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ABSTRACT

Lira, J.E.M., Innanen, K.A., Weglein, A.B. and Ramirez, A.C., 2010. Correction of primary
amplitudes for plane-wave transmission loss through an acoustic or absorptive overburden with the
inverse scattering series internal multiple attenuation algorithm: an initial study and 1D numerical
examples. Journal of Seismic Exploration, 19: 103-120.

The objective of extracting the spatial location of a reflector, and its local angle-dependent
reflection coefficient, from seismic data, depends on the ability to identify and to remove the effect
on primary amplitudes of propagation down to and back from the reflector. All conventional methods
that seek to correct for such transmission loss require estimates of the properties of the overburden.
In this paper we propose a fundamentally new approach that will in principle permit correction of
primaries for such transmission loss without requiring overburden properties as input. The approach
is based on the amplitude of the first term of the inverse scattering series internal multiple
attenuation algorithm, which predicts the correct phase and approximate amplitude of first order
internal multiples. The amplitude is estimated to within a factor determined by plane wave
transmission loss down to and across the reflector producing the event’s shallowest downward
reflection. Hence, the amplitude difference between a given predicted and actual multiple, both of
which are directly available from the data and the algorithm output, in principle contain all necessary
information to correct specific primary reflections for their overburden transmission losses. We
identify absorptive overburdens/media as requiring particular focus, so as a first step, previous
amplitude analysis of the internal multiple attenuation algorithm is here extended to include stratified
absorptive media. Using this newly derived relationship between predicted and actual internal
multiples, and existing results for acoustic/elastic media, correction operators, to be applied to
specific, isolated primaries in both types of media, are then computed using combinations of
multiples and their respective predictions. We illustrate the approach on synthetic data for the
absorptive case with three earth models with different Q profiles. Further research into the ampli-
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tudes of the plane wave internal multiple predictions in 2D and 3D media is a likely pre-requisite
to field data application of this concept-level algorithm.

KEY WORDS: absorption, internal multiples, inverse scattering series, transmission losses.

INTRODUCTION

A primary is a recorded seismic event whose history (Fig. 1) can be
roughly subdivided into: propagation down from the source through the

overburden, reflection at a target, and propagation back through the overburden
up to the receiver:

Primary = [Transmission Down] X [Reflection] X [Transmission Up] . (1)

In exploration seismology primaries are the main source of subsurface
information, and are used for structural mapping, parameter estimation, and,
ultimately, petroleum delineation at the target. Techniques of migration-
inversion (Weglein and Stolt, 1999) accomplish these goals by first generating
maps of seismic reflectors at depth, typically positioning at these reflectors
reflection coefficients as functions of angle, and, second, by using this behavior
to determine local contrasts in medium properties. Therefore, an important part
of migration-inversion is the processing of primary amplitudes, which are
themselves essentially described by eq. (1), to remove the effects of
transmission down to and back from the point of reflection, "laying bare" the
reflection coefficient information so that it may be used in parameter estimation.

Fig. 1. Sketch of a primary. Amplitudes are determined by the material property contrast at the point
of reflection, and propagation down and back through the overburden.
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This removal as it is conventionally accomplished requires an accurate estimate
of all medium properties above the target.

In this paper we describe an approach for the correction of primary
amplitudes for transmission through various types of overburden, that avoids the
requirement for prior characterization of overburden properties, thus aiding
otherwise conventional migration-inversion methods. We seek a corrective
operator, derivable directly from the data, of the form

Corrective Operator = ([Transmission Down] X [Transmission Up])~™', (2)

which, when applied to a particular primary as modeled by eq. (1), provides the
reflection coefficient information required by the inversion component of
migration-inversion:

Corrected Primary = Primary X Corrective Operator = [Reflection] . 3)

Our approach derives from the inverse scattering series internal multiple
attenuation algorithm (Aradjo et al., 1994; Aratjo, 1994; Weglein et al., 1997,
2003). Multiples are defined, herein, as events which have experienced at least
one downward reflection. When at least one of these downward reflections takes
place at the free surface, the event is a free-surface multiple*, otherwise the
event is an internal multiple.

