelby, 1957), self consistent approximation (SCA) (O’Connell and
Budiansky, 1974; Budiansky and O’Connell, 1976; Willis, 1977), differential
effective medium (DEM) methods (Nishizawa, 1982; Sheng, 1990; Hornby et
al., 1994), Hudson’s smoothing methods (Hudson, 1980, 1981, 1994), linear
slip (LS) methods (Schoenberg, 1980; Schoenberg and Douma, 1988;
Schoenberg and Sayers, 1995; Sayers and Kachanov, 1995; Hudson and Liu,
1999; Liu et al., 2000) and T-matrix methods (Jakobsen et al., 2003; Jakobsen,
2004). Although these formulations each have their own assumptions,
parametrizations, advantages, and limitations, some of them evolved from others
and hence have inherited characteristics.
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Crack density (Kachanov, 1980) is common to all these theories and is
critical, both to the potential hydrocarbon storage and productivity of the
reservoir rocks, and to the resulting seismic anisotropy. The dimensionless
volume crack density ¢ = p(a®), where » is the number crack density (the
number of cracks per unit volume of rock), a is the crack radius, and () denotes
an average (O’Connell and Budiansky, 1974; Hudson, 1980). Most studies of
seismic anisotropy are limited to weak anisotropy [which means that Thomsen’s
(1986) anisotropy parameters are much less than 1.0, or ¢ < 0.1 for aligned
cracks].

Strong seismic anisotropy may be present in a variety of rocks if the
density of the aligned cracks is high. Many field investigations and lab
experiments reveal that large crack density is common (Table 1). The crack
density is independent of the aperture (thickness) of the cracks. Cracks with
very small aperture can occur in dense swarms with high crack density without
the rock being broken or losing cohesion. The confining stress keeps severely
fractured rock, with high crack density, integrated, while overpressure fluid
keeps cracks open (Sayers, 1994). Therefore, fractured rock will not necessarily
be fragmented or lose coherence if ¢ > 0.1, which is the limit suggested by
Crampin (1984) for a Poisson solid.

Table 1. Thomsen’s parameters (e, ), and crack density for some rocks. The e here should not be
confused with the ¢ used for crack density elsewhere in this paper.

Lithology References € ¥

Limestone Crampin et al. (1980) 0.27 -
Gupta (1973) 0.65 0.34
Jakobsen and Johansen (2000) 0.16 0.24
Wang (2002) 0.20 0.12

Granite Nur and Simmons (1969) 0.30 0.20
Hadley (1975) 0.20 0.28
Lo et al. (1986) 0.30 0.03
David et al. (1999) crack density = 0.30

Coal Shuck et al. (1996) crack density = 0.30

Marble Peacock et al. (1994) crack density = 0.42
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An inclusion may have any shape but, following Eshelby’s (1957) model,
we restrict it to an ellipsoid. A crack is usually a flat inclusion with low aspect
ratio, which is the ratio of thickness to length of the ellipsoid. In Eshelby’s
model, the cracks (inclusions) are sufficiently separated from each other that the
crack-crack interaction can be neglected. This method gives only first-order
predictions; the effective elastic stiffness tensor elements are linearly dependent
on the crack density.

In Hudson’s (1980, 1981) second-order approximation (smoothing)
methods, the effective elastic stiffness tensor elements are functions containing
terms up to the second power of crack density. Although it is widely used, this
method is still limited to small crack densities and small crack aspect ratios
(penny-shaped cracks); crack interactions are estimated when they are not very
strong.

The SCA and DEM methods (Vavakin and Salganik, 1975; Hashin, 1988)
can be applied to high crack density because crack-crack interactions are taken
into account. Although SCA and DEM are not physically-based models
(Hudson, 1981; Douma, 1988; Cheng, 1993), they allow representation of the
elastic stiffness tensor components as a function of crack density. Another
alternative is presented by Benveniste (1986), who generalizes Mori and
Tanaka’s (1973) average elastic energy approach to extend Eshelby’s equivalent
inclusion formulation to consider interaction between inclusions.

Linear slip methods (Schoenberg, 1980; Liu et al., 2000) are for fracture
zones composed of small, aligned, interacting circular cracks or circular
asperities and are supposed to be suitable for high crack density. The effect of

an asperity is large, even if it is small in size (Sevostianov and Kachanov,
2001).

The T-matrix methods (Jakobsen et al., 2003) use the T-matrix to
represent Eshelby’s (1957) single inclusion model. Similar representations are
used in the first-order formulations. Two-point correlation functions approximate
nearest neighbor crack interactions. Hence the T-matrix methods are also
suitable for high crack density. On the other hand, the T-matrix model is

developed for a specific spatial pattern of cracks; the applicability to other
patterns remains unclear.

Physical experiments performed under controlled conditions may be used
to evaluate theoretical models of anisotropic elastic properties. Unfortunately,
most published physical experiments (e.g., Rathore et al., 1991; Ass’ad et al.,
1992; Ass’ad et al., 1993a, b; Peacock et al., 1994) have tested only Hudson’s
smoothing method; Rathore et al. (1994) also compare with Thomsen’s (1995)
model. If the host rock is a Poisson’s solid containing dry cracks with aspect
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ratio of ~0.05, the crack density limit of validity of Hudson’s method,
suggested by these researchers is ~0.1.

