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ABSTRACT

Sollner, W., Tsvankin, I. and Filpo Ferreira da Silva, E., 2010. Multi-azimuth prestack time
migration for anisotropic, weakly heterogeneous media. Journal of Seismic Exploration, 19: 187-206.

Conventional prestack time-migration velocity analysis is designed to estimate diffraction
time functions in a fixed azimuthal direction from narrow-azimuth reflection data. Therefore, it can
build accurate 3D migration operators only if the subsurface is isotropic (or azimuthally isotropic)
and laterally homogeneous. Here, we extend time-migration methodology to multi-azimuth or
wide-azimuth data from azimuthally anisotropic, weakly heterogeneous media.

We derive the azimuthally varying diffraction time function from the most general form of
Hamilton’s principal equation and apply a Taylor series expansion to the traveltime in the vicinity
of the image ray. This approach helps relate the Taylor series coefficients to the corresponding
multi-azimuth imaging parameters. The second-order coefficients, which define the
"migration-velocity ellipse", are obtained from time-migration velocity analysis in at least three
distinct azimuthal directions. Our multi-azimuth prestack time migration (MAPSTM) solves the
mismatch problem that occurs in conventional processing when the same depth point creates different
time images in different azimuths. The algorithm is tested on synthetic data from a horizontally
layered, azimuthally anisotropic model and an isotropic medium with a dipping interface.

KEYWORDS: time migration, velocity analysis, azimuthal anisotropy, NMO ellipse,
image ray, multi-azimuth surveys.
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INTRODUCTION

Conventional prestack time-migration operators are derived from analytic
diffraction time functions. The diffraction times for any source and receiver
positions are defined solely by a single average velocity (i.e., the RMS velocity)
at the image point instead of the true velocity field above the reflector. The
time-migration velocity is obtained by focusing analyses on prestack
time-migrated gathers. This approach generally proved to be robust for
narrow-azimuth 2D and 3D seismic data, particularly when the subsurface is not
structurally complex.

However, the limitations of the conventional time-migration methodology
have become obvious with the advent of multi-azimuth and wide-azimuth
seismic surveys. The most important advantages of multi-azimuth data
acquisition are improved noise suppression, multiple attenuation and target
illumination (Manning et al., 2007); wide azimuthal coverage can also help in
anisotropic parameter estimation. As discussed by Keggin et al. (2007), one of
the biggest problems in conventional processing of multi-azimuth data is that
summation of signals acquired at different azimuths does not account for
traveltime differences due to azimuthal anisotropy and/or lateral velocity
variation.

Time imaging for orthorhombic symmetry, which adequately describes
fracture-induced azimuthal anisotropy, is discussed by Grechka and Tsvankin
(1999). They show that all P-wave time processing steps (normal-moveout and
dip-moveout corrections, prestack and poststack time migration) for a laterally
homogeneous orthorhombic medium above a dipping reflector are controlled by
the orientation of the vertical symmetry planes, the symmetry-plane
normal-moveout (NMO) velocities from a horizontal interface (V{!-?) and three

nmo

anellipticity parameters (n-*?). The velocities V{}.;? and the symmetry-plane
azimuths can be found using the NMO ellipse (Grechka and Tsvankin, 1998) of
a horizontal event. Then the NMO ellipse from a dipping reflector is used to
estimate the parameters 7> responsible for the dip-dependence of normal
moveout. Alternatively, it is possible to obtain 7"*? from azimuthally varying
non-hyperbolic moveout in a horizontal orthorhombic layer (Vasconcelos and
Tsvankin, 2006).

Note that the simpler HTI (transversely isotropic with a horizontal
symmetry axis) medium represents a special case of orthorhombic symmetry.
Therefore, the time-migration operator in azimuthally anisotropic media can be
built using solely P-wave reflection traveltimes. This approach represents a
generalization of the widely used time-imaging methodology for vertical
transverse isotropy (VTI) based on the Alkhalifah-Tsvankin (1995) parameter
7 (Tsvankin, 2005).
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A time-migration algorithm that takes azimuthal velocity variation into
account is presented by Kappius in Grechka et al. (2006). The NMO ellipse is
reconstructed from azimuthal moveout analysis or iteratively applied azimuthal
prestack time migration that preserves offset and azimuth information. The
author mentions the ambiguity in the azimuthal correction caused by dipping
structures and suggests to separate the contributions of azimuthal anisotropy and
dip during an iterative process of velocity analysis and imaging. Preservation of
the offset (source-receiver) vector information during prestack time migration
of wide-azimuth data is further exploited by Calvert et al. (2008).