The order of a free-surface multiple refers to the number of downward
reflections experienced by the event at the free surface, and the order of an
internal multiple refers to the number of downward reflections experienced by
the event anywhere in the subsurface (Weglein et al., 2003); e.g., first order
internal multiples have one downward reflection, etc. The inverse scattering
series has the ability to eliminate all multiples without a priori subsurface
information (Weglein et al., 2003). The inverse series algorithm for free-surface
multiples eliminates a single order of free-surface multiples with a single
algorithm term (of the same order). In contrast, each order of internal multiples
requires a series for its removal. For instance, the internal multiple attenuation
algorithm is a series, whose first term predicts the correct time and approximate
amplitude of all first order internal multiples, and prepares the higher order
multiples for attenuation by higher order terms in the algorithm**.

*  This definition is contingent on prior removal of ghosts.

** Research has additionally progressed towards an elimination algorithm. Ramirez and Weglein
(2005a); Ramirez (2007) have provided a closed-form elimination algorithm for a subset of
first-order internal multiples, which eliminates internal multiples generated at the shallowest reflector
in the earth and improves the attenuation of internal multiples generated at deeper reflectors. Further
aspects of the internal multiple attenuation algorithm have been reported in the literature by
(Carvalho et al., 1991; Matson, 1997; Weglein et al., 1997; Weglein and Matson, 1998; Kaplan et
al., 2005; Nita and Weglein, 2005; Weglein and Dragoset, 2005).
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Our proposed primary correction approach derives from the properties of
the first term of the internal multiple attenuation algorithm. The precise
difference between the actual amplitude of an internal multiple and the amplitude
predicted by the first term of the algorithm, for plene wave data in an acoustic
medium (Weglein et al., 2003; Nita and Weglein, 2005), is a direct expression
of plane wave transmission losses down to and across the reflector where the
multiple’s shallowest downward reflection has taken place (Weglein and Matson,
1998; Weglein et al., 2003; Ramirez and Weglein, 2005b;a). This means that
the amplitude difference between a given multiple and its prediction, both of
which are directly available from the data and the algorithm output, in principle
contains all the information necessary to correct specific primary reflections for
their overburden transmission losses*. The main goal of this paper is to use this
information to construct a corrective operator essentially of the form described
in eq. (2). In doing this early-stage research, we assume that wavelet estimation
and deconvolution, instrument response analysis, and de-ghosting have already
been carried out, and that the requisite data events have been identified and can
be separately studied.

There are additional potential benefits associated with this idea: first, the
information is a byproduct of an existing part of the wave-theoretic processing
flow (the de-multiple phase) and comes at no additional cost. Second, this
information becomes available at a convenient point during processing, just prior
to its likely use in primary processing/inversion. Third, it is consistent with
wave-theoretic processing. Fourth, it is not restricted to a production setting, but
is also applicable in reconnaissance and exploration settings.

We have in particular found that the design of the operator depends on
whether or not the overburden is absorptive. Hence, after briefly re-stating the
properties of the internal multiple attenuation algorithm as studied for
acoustic/elastic media (Aratjo et al., 1994; Aradjo, 1994; Weglein et al., 1997;
2003; Ramirez and Weglein, 2005b;a), we begin with the important preliminary
step of deriving, for the first time, expressions for the difference between the
internal multiple attenuation algorithm prediction and the actual amplitude of the
multiple event for a layered anelastic medium. This allows operators appropriate
for either medium type to be derived.