Another alternative to evaluating theoretical models is numerical
simulation of moduli for specific realizations of cracked media. Examples
include Grechka and Kachanov (2006a, b, c), Kachanov (1992), Mauge and
Kachanov (1994), Saenger and Shapiro (2002), and Saenger et al. (2004). This
numerical approach is the most general and the most accurate that is available,
but is also the most expensive and still has various contentious issues (Grechka,
2007; Saenger et al., 2006; Saenger, 2007), so there is still substantial value in
comparative evaluations of the existing theoretical solutions.

When waves of seismic frequency propagate in (partially or fully)
fluid-saturated, fractured rock, attenuation may be caused by inter- or
intra-fracture fluid flow, driven by displacements produced by seismic waves.
Under these conditions, the rock is viscoelastic, which is beyond the scope of
this study. The purpose of this paper is to compare and evaluate the elastic
stiffness tensor components, predicted by existing methods for crack densities
¢ > 0.1, and to understand their strengths, limitations, and relationships. The
resulting effective elastic stiffness tensors may be used as the input to numerical
simulations of the seismic responses of anisotropic models associated with
specific crack characteristics; the latter is also beyond the scope of the present
paper, and is presented by Hu (2008).

SUMMARY OF THEORIES

The main theoretical methods for predicting effective elastic stiffness
tensors for fractured rocks are equivalent inclusion methods, self consistent
methods, differential effective medium methods, smoothing methods, linear slip
methods, and T-matrix methods. The salient characteristics of each are
considered in turn, in the following subsections. Mori and Tanaka’s (1973)
approach could also be considered, but we omit it as it is less commonly used
in geophysics; this model is non-linear in the number crack density, but ignores
crack interactions. We also do not explicitly consider the related,non-interaction

approximation (NIA) of Kachanov (1992) as that is a variant of the first-order
linear slip formulation.

Eshelby’s equivalent inclusion method

Eshelby (1957) proposes an exact solution for a single inclusion (Fig. 1)
that is used to approximate an equivalent model of multiple, non-interacting
inclusions. The inclusion is modeled as an ellipsoidal crack with principal axes
2a, 2b, and 2c. The shape of the inclusion can be expressed as x3/a> + x3/b? +
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xj/c* = 1. If a = b, then the inclusion has spheroidal shape with circular cross
section of diameter 2b and thickness 2a (Fig. 1). o, = c/a is the crack aspect
ratio. If o; = 1, the inclusion is spherical; if o, > 1, the inclusion is prolate;
if o; < 1, the inclusion is oblate. The ellipsoidal inclusion is representative of
stress-induced cracks, deformed pores or vugs, or flat mineral grains (e.g. mica
or clay minerals, which can be considered as inclusions filled with minerals).
Inclusion is a more general term so a crack can be considered as an inclusion
with small aspect ratio.

Eshelby’s (1957) method ignores all inclusion-inclusion interactions. It is
a non-interacting approximation as the dilute inclusions are sufficiently separated
that interactions between them can be ignored. The change of the elastic field
caused by the existence of one inclusion does not affect the elastic energy of the
other inclusions (Eshelby, 1957). It also ignores the influence of the inclusions
on the elastic energy of the matrix, because the volume change of the matrix
caused by the presence of an inclusion is very small.

Under the condition of keeping constant displacement and constant strain
on the surface of the inclusions, the total energy, of a sample that consists of an
isotropic solid matrix with an ellipsoidal inclusion that is small compared to a
typical seismic wavelength, is the sum of the elastic energy contributed by the
matrix, and the change in the energy contributed by the crack. Eshelby (1957)
gives incomplete expressions and Cheng (1978) completes them, in the form

Cx = C" — ¢C!' , (1)

where C* is the effective elastic stiffness tensor of the rock matrix containing
the inclusion, ¢ is the inclusion porosity, and C° is the elastic stiffness tensor
of the host rock. C' is the contribution of the individual inclusions, and is a
function of the elastic stiffness tensor of the matrix, the shape (the aspect ratio),
and the orientation of the ellipsoidal inclusions, and the elastic stiffness tensor
of the infill of the inclusions (Cheng, 1978, 1993). Eq. (1) indicates that the
effective elastic stiffness tensor is linearly dependent on the inclusion porosity
¢ if all inclusions are uniform, having same shape, orientation and infill. The
stiffness also depends linearly on the volume inclusion density ¢ [as ¢ =
(4m/3)ea;]. The dependence of C* on « is not linear as o, also appears in C'.

Self consistent approximation (SCA) methods

The SCA methods are proposed by O’Connell and Budiansky (1974,
1977) and Budiansky and O’Connell (1976) for randomly oriented cracks (which
is an isotropic medium), and are modified by Hoening (1979) for cracks aligned
parallel to the isotropy plane. A single inclusion of the self consistent model is
same as in Eshelby’s model, but the crack concentration is non-dilute. The SCA
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model always accounts for crack-crack interactions. and Eshelby’s model never
does. The SCA model is iterative, with cracks gradually added to a previous
effective medium containing previously added cracks.

