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ABSTRACT

Mi, T., Ma, J., Chauris, H. and Yang, H., 2010. Multilevel adaptive mesh modeling for wave
propagation in layer media. Journal of Seismic Exploration, 19: 121-139.

In this paper, we apply an adaptive mesh refinement method for numerical modeling of
two-dimensional wave propagation in blocky models. A blocky model consists of patches with
homogeneous properties. A series of nested-type adaptive meshes of local rectangular finer or finest
mesh patches is used to control the solution accuracy at each level. The high-resolution simulation
of wave propagation can be obtained effectively from coarser mesh to finer mesh level. Numerical
experiments show good performance of the proposed algorithm to obtain fine characteristics of wave
propagation (in particular reflected, transmitted, diffracted energy) while avoiding numerical
dispersion.

KEYWORDS: adaptive mesh refinement, wave propagation, high-resolution algorithm,
absorbing boundary conditions.

INTRODUCTION

Many different numerical methods have been developed to simulate wave
propagation in the field of seismic exploration. The most commonly used
methods are finite difference, finite element and spectral methods. The finite
difference methods may suffer from numerical dispersion for a too large grid
space step. The finite element methods require larger memory storage.
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Pseudo-spectral methods are of relatively high accuracy but are more
computationally intensive. These methods have respective shortcoming that do
not satisfy at the same time the requirements of highly accurate and efficient
simulation of wave propagation. In order to obtain more effective numerical
modeling methods, we apply the adaptive mesh refinement (AMR) algorithm for
modeling the wave propagation in some specific models.

Wave propagation is modeled in the earth’s interior that has large scale
features and discontinued solutions. The structure of the earth is usually
unknown and has to be determined through an inversion process such as
traveltime tomography. In a given velocity model, computed travel times are
compared to the observed traveltimes picked on seismograms (Bishop et al.,
1986). Because of limited illumination, the inversion scheme is not well
determined and one needs to impose some constraints during the minimization
process or to reduce the number of unknown velocity parameters. Typically, the
earth is described by blocky models, consisting of adjacent zones with
homogeneous properties. The boundaries between blocks can however be
complex. In this context, AMR dynamically adapts numerical techniques for
solving partial differential equations (PDE) by using variable space and time
steps depending on the local error of solutions in different computational
domains. As a starting point, the AMR algorithmi computes a solution on a
coarse grid covering the entire domain. The fine grids, usually rectangular
Cartesian subgrids, are adaptively nested in patches on the coarse grid. Finer
subgrids are recursively added until a given optimal level is reached for the
local truncation error. The solution of local fine regions automatically updates
the corresponding solution on the coarse grid. The AMR algorithm thus
provides a framework, in which different numerical simulations can be applied
in different regions and at different levels to represent the wave propagation.

The original motivation of applying AMR algorithm to finite difference
schemes was first proposed by Berger (1982). Berger and Oliger (1984)
presented the adaptive mesh refinement method for the solution of the systems
of hyperbolic PDEs using finite difference methods in two dimensions based on
multilevel adaptive grids. Bolstad (1982) used an AMR finite difference
algorithm for an initial boundary value problem in the case of one-dimensional
hyperbolic problems. Berger and Colella (1989) developed an automatic adaptive
mesh refinement for applications for solving shock hydrodynamics in two spatial
dimensions. Berger and LeVeque (1998) described a more general framework
that employed high-resolution wave propagation algorithms with adaptive mesh
refinement for hyperbolic systems. Barad and Colella (2005) presented a
block-structured local refinement solution for Poisson’s equation based on
conservative law to obtain a fourth-order accuracy. Qian and Symes (2002) used
adaptive upwind finite difference methods for the paraxial eikonal equation
based on a posterior error estimation to control automatic grid refinement
generation. Griebel and Zumbusch (1998) used adaptive sparse grid
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discretization techniques for the numerical solution of scalar hyperbolic
conservation laws. Trangenstein (1995) extended the two-dimensional AMR
algorithm for solid dynamics with more elaborate refluxing steps. Pancheshnyi
et al. (2008) used AMR algorithm for the continuity equations and 2D and 3D
Poisson’s equation with high-order finite volume discretization. Mi et al. (2009)
used second-generation wavelets as a tool that controls errors to structure
multilevel adaptive grids to solve for the wave equation. One of main
advantages of these adaptive methods is that one does not need to replicate fine
mesh storage at every time and automatically generate adaptive mesh. So far,
the AMR method is a good tool for computational solutions, but still new for
application related to or seismic wave propagation.