We next work with the formulas expressing the difference between actual
and predicted multiples, demonstrating that, when combined recursively, they
may be used to produce correction operators ready for multiplicative application
(in the frequency domain) to specific primaries. The operators are built only
from the data and the output of the internal multiple algorithm (which itself has

* The use of the discrepancy for correcting for overburden effects was first suggested by Dennis
Corrigan following discussions on the analytic example presented by A. Weglein at CWP and
ARCO, later published by Weglein and Matson (1998).
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required no overburden information). Different operators are made for the
acoustic/elastic vs. absorptive cases. Following this, we illustrate the procedure
on synthetic data for the absorptive case, examining the form and effect of the
correction operators. We conclude with remarks on a path forward for making
this potentially powerful approach practical.

AMPLITUDES PREDICTED BY THE MULTIPLE ATTENUATION
ALGORITHM

The first term in the internal multiple attenuation algorithm acts
non-linearly on reflection seismic data to calculate the exact phase and
approximate amplitude of all orders of internal multiples:

bane(ky kg +q) = (V@771 | dke e | dige™ @
X [ dzbk K, z)eie o
X S dzébl(kl’stZ/Z’)e_i(qlﬂ‘—qz)zé
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where q, = sgn(@)[(w/co? — (k)4.q, = sgn(@WI(w/c)? — (k)?.q,, k, and
k, are the horizontal wavenumbers conjugate to receiver and source coordinates
(Xq»X,), respectively, and e is a small positive quantity. The input for the internal
multiple attenuation algorithm is b;, which is created from the pre-stack
reflection seismic data. It is constructed as follows: the surface recorded data,
deghosted and without free surface multiples, D(x,,x,,t), is Fourier transformed
over all variables, to produce D(k,,k,,w). A change of variables is made, to
D(ky.k,q, + q), after which b, is defined as b,(k,.k,,q, + q,) = D(k,.k,,q, +
q,)(2iq,); b, is then inverse Fourier transformed over q, + g to pseudo-depth.
The result, b(k,,k;,z), is used as input in eq. (4), and the output, by, is the
predicted internal multiple data set, produced without knowledge of earth
material properties or structure and it accommodating all earth model types that
satisfy the convolutional model (Ramirez and Weglein, 2005b).

The relationship between the predicted and the actual multiple amplitude

Being the first term in a series that removes first order internal multiples
without subsurface information, the internal multiple attenuation algorithm
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provides the capability to predict the exact time of all first order internal
multiples and it is the first term to predict the amplitudes of the first order
internal multiples. Weglein and Matson (1998) and Ramirez and Weglein
(2005b) examined the difference between the actual amplitudes of internal
multiples and those of the internal multiple attenuation algorithm predictions.
The latter authors called the difference the amplitude factor, and showed that it
is related to the transmission coefficients down to and across the multiple
generator interface (Weglein and Matson, 1998; Ramirez and Weglein, 2005b).
The difference can be understood intuitively by considering the way the
algorithm builds its prediction. Consider Fig. 2. On the left panel we sketch an
internal multiple and the three primaries that are used in the algorithm to predict
it. The generator is interface 2. The multiple has the path abcdijkl. The
algorithm predicts the multiple by multiplying the amplitudes of the three
primaries, adding the phases of the deeper two, abcdef and ghijkl, and
subtracting the phase of the shallower, ghef. The phase of the actual multiple
and the predicted multiple are therefore identical. However, the amplitude of the
actual multiple,

TabTbcRcd( - Rhe)RijTjkal ’
and the multiplied amplitudes of the primaries in the prediction,

[T TheRogTueTer] X [TyRyeTe] X [Ty TRy Ty Tl

multiple and subevents primary 1 primary 2
la v Y} L/
interface 1
h
layer 1 is e k

l interface 2

i 2

layer 2 X -d V/
interface 3

Fig. 2. Schematic diagram of primaries and internal multiples in a stratified medium. Left panel:
an internal multiple and the primary subevents used to predict it. Middle and right panels: associated
primaries whose amplitudes may be corrected using the discrepancy between the amplitudes of the
predicted and actual multiple on the right.
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The index 2 anticipates our later use of this factor for corrective purposes, and
signifies that the second interface is the generator. With this terminology the
amplitude factor expressing the discrepancy between the predicted and actual
amplitudes of an internal multiple generated at the j-th interface in a stack of
layers is

ToiTho forj = 1;
AF; = ()
ILZHTE L T 0T Ty for1 <j<1IJ,
where J is the total number of interfaces in the model. Presently we will
manipulate this factor to become a correction operator for primary amplitudes.