Willis (1977) and Hornby et al. (1994) propose the SCA expression:

N N
C3¢ = Y 6,CL + GIC" = COH{ L gl + GC = COHNT} L @)

n=1 p=1

where C$€ and C5€ are the effective elastic stiffness tensors, after and before,
an iteration, respectively. The composite materials are composed of N
components (including the matrix), with different shapes and materials of
inclusions, C" (or CP) is the elastic stiffness Voigt tensor of the n-th (or p-th)
component, ¢, (or ¢,) is the inclusion porosity of the n-th (or p-th) component,
G is a fourth-rank tensor [given by Lin and Mura (1973)] that is related to
Eshelby’s tensor Sby S = GC,, and I, is a second-rank identity tensor. Thus,
eq. (2) says that the effective elastic stiffness tensor of the composite is a
combination of the elastic stiffness tensors of the elements, each weighted by its
inclusion porosity ¢.

The host rock is not necessarily isotropic (Eshelby, 1957). Lin and Mura
(1973) give expressions to calculate the tensor G in eq. (2) for a transversely
isotropic matrix. This tensor may be associated with vertically aligned flat
inclusions, minerals, or clay particles, which indicates that the SCA method has
wide applications. The elastic stiffness tensor of this effective medium is that of
the anisotropic matrix that is produced by the inclusions already added. This
matrix is used as the input, to which another dilute increment of inclusions is
added. Then the new elastic stiffness tensor is calculated. This scheme is called
self consistent and is an iterative solution for a non-dilute inclusion
concentration, obtained by accumulation of inclusions. There is no explicit
assumption made in SCA about the statistical distribution of cracks. However,
the inclusions are implicitly required to be randomly located and statistically
evenly distributed.

Differential effective medium (DEM) method

Salganik (1973), Nishizawa (1982), Hashin (1988), Sheng (1990) and
Hornby et al. (1994) propose differential effective medium methods (DEM).
DEM is similar to SCA, except that, at each iteration, the change of effective
elastic stiffness tensor (rather than a new effective elastic stiffness tensor) is
calculated. In this way, crack-crack interactions are included approximately in
the DEM (Hudson, 1980; Cheng, 1993). Thus, the elastic properties for models
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with non-dilute inclusions can be obtained, provided that the cumulative errors
resulting from the iterative calculations do not influence the results. For the
inclusion model described above for the SCA method, Hornby et al. (1994)
propose an expression to calculate the change of effective elastic stiffness tensor
(AC):

AICP™M(@)] = [Ag1(1 — BIIC = CPM@I + GIC' ~C™M)l} ', ()

where CP"M(¢) is the effective elastic stiffness tensor obtained from the previous
iteration, A[CPEM(¢)] is the increment of the elastic stiffness tensor, A¢' is the
new inclusion concentration (of type i) added to the matrix with the previously
added inclusion concentration ¢, and G is Lin’s tensor [see eq. (2)].

DEM gives a model similar to SCA, but uses a different effective scheme
to estimate the crack-crack interaction. Because the specific distribution of
cracks 1s not included, DEM is also non-deterministic. Both the SCA and DEM
methods are implemented for orientation distributions other than random or
strictly aligned.

Hudson’s first- and second-order (smoothing) methods

Hudson (1980, 1981, 1986) proposes smoothing methods, by averaging
equations of motion over the cracks, to estimate the elastic stiffness tensor of
an isotropic rock matrix containing perfectly oriented (but randomly distributed)
cracks; such a medium is transversely isotropic. The assumptions are that the
cracks are small compared to the seismic wavelength, isolated, penny-shaped,
and filled with weak material. This is very similar to the earlier work of Bristow
(1960) and Walsh (1965a,b). Piau (1980) considered several systems of parallel
cracks,and Kachanov (1980) considered a general orientation distribution.

The smoothing methods estimate the effective elastic stiffness properties
for a cracked rock by combining the contributions to the elastic stiffness tensor
of an isotropic rock, and of the first- and second-order dependence on crack
density. The first-order method is described by

Cijkl = C?jkz + C%jkl > (4a)
and the second-order method is described by

Ciw = Cljy + Clj + Chjy (4b)

In eqs. (4a) and (4b), superscripts 0, 1, and 2 denote the term sequence

rather than being mathematical exponents. C;, is the fourth-rank elastic stiffness
tensor of the cracked medium,
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C(i)jkl = )\6ij5kl + “(6ik6jl + 6i16jk) (S
is the stiffness tensor of the isotropic host rock, where A and p are the Lamé
coefficients of the isotropic matrix, and §; is the Kroneker delta (6; = 1 if i =
J; otherwise 6; = 0).

For cracks orientated perpendicular to the X direction (Fig. 1), Hudson
(1980) derives the following to estimate Cij, and C}j;:

C}jkl = _(8/M)anjcglklqu (6)
is the stiffness tensor of the first-order crack term, ¢ is the crack density, and
U; = diag(Uy;,U;3,Uy), where Uy, and Us; are the strain responses of a single
crack, to shear and compressional stress, respectively.

In eq. 4b,

C%jkl = (1/.“)C§jmnanqu}qkl ’ (7)

contains the contribution to the stiffness tensor of the second-order crack density
term, and is expressed as a function of the first-order term C}jk,, where

4

X

Fig. 1. Eshelby’s ellipsoid model of a single inclusion.
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Xijkt = (1/15)[6ik6j1(4 + V§/vi) — (6ij5kl + 5i15jk)(1 - V%/Vf))] > (8)

Ve = [(A + 2u)/p]” and Vg = (u/p)” are the P- and S-wave velocities,
respectively, in the isotropic matrix, and p is bulk density of the host rock.