When solving the wave propagation in large scale, we need to define
adequate fine grids. If the same fine grid is used for the entire domain, this
could lead to very expensive numerical schemes, because many regions do not
need high levels of refinement grid. AMR algorithm allows local rectangular
fine grids where it is needed, to obtain better resolution of wave propagation.
In this paper, we apply the AMR method and high-resolution wave propagation

Coarse grid

Fig. 1. Adaptive mesh refinement with local rectangular grid.
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algorithms for the simulation of wave propagation, in order to obtain more
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characteristics of wave propagation in the blocky models.

DATA STRUCTURE FOR AMR

In the two-dimensional spatial domain, the representations of data
structures are more complex than for the one-dimensional case. The AMR starts
from a rectangular coarse grid denoted by G,. Gy, is part of G, with the same
mesh space steps h, = h, = h on all components at level 0. If a region, e.g.,
G, ; needs some refinement, we generate a set of local rectangular finer subgrids
{G,1,G,,,G, 3,G, 4} having the same mesh space steps h/2 at level 1. Next, G, ,
generates a finer subgrids G, ;, and G, | generates a finer subgrids G, ,, G, ; has
two finer subgrids G, ; and G, 4, G, , generates a finer subgrids G, 5, where all
the finer subgrids {G, .G, ,,G,;,G,4,G, s} have the same mesh space steps h/4
at level 2 [see Fig. 2(a)]. All local rectangular finer subgrids are nested within
coarse grid G, , covering the corresponding regions. The coarsest level mesh
covers the entire computational domain and each finer level mesh covers a
portion of the interior of the next fine level mesh (Berger, 1986; Berger and
Rigoutsos, 1991). In this way, a nested sequence of grids with finer and finer
discretizations till a given level of accuracy is satisfied. The finer meshes have
the same spatial width in each level, and the neighbour level meshes are refined
by a ratio of 2:1.

The data structure of the AMR algorithm is a tree structure where each
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Fig. 2. 2D adaptive mesh of Berger-Oliger AMR Scheme. The superscript s denotes the level and
the position in the data structure. The neighbor grids are refined by a ratio of 2:1. (a) Adaptive grid
nested in the 2D spatial domain. (b) 2D tree data structure.



126 MI, MA, CHAURIS & YANG

A

34 f€
Fi )

2 fE 23 2
N

/N
A
tn
0 1 2 3

0
- refinement level

Fig. 3. Time step sequence during adaptive mesh refinement with refinement ratio equal to 2.

ERROR ESTIMATION

AMR algorithm generates adaptive mesh in which we need to estimate the
error and adjust the grid structure at every time step. When a new fine grid is
generated, its initial value is obtained by interpolating the existing solution
(Berger, 1982; Berger and Oliger, 1984; Berger and Colella, 1989). We use the
Richardson extrapolation estimation of the local truncation error (see Appendix
A) to find the regions where the grid needs to be refined. It is a powerful
numerical technique for improving the speed and accuracy in various
mathematical methods.