Extension of the amplitude analysis to absorptive media

Ramirez and Weglein (2005b) assume an acoustic medium, in which
plane-wave transmission losses are local, occurring at the point at which the
wave crosses a contrast in material properties. For an absorptive stack of layers,
in which transmission loss occurs over the entire course of propagation, an
extension of their results is required. In later sections we will see that this minor
theoretical alteration leads to an important practical difference when the
predicted-actual amplitude discrepancy is exploited.

In order to study the transmission coefficients in an anelastic medium we
select an intrinsic attenuation model to describe amplitude and phase alterations
in a wave due to friction. These alterations are modeled by a generalization of
the wavefield phase velocity to a complex, frequency-dependent quantity
parameterized in terms of Q. A reasonably well-accepted Q model (Aki and
Richards, 2002) alters the scalar propagation constant of the j-th layer, k; =
w/c(z), to

ki = [w/c@][1 + F(w)/Q(2)] , )

where F(w) = /2 — (1/m)/log(w/w,). The reference frequency w, may be
considered a parameter to be estimated, or assumed to be the largest frequency
available to a given experiment. The model divides propagation into three parts:
a propagation component, an attenuation component, and a dispersion
component.

With this extended definition of k;, and assuming that in Fig. 3 the two
bottom layers are anelastic, we again construct the prediction. It is convenient
to re-define the transmission coefficient of a given interface to incorporate
absorptive amplitude loss within the layer above that interface. For instance, the
coefficients T, and T, of the previous section derived using the k; of eq. (9),
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become:
F -1 attenuation component
2 (1+ 22 T e e
Tia = S | emim®o) grag el (10)
a (1+FQf) +c2(1+%—”‘2”)
-1
F(w
2c (l + %—2) w iw w _
Ty = AL | gTmim ) graig eE)mm (1)
- =
Co (1 + %%2> +c (1 + FQL: ) attenuation component

We make particular note of the amplitude dependence (via the attenuation
component) of this definition of transmission coefficients on the thickness of the
layer overlying the interface in question. With this extension, we have
essentially the same amplitude factor, for instance AF,, in the anelastic case as
we did in the elastic case. By analogy with eq. (7):

AF, = [Ty T\o) iz Tax - (12)

Provided that this re-definition of the absorptive transmission coefficients
is adopted, the amplitude factors and internal multiple attenuation error analysis
for the general absorptive stack of layers at normal incidence is given again by

eq. (8).

CORRECTION OF PRIMARY AMPLITUDES USING INTERNAL
MULTIPLES

Let us make two comments about the amplitude error analysis above.
First, we see that the discrepancy between the predicted and the actual multiple
for a given generator is directly related to the transmission losses experienced
by a primary associated with that generator. Second, we note that the
discrepancy, characterized by the amplitude factor AF, is available directly from
the data and the output of the internal multiple attenuation algorithm. In this
section we use the information in the various AF factors as a direct means to
correct the amplitude of the primary associated with the generator for
transmission effects, in the sense we have put forward in the introduction.

We define what will become the primary correction operator, PCO, to be
built recursively from the data-determined AFs:

PCO, = 1/(AF, X PCO,_)) , (13)
with the terminating definition:

PCO, = 1 . (14)
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Expanding this operator over several orders n clarifies that it will indeed act as
a correction operator when applied to a primary whose upward reflection has
occurred near the n-th interface.

We find that the precise primary which should be corrected with the n-th
operator depends on whether the medium is assumed to be absorptive or not.
We next treat these cases in turn. It is useful to index primaries from O upward.
In the scheme in Fig. 2, the O-th primary reflects upward at interface 1.