Hudson’s first-order term Ciy, is the contribution of individual cracks, and
the second-order term C%,, is the contribution of crack-crack interaction,
(Hudson, 1981; Crampin, 1984). Thus, the second-order approximation can be
applied at higher crack density than the first-order approximation. Cheng
(1993) used Padé approximations to extend Hudson’s (1980, 1981) second-order
model to higher crack density, to give predictions that are similar to those of
the SCA and DEM methods; none of them are deterministic.

Linear slip (LS) methods

Schoenberg (1980), Kachanov (1992), Schoenberg and Sayers (1995) and
Sayers and Kachanov (1995) describe a linear slip method to calculate an
effective elastic stiffness tensor for fracture-induced anisotropy, using a model
consisting of perfectly aligned planar fractures of infinite length and small
thickness that are filled with high compliance (weak) materials.

In linear slip theory, strain is linearly related to stress, normal strain
depends only on normal stress, and tangential strain depends only on tangential
stress. The compliance tensor Sy, of an effective medium equals the sum of the
compliance tensor S%,, of the matrix and the excess compliance tensor St
associated with the fractures,

Sine = S + ngkl . )

The excess compliance tensor Si, can be expressed in terms of the
compliance tensor Z; of the fracture using

St = %(Zynn + Zynn, + Znn, + Zynn) (10)
where n; are the components of the local unit normal to the fracture surface.

If the cross section of the 3D fractures is circular, and they are aligned,
then the fracture compliance can be expressed using the normal (Z,) and
tangential (Z;) compliances (Schoenberg and Sayers, 1995) as

Zy= L:b; + (Zy — Zpnn . (1D

In the resulting transverse anisotropy, the compliance tensor of the fractures has
three non-zero elements, two of which (Zy and Z;), are independent.
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Many formulations have been proposed to estimate the first order crack
compliance tensor assuming that the crack density is very small, so the crack
interactions can be ignored. Kachanov (1980, 1992) and Sayers and Kachanov
(1995) define a second-rank tensor and a fourth-rank tensor to estimate the
fracture compliance Z; for circular fractures. For penny-shaped fractures,
Hudson et al. (1996) present an exactly equivalent expression for the two
fracture compliances: Z; = (¢/u)U,, and Zy = (¢/p)Us,, where U}, and Us; are
the coefficients introduced by Hudson (1981) as described in the previous
section. Using different values of U,, and U;; makes the LS method applicable
to a variety of fluid contents.

Hudson et al. (1996), Hudson and Liu (1999), and Liu et al. (2000)
derive analytic expressions for fracture compliance for Liu’s models for high
crack density, for specific fracture distributions, microstructures, and
geometries. Liu et al. (2000) define three fracture and crack models. Their
Model 1 (Fig. 2) contains circular fractures with diameter of 2a; (that is much
shorter than a typical seismic wavelength). The fracture spacing is H,, and each
fracture contains a cluster of isolated smaller circular cracks with diameter 2a_,
separated by non-circular asperities.

Liu et al. (2000) derive the excess compliance tensor for Model 1 as

Sifjkl = (e/4w[A1(6ynn; + 6,nn; + onn; + 6;n,n;)

+ 4A§ — Apnnnn] . (12)
where

Al = AN + Gr/d)(viagAn{N + w/N + 2w}, (13)
and

Ap = Al + Gr/16)(a)A{BN + 4w)/(N + 237", (14)

where v, = eHy/a} is the number of cracks on a circular fracture plane with
radius a;,

Ar = Uyl + (v Uy(@/4)3 - 2Vy Vi)l (15)

and
Ay = Uyl + (’Ycag)mUnW(l - Vé/Vg)] . (16)

The fracture spacing H; (Fig. 2) is sufficiently wide that the interactions
between neighboring fractures can be ignored. Crack-crack interactions occur
only along the same fracture plane, as expressed by the two terms in the
brackets in egs. (15) and (16).
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|+ 2ax |
k—2ac—t ‘ l—2b—»1
(Model 1) (Model 2)

Fig. 2. Liu et al.’s (2000) fracture and crack Model 1 for the linear slip formulation. The pairs of
parallel light lines are the fractures. Fractures are thin, and of circular cross section with diameter
2a; and spacing H;. Within the fractures are mixtures of cracks (the black regions) and asperities (the
dotted regions). 2a, is the diameter of the circular cracks, separated by (non-circular) asperities.

Liu et al. (2000) suggest that the above formulation can be reduced to
Schoenberg and Sayers’ (1995) (first order) LS method. If we consider only the
first-order in ¢, eqs. (13) and (14) become Ay = Uy and At = U,;, which is
the same as in Sayers and Kachanov (1995) and Hudson et al. (1996). Liu et al.
(2000) compare this formulation with Hudson’s (1980, 1981) first-order method,
and suggest that they are equivalent if ¢ is small. Liu et al. (2000) show that if
& < 1/6 (for their specific example, for a Poisson solid), the first order LS
method is equivalent to Hudson’s first-order smoothing method.