The local truncation error is obtained by the Richardson extrapolation
error estimation procedure. If the truncation error is greater than a given
threshold value, the local rectangular region is refined. This is the criterium to
construct the nested type of adaptive meshs. Although the Richardson
extrapolation local truncation error estimation is more expensive from the
computational point of view than the gradient detection, it can predict a larger
error in the neighborhood of captured discontinuities.
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DISCRETE ACOUSTIC WAVE EQUATION

One spatial dimension

In one spatial dimension, the acoustic wave equation is a variable
coefficient linear hyperbolic system (LeVeque, 1997, 2002)

ql + A(X)qx = 0 ’ (1)
where the coefficients matrices A(x) are given by

0 KK
Ax) = . )
p'x) O

The coefficients matrices A(x) with their elements are determined by the density
p(x) and bulk modulus of elasticity K(x). The sound speed c(x) is defined by

c(x) = [K&x)/px)]" . A3)

At the interface between any two cells x;_, and x; the Riemann condition for (1)
given the piecewise constant initial data, is given by

gi-1 X < Xi_1p
q(x;,0) = . “4)
qi X > Xi_ip

Let the value Qf be a cell average over the uniform Cartesian x; grid cell
in two dimensions at the time t, (Ketcheson and LeVeque, 2008)

Xiv12

Q = (1/ax) | qxutdx . )

Xi-112

Two states Q,_, and Q; must be the sum of M,, waves W?_, ,, defined by

Mw
Zl Wi, =Q — Q. = AQ,_,, . (6)
p=

The Riemann solution has one left going wave A~AQ,_,, and one right going
wave ATAQ;_,,, at each interface. The fluctuations are given by

ATAQi, + A+AQi—1/2 = f(Q) — Qi) - N

For variable coefficient linear hyperbolic system of equation, the
eigenvector matrices for A(x) can be expressed (LeVeque, 2002) by
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AX)qx = f(Q) - ®)

For eq. (7), the left and right going wave fluctuations can be defined by

ATAQ, = ) (@) Wy,
P )
ATAQi_ip = Y, (D) WR_
p

We can obtain wave propagation from the fluctuations that are used for the
Godunov method with one-order accuracy

Q' = Q) — (AVAX)ATAQ,_,, + ATAQ,, ) - (10)
The Godunov method (10) adds correction terms for high-resolution
methods to describe the waves and speeds by the Riemann solver, which has

second-order accuracy (LeVeque, 1997, 2002; Ketcheson and LeVeque, 2008;
Calhoun et al., 2008)

Q' = Q! — (AVAX)(A*AQ,_,, + A"AQ,,,, + Eipyy — Fisyp) L (11)

where F,,,,, is the correction flux

Mw
Fion="% Z [chiin|[1 — (AUVAX) [Py )y |[TWE ), (12)
p=1

and the wave WP_,,, is a limited version of W?_,, to avoid oscillations (see
Appendix B).
Two spatial dimensions

We consider the 2D first-order stress-velocity acoustic wave equation for
wave propagation. The acoustic wave equation can be written

q + AXy)g, + B(x,y)g, =0 . (13)

Here, the vector q consists of the pressure field p(x,y) and the velocities u(x,y)
and v(X,y) can be written as

q=luj, (14)
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0 Kxy) 0

Axy) = |p'(xy) 0 0], (15)
0 0 0
0 0 K(x,y)
B(x,y) = 0 0 0 . (16)
P~ (x,y) 0 0

The coefficients matrices A(x,y) and B(x,y) with their elements are determined
by the density p(x,y) and bulk modulus of elasticity K(x,y). The sound speed
c(x,y) is defined once more by

c(x,y) = [K&xy)/px,nI* . a7

We use the high-resolution methods to describe the waves and speeds by
the Riemann solver, with a second-order accuracy (LeVeque, 1997, 2002;
Ketcheson and LeVeque, 2008; Calhoun et al., 2008). The detailed process can
be found in Appendix C.

n+1

i ?J - (At/AX)(A+AQi—1/2,j + AiAQiH/Z,j + Fi«}—l/z,j - Fi—l/z,j)
— (AVAY)YBTAQ_ 15 + B7AQu 1 + Gisiy — Gilipy) - (18)

The numerical solutions of coarse mesh can be obtained from the
formulation (18). One uses the coarse-level numerical solutions attaining the
finer level numerical solutions on the adaptive meshes. The solutions of local
rectangular patches of the finer level replace coarse mesh solutions, which are
average of the finer meshes solutions. AMR algorithm adaptively generates local

refinement mesh patches that update the solutions of the coarse meshes at every
few time steps.