Correction of primaries in acoustic/elastic media

Consider once again the multiple sketched ir Fig. 2, whose generator is

interface 2. Setting n = 2, expanding eq. (13), and employing the alphabetical
indices we use in the figure, we have

PCO, = UUT,TyT4Te . (15)

If the medium is acoustic/elastic, we note that for the primary depicted
in the middle panel of Fig. 2, the "last" overburden effect on the event before
the reflection at interface 3 is the transmission through interface 2, and the
"first” overburden effect on the event after the reflection is again transmission
through interface 2. Consequently, PCO, is exactly appropriate as an operator
to correct this (middle panel of Fig. 2) primary. More generally, in the
acoustic/elastic case, the operator PCO, in eq. (13) corrects the n-th primary,
leaving the n-th reflection coefficient "bare" and suitable as input to other
inverse procedures:

Rn = PCO, X P, . (16)

Correction of primaries in absorptive media

Next, let us suppose that the medium in Fig. 2 is absorptive, and again
consider PCO,. Recall that we may maintain the same form for the amplitude
discrepancy between predicted and actual multiples in absorptive media and
thereby this operator, PCO,, provided we alter the transmission coefficients of

a given interface to include absorptive propagation through the layer above that
interface.

With this arrangement PCO, is evidently no longer appropriate as an
operator to correct primary 2, i.e., the primary depicted in the middle panel of
Fig. 2, because it does not account for absorptive propagation through the layer
between the reflection and the multiple generator.
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To maintain the usefulness of the operator, we instead make an
approximation. We assume that in an absorptive medium, the effect of the local
transmission coefficient at a boundary on the amplitude of a primary is dwarfed
by the effect of absorptive propagation. With that assumption we may simply
change the primary being corrected by PCO, to the one depicted in the right
panel of Fig. 2. This statement is true to within the combined local transmission
coefficient down and up across interface 2. More generally, in the absorptive

case, the (now frequency-dependent) operator PCO, in eq. (13) corrects the
n—1-th primary:

R, (@) = PCOW(w) X P,_(w) . a7)

SYNTHETIC EXAMPLES

In this section, we illustrate with simple synthetic examples the steps
necessary to correct a primary for absorptive transmission losses, using a
multiple and the internal multiple attenuation algorithm prediction. We generate
zero-offset traces from plane waves normally incident on three layered models
with the geometry of the model in Fig. 1, assuming the waves behave in
accordance with the propagation constant in eq. (9), and using the layer
parameter values in Table 1. We include the two primaries and the first order
internal multiple. The traces are wavelet deconvolved, and bandlimited (3-50
Hz). Fig. 4 shows the traces generated for each model, which differ in their Q
values, ranging from relatively low attenuation to relatively high attenuation.
The arrival times of the two primaries and the multiple are approximately 1.5s,
2.3 s and 2.9 s, respectively.

Table 1. Absorptive earth models.

Depth (m) ¢ (m/s) Q1 Q2 Q3
000 - 500 1500 © o o
500 - 1422 2200 200 100 50
1422 - 2422 2800 100 50 25
2422 - o 3300 50 25 10

With the knowledge that the medium is absorptive, and in accordance with
our arguments in the previous section, we use the predicted multiples to correct
the amplitude of the shallower primary. The prescription is:
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. 4. Synthetic data: two primaries and one multiple are generated for each of three models.
Each trace is used as input to the internal multiple attenuation algorithm,
generating predictions of the internal multiples.

Each internal multiple and its prediction are isolated and their spectra
calculated.

The reciprocal of the ratio between the spectra of each internal multiple
and its prediction is taken. By eq. (13), this is the appropriate correction
operator PCO.