T-matrix methods

This approach is an evolution of Zeller and Dederichs’ (1973), Mori and
Tanaka’s (1973), Willis’ (1977), and Castaneda and Willis” (1995) methods.
Zeller and Dederichs (1973) first propose a T-matrix method of quantum
scattering theory to estimate the elastic effects of individual cracks (so, this is
the first-order method). Mori and Tanaka (1973) and Willis (1977) introduce the
two point correlation, assuming that the crack distributions have the same shape
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as the single cracks, to estimate the interactions of inclusion pairs. Castaneda
and Willis (1995) extend the crack distributions to aspect ratios that are different
from the crack aspect ratios. Jakobsen et al. (2003) extend the method to
different shapes of crack distributions. They propose analytic solutions for
specific spatial clustering patterns of the ellipsoidal inclusions (Fig. 3).The
single inclusion description is the same as for Eshelby’s ellipsoidal model, but
the inclusion concentration may be non-dilute and their distribution is not
necessarily even. This method is valid for high inclusion (crack) density, by
introducing the T-matrix to describe the influence of single inclusions on the
elastic stiffness tensor, and two-point correlation functions to estimate the
influence of the interactions between neighboring pairs of arbitrarily-shaped
inclusions. Inclusions are divided into groups with different shapes (aspect
ratios). The distribution of the centers of any type of inclusion is modeled as
being contained within an ellipsoid (Fig. 3). Then, two-point correlation
functions having ellipsoidal symmetry are introduced to calculate the interaction
between the cracks.

If the two-point correlations are same for all the crack spatial distributions
the interactions between all the crack pairs are the same and the T-matrix
formulation (Jakobsen et al., 2003) has the form

Cr = €+ (L)L + Gy L 9] (17)

where C* is the effective elastic stiffness tensor, C° is the stiffness tensor of the
host rock, and G, characterizes the interaction between an inclusion of type r
at the center and other inclusions of type s surrounding it, forming an ellipsoidal
region (Fig. 3). The aspect ratio of this ellipsoid («,) is used to describe the
spatial distribution of the inclusions. Gy is a function of the elastic properties of
the matrix, and of «,. To compare this method with others, we use a common
aspect ratio for all the inclusion interactions. G, describes the same interactions
for all pairs of inclusions and can be extended to different interactions between
two adjacent inclusions, or among more inclusions. t® (or t*) is the T-matrix
of the r (or s) type of cracks, ¢ = (47/3)e®a(" is the porosity associated with
type r (or s) cracks. The T-matrix

t0 = [I, - (€Y - CYGY]"'(C? - C) , (18)

where I, is a fourth-rank identity tensor, G characterizes the effect of a single
inclusion of type r having ellipsoidal symmetry, and C is the elastic stiffness
tensor of inclusion type r, which is calculated from the elastic properties of the
crack infill. If the aspect ratios of components r and s are different, the second
term in eq. (17) needs to be calculated three times with permutations to give the
r-r, s-s and r-s interactions.
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Fig. 3. Inclusion model for the T-matrix formulation. Inclusions are (the black) ellipsoids and may
have different shapes (aspect ratios). The dashed lines represent the interactions between inclusions;
the thickness of the dashed lines represent the strength of the interactions. The ellipse describes a
regular distribution of inclusions.

Jakobsen et al. (2003) reduced eq. (17) to the second-order approximation
[using the relation (1 + x)™! = (1 — x)] to give

Cx = 4+ Z tOs0) — [ Z t]1Gy[ Z t969] | (19)

for small inclusion density. If eq. (19) contains only the first two terms, then
it is a first-order (linear) approximation. These variations are referred to below
as the first- and second-order versions of the T-matrix method.

The T-matrix inclusion model contains isolated, perfectly aligned cracks
with different shapes, filled with any material (and so does not have the weak
material limitation of the smoothing and LS methods), and has regular crack
distributions. Through the T-matrix, the anisotropic effect of a single inclusion
is estimated. Through Gy, the interaction between cracks with different shapes
is estimated; the mutual interactions of more than two crack clusters can be
included.

COMPARISON OF PREDICTED ELASTIC TENSORS

Although various authors have often stressed the novelty of their own
methods, they have used similar principles and procedures, and hence the results
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may be similar, or even equivalent, to each other under some assumptions. The
fracture parametrizations, assumptions, approximations, and their consequences
are important for the evaluation of the different formulations. Therefore, our
comparisons focus on these aspects.

Because microstructures of real rocks cannot be accurately measured,
representative values of crack density, aspect ratio, and orientation need to be
defined for input to the elastic stiffness tensor calculations. Similarly, an
inversion for these parameters will generally be non-unique. Different
parametrizations result in different contributions of crack parameters describing
the same tensor elements. Thus, it is important to know the characteristics and
limitations of each theory.

An anisotropic medium may have a variety of different types of
anisotropy. Although different formulations have different applicability to
different types of anisotropy, for the convenience of comparison, we consider
only one set of perfectly aligned, ellipsoidal, and dry cracks. Partial saturation
corresponds to a three phase model and to more complicated (viscoelastic)
responses, which are not considered here.