f+} = {J - [(A[/rH1)/(AX/1'H1)](Ff+1/2,j - Ff—l/z,j)
- [(At/rHl)/(A)’/rH1)](Gli,j+1/2 - Gil,j-uz) , 1 =0,1,..L (19
where [ is the level, L is the largest level of the adaptive mesh, and r is the

refinement ratio of the time steps of length to the space of width on the finer
level.
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In this paper, we use zero-order-extrapolation absorbing boundary
conditions for numerical simulation of the 2D wave equation. Such absorbing
conditions have proven to be very efficient for wave equation written as a
first-order system in velocity and stress (LeVeque, 2002).

NUMERICAL EXPERIMENTS

In the first example, we consider wave propagation in a layered 2D
homogeneous model. The coarse mesh is defined on a 320 X 320 grid with a
space step of 4 m and time step of 2 ms. The wave velocity varies from 1100
to 1800 m/s (as shown in Fig. 4). The source coordinate is located at (X, =
640 m, y, = 640 m) in the upper part of the model, and two receivers are at R,
(640,800) and R, (640,400). The threshold tolerance for the Richardson
estimation of truncation error is 107, and three levels mesh refinement grids are
used. The size of stable time steps is determined by the CFL condition (Courant
number equal to 0.9). The source function used in initial pressure as follows

f(x,y,t) = sin(wr/a) , t=0,1r < a (20)
fx,yt) =0, t=0,r=a (21)
r = 4m[{(x—xp) X 1073}2 + {(y—yp) X 107°}2]* . t=0,r<a (22)

Here, a = 0.1, a pressure source at the location (Xg,y,).

1200

y (m)

P 41400
500

350

1200

0 400 800 1200
x {m)

Fig. 4. The model of three-layer media.
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In Fig. 5, every small rectangular border regions express locally
rectangular finer mesh patches for different snapshots. At each interface, e.g.,
between t = 0.20 s and 0.30 s, part of the energy is reflected. Since the wave
velocity in the second layer media is larger than the one in the first layer, the
waveform turns wider; on the other hand, the waveform turns thinner in the
third media. The wave is reflected several times and creates internal multiples.
The wave energy is absorbed at the boundary condition at t = 0.64 s. We do
not observe any numerical dispersion in the different snapshots.

1200 1200
800 800
B B
400 400
a o=
0 400 BOO 1200 0 400 B0O 1200
x (m) A (m)
(a) t=0.20s (b) t=0.30s

1200

¥y (m)
y (m)

a 400 800 1200
x(m) x {m)

(c) 1=0.42s (d) 1=0.46s

Fig. 5. Snapshots for different propagation times.
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Fig. 6. The two receivers at R,(640,800) and R,(640,400).

In Fig. 6, the two receivers describe how wave energy changes with
function of time. We do not observe numerical dispersion, because AMR can
obtain high-resolution and smooth solution.
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Fig. 7. The more complex velocity models, with velocity increasing with depth.
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The second example deals with a more complex model to simulate the
wave propagation through a salt body (as shown in Fig. 7). The model is
discretized on a 256 by 256 grid with a distance of 5 m between two points. The
time integration is 1 ms. The source coordinate is at (640 m,500 m). Threshold
tolerance for the Richardson truncation error is 107, and three levels mesh
refinement grids are used.

In Fig. 7, velocities vary from 1500 to 4500 m/s. The region with the
highest velocity was designed to simulate the wave propagation through a salt
dome body. Diffracted energy and multiples can be observed on the different
snapshots (Fig. 8).

y (m)
y (m)

0 400 800 1200
* {m) x (mj)

(a) 1=0.125 (b) 1=0.20s

Fig. 8. The snapshot of wave propagation in complex media at different times.