The shallower primary is isolated, and the operator is applied to its

We compare the result to an equivalent primary which we model in the
absence of all effects of transmission through the overburden. Fig. 5 illustrates
the uncorrected, shallower primary from each of the three models. We predict
the multiple with the attenuation algorithm, and isolate both this prediction and
the original multiple from the trace, and compute their spectra (Fig. 6). The
prediction evidently contains a greater level of attenuation then the actual
multiple. This is in agreement with the extra transmission paths involved in the
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Fig. 5. Primary generated at interface 1 in Fig. 3 for all models. These are the events we intend to
compensate for transmission losses using the discrepancy between the actual multiple generated at
interface 1 and the prediction of the internal multiple attenuation algorithm.
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Fig. 6. The spectra of the multiple and its prediction from the internal multiple attenuation algorithm
algorithm. The ratio between each pair of curves will be used for creating an operator for correcting
the primaries of its transmission losses.
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Operator spectrum, model 1 — Low attenuation
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Fig. 7. Primary correction operators, generated from the ratio of the spectrum of the actual multiple
and its prediction, as in Fig. 6.

prediction, as discussed above. The frequency dependence of this discrepancy
will form the basis for the correction of the shallower primary, which, indeed,
will have a distinct Q-compensation flavor. Fig. 7 illustrates the spectra of the
primary correction operators derived from these quantities, and Fig. 8 illustrates
the spectra of the shallower primaries for each model, before and after the
correction. The recovery of high frequencies is notable. In Fig. 9, we illustrate
the corrected primaries after inverse Fourier transforming to the time domain,
and compare the results against their idealized counterparts constructed without
transmission losses. Figs. 10 to 12 illustrate in close succession the original
primary in the data (top panel), the corrected primary (middle panel) and the
idealized primary (bottom panel), for all models. We point out that the
discrepancy between the corrected primaries and idealized primaries is of a form
and magnitude expected given our absorptive correction approximation, which
neglects the local transmission through the boundary nearest the primary’s point
of reflection.

CONCLUSIONS

In this paper we have presented a procedure for correcting a primary for
transmission losses using internal multiples and the output of the inverse
scattering series internal multiple attenuation algorithm.
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Actual and Corrected primary spectra model 1 — Low attenuation
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Fig. 8. Spectra of the original primaries for each model, and the primaries corrected by the
operators depicted in Fig. 7.

Corrected primary, model 1 — Low attenuation
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Fig. 9. The corrected primaries after the application of the operators in Fig. 7.
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Recorded primary, model 1 — Low attenuation
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Fig. 10. A comparison of the actual primary (top curve), the corrected primary (middle curve) and
the idealized primary, generated without transmission i(bottom curve) for model 1, the low

attenuation case.

Recorded primary, model 2 — Medium attenuation
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Fig. 11. A comparison of the actual primary (top curve), the corrected primary (middle curve) and

the idealized primary, generated without transmission i(bottom curve) for model 2, the medium

attenuation case.
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Recorded primary, model 3 — High attenuation
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Fig. 12. A comparison of the actual primary (top curve), the corrected primary (middle curve) and
the idealized primary, generated without transmission i(bottom curve) for model 3, the high
attenuation case.

We have made particular mention and use of the distinction between
situations involving significant absorption and situations that are largely acoustic
or elastic. In spite of this broad categorization (that we have found to be
practically important), one of the strengths of the approach is that it will act to
correct transmission losses whatever their physical origin or mechanism, without
requiring a precise model. In this sense the approach is truly data-driven - the
events in the data, in comparison to one another, "decide" what the transmission
loss must be.

Our simple numerical results are encouraging and motivate examination
of the approach in the presence of more complex media, both absorptive and
otherwise. The main tool in this approach, the internal multiple algorithm, is
immediately applicable in multiple dimensions, and since the amplitude error is
in terms of plane wave transmission coefficients, a plane wave decomposition
of 2D and/or 3D data will likely suffice to extend the method. Nevertheless,
detailed extension of the approach stands as ongoing and future research. For
these reasons in particular, we identify field data testing as a medium-term to
long-term goal, contingent on the fundamental study of the internal multiple
attenuation amplitudes in multiple dimensions.
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