For comparison, in all the following examples, we use the same input
model for the equivalent inclusion, SCA, DEM and T-matrix methods. This
input model consists of perfectly aligned, dry, ellipsoidal cracks with same
range of crack density (0.0 to 0.5), the same aspect ratio (0.05), and the same
spatial crack distributions. Random, but statistically even, crack distributions are
required by Eshelby’s, SCA, DEM and Hudson’s methods, so we set the aspect
ratio of the spatial inclusion distributions in the T-matrix to 1.0. The parameters
of the matrix that are used approximate a vertically cracked coal, as coalbed
methane reservoirs (e.g., Shuck et al., 1996) are a potential application of the
results of this study. The parameters used are V, = 2500 m/s, Vg = 940 m/s,
bulk density p = 1500 kg/m’, and the cracks are dry. The effect, on the
anisotropic elastic properties, of dry inclusions is more significant than wet
ones, so using dry cracks will allow clear comparisons of the different
formulations. All the effective elastic tensor elements (C%) in all figures are
normalized [being divided by the elastic tensor elements (C?j) of the
corresponding rock matrix at ¢ = 0], so that it is convenient to see the relative
differences of the moduli changes with increasing crack density.

Comparison of first-order methods: Eshelby’s, Hudson’s (smoothing) and
Jakobsen et al.’s (T-matrix)

We use Eshelby’s, Hudson’s and Jakobsen’s first-order methods to
calculate the effective elastic stiffness tensor for a transversely isotropic medium
with a horizontal symmetry axis. Eshelby (1957) considers the effect, of a single
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Fig. 4. Comparison of three first-order methods: the Eshelby’s, Hudson’s and T-matrix methods.
All the triplets of curves overlap at very small crack density (¢ < 0.02). The crack aspect ratio
value used here («, = 0.05) satisfies the requirement of Hudson’s method, that o, be small, to allow
comparisons to be made with the other formulations. If «, is less than ~0.01, the curves for all
three methods are overlapping and become flat (effectively isotropic). For all first order algorithms,
the normalized C,, = C,,; for dry cracks, in the Hudson (1980) formulation, they are exactly equal.

inclusion, on the elastic properties of a medium. This formulation is suitable for
any ellipsoidal inclusion and any infill material in the inclusion. Hudson (1980,
1981) assumes that the isolated cracks have vanishingly small aspect ratio.
Hudson (1994) also extends this model to arbitrarily inclusion shapes. The
individual crack effects of Hudson’s (1994) method are identical to those of the
T-matrix first order method.

Fig. 4 contains five triplets of curves for the normalized moduli C, C,,,
C,, Cy,, and C;; for crack aspect ratio «; of 0.05 [which is similar to the o
used in the physical experiments of Rathore et al. (1991), and Ass’ad et al.
(1992, 1993a, b)]. All triplets of curves are overlapped, or are very close to
each other, for the whole plotted range of crack density and suggests that all the
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three methods give essentially equivalent predictions. Note that, at higher &, all
the first-order methods predict unrealistically small (even negative) tensor
elements. This shows the danger of using these models outside the range of
assumptions for which they were derived; they should not be used at high ¢.

Comparison of second-order methods: Hudson’s (smoothing), and
Jakobsen’s (T-matrix)

Jakobsen et al. (2003) compare the second-order T-matrix approximation
with Hudson’s second-order smoothing approximation. They point out that the
crack interaction coefficient x,,,, in eq. (7) is functionally equivalent to the
product of G, in equation 17 and u. Thus, the results of these two second-order
methods are effectively equivalent for small crack density (¢ < 0.03 for our
example) as shown in Fig. 5. For crack densities > 0.03, most of the
second-order moduli curves (Fig. 5) have turning points, beyond which the
moduli increase with increasing crack density, and so are not physical.
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Fig. 5. Comparison of the second-order T-matrix and Hudson methods. All the pairs of curves
nearly overlap at ¢ < 0.03. For all second order algorithms, the normalized C,, = C,,; for dry
cracks, in the Hudson (1980) formulation, they are exactly equal.
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The interactions between the inclusions enclosed within an ellipsoid and
the centered inclusion (Figs. 3 and 5) are taken into account by the T-matrix.
A spherically shaped crack distribution (o, = 1.0, randomly but statistically
evenly distributed) is implicit in Hudson’s smoothing method. The T-matrix
method allows superposition of different anisotropies associated with lithology
and fractures. Thus, we may obtain more consistent results with the T-matrix

than by using separate formulations for lithological and fracture-induced
anisotropies.

The limiting crack density for validity of Hudson’s second-order
approximation depends on the Poisson’s ratio of the rock matrix and the fluid
content of the cracks. In Crampin’s (1984) example for dry cracks in a matrix
of the Poisson’s ratio is ~0.29, the crack density limit is ~0.1. In our
example, the cracks are also dry, the Poisson’s ratio of the coal matrix is 0.42,
which is much higher. The turning point of the second-order T-matrix curve of
elastic element Cs; is at € ~0.05 (Fig. 5), so the crack density limit is less than
0.05 in our example. For larger Poisson’s ratio, the crack densities at which the
turning points occur in the second order curves (Fig. 5) are smaller.

Comparison of high-order (crack interaction) methods: SCA, DEM,
T-matrix, and LS

The effective elastic stiffness curves estimated by using the T-matrix,
SCA and DEM produce similar results (Fig. 6). Both SCA and DEM give
plausible but slightly different results for all crack densities (Fig. 6). Plausible
predictions are produced by extrapolation to high crack density, even though
they are strictly valid only for random crack distributions with constant c,
cracks. SCA and DEM quantitatively account for, but do not allow for an
explicit description of, the interaction between the inclusions as they are
effective medium models. The T-matrix high-order method [eq. (17)] takes
physical crack-crack interactions into account.