We use a PC with 2 GB memory and the CPU AMD Phenom 9600. We
take the model shown in Fig. 5 as example. In Fig. 9, the running time of the
proposed AMR is much smaller than the one obtained by the finer mesh
method. With increasing running time, the wave field becomes more and more
complex and the AMR method needs more coefficients to correctly describe the
wave field. The ratio of the running time between the AMR and fine-mesh
high-resolution wave propagation algorithm is 0.048 at t = 0.06 s and grows
up to 0.40 at t = 0.5 s. If we use the finest mesh that the total computational
time is 1.64 X 10* s, on the other hand, we use adaptive mesh that the
computational time is only 6.6 X 10° s. The proposed algorithm reduces the
computational time while preserving high resolution. This is helpful for
large-scale modeling of seismic wave propagation, especially in models
iteratively built in a travel time tomography approach.
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Fig. 9. Comparison of CPU running time between adaptive mesh (below dashed line) and finer mesh
(above solid line) as the time steps increase. The horizontal coordinate denotes the maximum time
for the wave propagation.

CONCLUSIONS

In this paper, we have presented an effective algorithm for numerical
modeling of wave equations in layer media using adaptive mesh refinement. The
method provides an accurate and efficient solution for wave propagation through
the fine local rectangular patches. The fine reflection and transmission are
properly modeled. By choosing appropriate thresholds, one can generate
adaptive grids and controllable truncation errors. The proposed method is
promising for the simulation of wave propagation in large-scale problems. We
aim at applying this method in more complex models in the future. This AMR
method can be also combined with wavelet transform or curvelet transform (Ma

et al., 2007) to further improve the computational performance of seismic
modeling.
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APPENDIX A

In this appendix, we introduce the Richardson extrapolation estimates for
the local truncation error, in order to get the finer mesh on each level (Berger,
1982; Berger and Oliger, 1984; Berger and Colella, 1989). We assume that the
difference operator L has an order accuracy in both time and space domains,
and then compare our numerical solutions. If a given solution Q(x,t) is very
accurate, the local truncation error can be expressed

Qx,t+k) = LQ(x,t) + k[k"a(x,t) + h"b(x,0] + kO[K"*' + h"*]
=7+ KOk + b+ (A-1)

where the leading term is denoted by 7. If Q(x,t) is very accurate, then we use
double time steps and double space widths with the difference operator L. Then

Q(x,t+2k) = L2Q(x,1) + 27 + kO[k"™' + h**!] | (A-2)
Q(x,t+2k) = LyQ(x,t) + (2K)[(2k)"a(x,) + (2h)"b(x,1)] + O[h"*?]
= "7 4+ kO[h"*Y] (A-3)
where the error order is of 27
QIx,t+2k — L2Q(x,0)] = 27 . (A-4)

Taking formula (A-2) and (A-3) with the integration scheme, one can get
the local truncation error at time t.

[L2Q(x,t) — L,,Q(x,0)/2"*" — 2) = 7 + O(h"*?) . (A-5)

Using the Richardson extrapolation error estimation, the solution is
propagated in time in two different ways for finding the refinement regions. The
tirst occurs on the fine level, and the second occurs on coarse level, and then
compares two solutions to determine where grids need some refinement.
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APPENDIX B

In this appendix, we present expressions for the wave We_,, being a
limited version of WP_,, to avoid oscillations. Wave limiters can obtain high
resolution wave propagation and reduce numerical oscillations (LeVeque, 1997).
For the 1D acoustic eq. (1) one can obtain

WP = ofir? (B-1)

where o is a scalar. Note that the vector 1” is independent of i. The flux limiter
replaces each wave W? by a limited version

Wi = o(@)W! . (B-2)
Here 6" is some measure of smoothness of the solution given by
0 = (W, - WO/(WE- WD) B-3)

There are some standard limiters (LeVeque, 1997)

minmod: ¢(6) = max[0,min(1,0)] , (B-4a)
superbee: ¢(#) = max[0,min(1,20),min(2,0)] , (B-4b)
monotonized centered: () = max(0,[min(1+6)/2,2,26]) . (B-4c)

We can choose the standard limiters based on the problem. Minmod
limiter is the most diffusive limiter that chooses the wave with the smallest of
the two compared in the same direction. Superbee limiter is applied to
discontinuities solution. Monotonized centered limiter is good choice for most
problems (Lanseth and LeVeque, 2000).