SCA and DEM are approximate theories that seem to be qualitatively
acceptable in certain cases when extrapolated to relatively high crack density.
They predict decreasing moduli with increasing crack density, without being
negative). Explicit inclusion of high-order interactions between cracks requires

a knowledge, or higher order statistics,of the crack distribution, which are not
normally available.

In creating Fig. 6, «, is set to 1.0, to represent a random inclusion
distribution for the T-matrix high-order solution [eq. (17)]. All other parameters
are the same as in the Eshelby’s model calculations in Fig. 4. The T-matrix and
LS methods give similar results for crack density up to ~0.15 for this example
(Fig. 6); see Hu (2008) for more discussion.
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Fig. 6. Comparison of results from the T-matrix, LS, SCA and DEM methods. For the LS model,
a, = 1., a; = 100a,, and H; = 2a_; for the T-matrix model, the aspect ratio of the crack distribution
a, is 1.0.

If the crack density is sufficiently small in the LS model (Fig. 2), it
approaches the configuration of the T-matrix model (Fig. 3), and the predicted
elastic stiffness tensor elements are nearly the same (Fig. 6). For computing the
LS curves in Fig. 6, we use Liu et al.’s Model 1, because its crack geometry
is compatible with those of the T-matrix methods. The SCA, DEM and LS
predictions all flatten at high crack density, and so are physically plausible, but
the T-matrix solution diverges from the others and produces moduli estimates
that are all generally lower than the others, especially for C;, and C,,, which
become unrealistic (negative) for ¢ greater than ~0.3. This is probably a
consequence of the inclusion of only nearest neighbor crack interactions in the
present implementation of the high-order T-matrix solution (Fig. 3); more crack
interactions correspond to less steeply decreasing moduli.
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In LS, the relative lengths of the crack diameters, the asperities, the
fractures, and the fracture spacings are used, while in the T-matrix methods, the
aspect ratios of ellipsoidal inclusions and ellipsoidal spatial distributions of
inclusions are used. At low crack density, the moduli are not sensitive to the
geometrical details of the various models. At higher crack density, the spatial
distribution of the cracks becomes important. Of all the moduli, C; shows the
greatest relative variation between models at high crack density. The C,,
prediction by LS in Fig. 6 is flat because it is not dependent on crack porosity
in this model.

DISCUSSION

The crack models in each of the theoretical formulations considered above
are different, but with some key similarities. The main common feature is that
the cracks are perfectly aligned. The crack models of Eshelby’s, SCA, DEM
and high-order T-matrix formulations all have ellipsoidal shapes with any aspect
ratio, the infilling materials may be gas (or dry), liquid or solid. The inclusion
distributions of Eshelby’s, SCA and DEM formulations are random but
statistically even, but may have special patterns in the T-matrix formulation.
The models in Hudson’s smoothing and LS formulations both have flat, circular
cracks filled with weak materials, but the cracks are randomly but statistically
evenly distributed for Hudson’s formulation, while in LS, the cracks are
distributed in specific patterns as described by Liu et al. (2000).

For dilute cracks, the cracks are isolated, and crack-crack interaction is
ignored. When the cracks are dilute, the elastic stiffness tensor values decrease
linearly with increasing crack density, as in Eshelby’s (1957) single equivalent
inclusion method, Hudson’s, and the first-order T-matrix approximations (Fig.
4). Crack-crack interactions must be considered when the cracks are non-dilute.
Hudson’s second-order approximation, SCA, DEM, T-matrix and LS methods
can all approximate non-dilute behavior, but give different predictions with
increasing crack density.

If the crack density is larger than ~0.1 (Crampin, 1994), crack
characterization becomes more complex because crack-crack interactions become
important. The fractures are also likely to be highly irregular in shape (aspect
ratio) and orientation. Therefore, complex and significant crack-crack
interactions will be generated. If cracks coalesce, the effective dimensions
increase and may become longer than the seismic wavelength and so violate the
assumption of the medium being elastic.

Even the most general T-matrix and LS methods may be inaccurate at
high crack densities as no model with a simple geometrical crack description can
accurately represent the complexity of real fracture systems. For Liu’s
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high-order LS method, fracture spacings are assumed to be large enough that the
interactions between the fractures can be ignored. This assumption is possible
only for limited crack density. For high crack density, average fracture spacings
become small thus the interactions between the fractures cannot be ignored
(Davis and Knopoff, 1995; Dahm and Becker, 1998; Liu, 2007). Comparison
with experimental data is needed to define which theoretical predictions work
best in practice. Quantitative descriptions of the microstructures of cracked
rocks, as seen in the laboratory, need to be explicitly included for the accuracy
of the models to be evaluated. We could not find any published examples of
physical experiments to determine tensor elements for crack density ¢ > 0.1;
no such evaluation is apparently yet done. Peacock et al. (1994) do have crack
density measurements ¢ > 0.1, but these are for randomly oriented (not
aligned) cracks.

The crack shape (the crack aspect ratio «;,) is another important property
of the microstructure since it determines the porosity and permeability associated
with the fractures. It is also critical to anisotropic effects. If o; = 1.0, the
inclusions are spherical, the medium is isotropic, and there are only two rather
than five independent elastic moduli (as Cy; = C,;, C¢s = Cs5 = C4yand C,, =
Cy; = Cy = C;; — 2Cy). These moduli all decrease with increasing crack
density or crack porosity. If «;, is vanishingly small, again there is no significant
anisotropic effect produced, and all five normalized elastic moduli curves are
essentially flat (set ¢, , = 0 in eq. (2), or ¥ = 0 in eq. (17). Any shape of
ellipsoidal inclusions with aspect ratios ranging from zero to infinity may be
included in the Eshelby, SCA, DEM, and T-matrix methods, but only circular
cracks are considered in the LS and Hudson’s smoothing methods and only for
aspect ratios that are vanishingly small.

Crack distributions have significant influence on the anisotropic effects of
the elasticities when crack density is large. When crack density is large, the
average distances between cracks are small. Thus, the crack interactions become
strong and need to be included. SCA, DEM and Hudson’s smoothing methods
are applicable for randomly distributed cracks. In Liu et al.’s (2000) LS
methods, all the cracks are confined to large fracture planes and the fracture
spacings are sufficiently wide that the crack interactions along the fracture strike
dominate over other directions. In the T-matrix method, the spatial distributions
of cracks are ellipsoids (Fig. 2); if they are spherical, the cracks are randomly
distributed. In this paper we discuss only perfectly aligned cracks. However, the
cracks in a real rock may be not perfectly aligned; for example, there may be
two sets of cracks (which are not rare in real rocks) (Hudson, 1986), or the
orientation of the cracks may have a normal distribution around a dominant
direction (Hornby et al., 1994; Jakobsen et al., 2003).

The infill material in the cracks also influences the anisotropy. Hudson’s
(1980, 1981) and LS methods are applicable only to weak infill materials. Other
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methods do not have such constraints, and so have the potential for application
to non-crack induced anisotropy, such as anisotropy in shale. Models for
partially water-saturated cracks are developed by Hudson (1988) and Jakobsen
(2004).

Permeability anisotropy is dependent on cracks, but it cannot be directly
studied in the present context, because all of these formulations are defined only
for unconnected cracks and fractures, and thus have zero permeability. In real
rock, there is a contribution to the anisotropy of permeability only from
connected cracks. A small number of large cracks (still small compared to a
seismic wavelength) and a large number of small cracks can have the same
crack density, and hence, produce the same elastic stiffness anisotropy, but
different permeability.

Not all of the theoretical formulations have the same parametrization and
this limits their applicability. For example, in Liu et al.’s (2000) high-order LS
method, the cracks are penny-shaped, so it can not be applied to study a
carbonate reservoir with high aspect ratio vugs. For the convenience of
comparison, all the models used above contain perfectly aligned cracks.
However, some of the formulations can be applied to more complex cases which
are common in nature; for example, Hudson’s smoothing formulation can be
applied to two sets of cracks if we ignore the interactions between them, and the
T-matrix formulation can be applied to imperfectly aligned cracks (Hornby et
al., 1994; Sayers, 1994).

Computational simulations with finite difference or finite elements for
specific realizations of cracked media (Grechka and Kachanov, 2006a, b;
Kachanov, 1992; Mauge and Kachanov, 1994; Saenger and Shapiro, 2002;
Saenger et al., 2004) are perhaps the most reasonable way to produce a basis
for evaluating the accuracy of the theoretical solutions. Numerical solutions can
predict both static and dynamic moduli, which can be very different (e.g.,
Saenger et al., 2006). Numerical simulations also address the issue of
irregularly shaped cracks; the usual crack density parameters assume only
circular shapes. Irregular crack geometries and their effect on the effective
compliance are discussed by Kachanov (1994), Grechka and Kachanov (2006d)
and Sevostianov and Kachanov (2002).

These results set the stage for production of synthetic seismograms for
various crack configurations via input, of the corresponding elastic stiffness
tensors, to numerical solutions of the anisotropic elastic wave equation (e.g.,
Ramos-Martinez and McMechan, 2000). If the elastic stiffness tensors for two
models are similar, they will produce similar seismograms, regardless of the
details of the properties of the crack sets and their distributions. This also opens
the possibility for estimation of crack properties, and their uncertainty, by
anisotropic full wavefield inversion.
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CONCLUSIONS

The two main types of elastic effects of cracks in a rock are individual
crack effects and crack interactions. At small crack density, the average
distances between the cracks are large, the crack-crack interactions can be

ignored, but, at high crack density, they are strong and can become
complicated.

All the theoretical formulations above produce very similar predictions of
moduli at small crack densities (¢ < 0.03), but differ significantly from each
other at high crack densities. This indicates that all these methods predict the
same individual crack effects, which are also consistent with the physical and
numerical experiments. So, the predictions of the individual crack effects are
accurate, but the predictions of the crack interaction effects are qualitatively
reasonable only by the formulations that contain crack interactions. Interactions
may be included either implicitly, as in the SCA and DEM methods, or
explicitly, as in the LS and T-matrix methods. Each crack model only partly
resolves the problems, because each uses different assumptions about the
microstructure geometry and crack interactions. There is a clear need for

extensive lab measurements to be performed to test the theoretical models; much
remains to be done.

A variety of crack parameters such as shapes, spatial distributions,
orientation distributions, and fluid contents, all play important roles in the

effective elastic properties, and all are visible in the corresponding synthetic
seismograms (Hu, 2008).
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