APPENDIX C

In this appendix, we present expressions for the second-order accuracy
high-resolution methods (18). Let the value Q' ; represent a cell average over the
uniform Cartesian (i,j) grid cell in two dimensions at the time t,

Yi+i2 5 X1

Yi-i2 o Xi-y

"~ (1/Axay) | q(y.t)dxdy (C-1)
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For variable coefficient linear hyperbolic system of equation, the
eigenvector matrices for A(x,y) and B(X,y) can be expressed as

A(x,y)q = f(g), B(x,y)q = g(@ . (C-2)
We use high-resolution wave propagation algorithm for the simulation of

the 2D acoustic wave eq. (13) (LeVeque, 1997, 2002; Ketcheson and LeVeque,
2008; Calhoun et al., 2008)

T+j = — (At/AX)[ E (1) Wh_ iy + E (i) Wil

Mw
— (At/Ay)[ Z o) WE iy + Z (R 412" WEiL1n]
p=1

p=1

- (At/AX)[Fm/z,j — Fiipyl - AYAYG; 1, — Gi,j~1/2] - (C-3)

Here, Q,; denote the cell average of q over the i-th and j-th cells in the grid,
with the correction fluxes F for wave propagation in the x-direction, and the
correction fluxes G in the y-direction defined by

sl

Mw
i+ = %2 E IC?+1/2,j|[1 (At/AX) | ch +1/2JI]WI+]/2J >
p=1

Fiiipj =" Z |e? iyl 1 — (At/Ax)|C€—1/2.j|]w?—1/2.j )
p=1

(C-4)

o

Mw
12 = 2 Z |C'i),j+l/2l[1 - (At/Ax)|CFi’.j+1/2HW[1),j+1/2 )
p=1

Gijip =" Z [eticinl 1 — (At/Ax)|C‘i’,j—1/2‘]w[l),j—1/2 .
p=1

Here, the wave W is a limited version of W to avoid oscillations. The waves
We_, .. ; and we +12; are Riemann problems solutions in the x-direction at the
interfaces, and W?. i-1n and we. j+1n are Riemann problems solution in the
y-direction at the interfaces.

In formulation (C-4), a sct of Mw waves W and speeds ¢ can be written
as (Ketcheson and LeVeque, 2008)



MULTILEVEL ADAPTIVE MESH MODELING 139

Mw
Z W?—wz,j = Qi,j - Qi—l,j = AQi—l/2,j s
p=1

Mw
E W?H/z,j = Qi+1,j - Qi,j = AQi+l/2.j )
p=1
Muw (C-5)
Z Wri’,j—l/2 = Qi,j - Qi,j—l = AQi.j—l/?. >
p=1
Mw
Z Wri),j+1/2 = Qi,j+1 - Qi,j = AQi,j+1/2 .
p=1
The standard conservation law can be expressed by
A_AQi—l/lj + A+AQ1—1/2,) = f(Qi.j) - f(Qi—l,j) s
ATAQi 1y T ATAQ 1y = Qi) — Q)
(C-6)

B*AQi,j—l/Z + B+AQi,j—1/2 = g(Qi,j) - g(Qi.H) )

B AQij;1n + BTAQ 41 = g(Qij1) — Qi) -

The Riemann solutions are defined in terms of the right-going fluctuation
ATAQ;5,,,; at the left edge of cell i, while the left-going fluctuation ATAQiz 1y,

at the right edge of this cell in the x-direction, and fluctuations B*AQ;;+,, and
BAQ; 5., in the y-direction.

AiAQi—l/lj = E (Cli)fl/z,j)iwri)—llz.j )
p
AtAQiH/zJ = Z (C]ip+1/2,j)iwli)+l/2,j )
p
(C-7)

BiAQi,j—l/z = Z (C'i),j—1/2)iW'i).j—l/2 ,
p

+ - +
B AQi.j+1/2 = Z (Cli),j+1/2) WIi),j+1/2 .
p