Sollner and Andersen (2005) use azimuthally-dependent velocities
estimated from focusing analyses in time migration to handle the influence of
structure in laterally heterogeneous media. They employ surface-to-surface
paraxial ray theory (Bortfeld, 1989; Hubral et al., 1992) to introduce kinematic
time migration that operates with azimuthally-varying NMO velocities and
zero-offset traveltime slopes, as well as the corresponding demigration based on
azimuthally-varying time-migration velocities and slopes.

Here, starting from the generalized surface-to-surface paraxial matrices
(Moser and C‘erveny, 2007), we develop a multi-azimuth prestack
time-migration algorithm for arbitrarily anisotropic, weakly heterogeneous
media. Hamilton’s point characteristic for transmitted rays helps link the
surface-to-surface paraxial matrices to azimuthally varying time-migration
velocities and derive the time-migration operator. Focusing analysis for the full
range of available azimuths is used to estimate the time-migration velocities,
which are shown to be generally different from NMO velocities. The migration
operator can still be developed from the NMO ellipse, but only by including
additional information provided by zero-offset time slopes.

METHODOLOGY
Surface-to-surface paraxial matrices

We consider a model comprised of a stack of heterogeneous, anisotropic
layers separated by smooth interfaces (Bortfeld, 1989; Hubral et al., 1992;
Moser and Cerven)’/, 2007). Smoothness here means that each interface can be
locally represented by second-order polynomials. The sources and receivers are
located at the top interface called the anterior (earth’s) surface. In the marine
environment, this surface can be considered flat. The bottom interface, called
the posterior surface, represents the reflector (Fig. 1). A selected ("central") ray
travels from the anterior to the posterior surface. The central ray intersects the
anterior surface at the origin (point Py) of a Cartesian (x,y,z) coordinate system
and the posterior surface at the origin (Py) of another Cartesian (x', y’, z')
coordinate system.



190 SOLLNER, TSVANKIN & FILPO FERREIRA DA SILVA

h

F,_="x

Fig. 1. Central and paraxial rays with the position and slowness vectors at the top and bottom
interfaces (called the anterior and posterior surfaces, respectively). The central ray connects the
origins (points P, and Pg) of two coordinate systems, one at the flat anterior surface (unprimed) and
the other in the tangent plane of the posterior surface (primed).

The plane tangent to the anterior surface at P is taken as the [x,y] plane
of the (x,y,z) coordinate system; the direction of the x- and y-axes in this plane
is arbitrary. The central ray can be described by four three-component vectors:
the initial position vector X,, the initial slowness vector p,, the final position
vector X, and the final slowness vector p.

Likewise, an arbitrary ray propagating from point P at the anterior surface
may be described by the initial position (X) and slowness (p) vectors. The
corresponding final vectors (X’ and p’) at the posterior surface are measured in
the (x’,y’,z") Cartesian coordinate system. The two-dimensional vectors x, p,
x" and p’ are obtained by projecting the three-dimensional position and slowness
vectors onto the initial and final tangent planes, respectively. Each component
of the vectors x" and p’ is a complicated function of the four components of the
initial vectors: x" = x'(x,p) and p’ = p’(x,p). Therefore, it is convenient to
introduce first-order (paraxial) approximations. These approximations for x and
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p’ correspond to second-order approximations of the traveltime function t and
are valid for relatively small magnitudes of the vectors x, p—p,, X', and p' —p;
(i.e., in the vicinity of the central ray). Hereafter, the magnitudes of all vectors
are obtained within the framework of the first-order (paraxial) approximation.

The central ray and all paraxial rays in its vicinity can be described by the
4 X4 matrix,

T(P{,Py) = , (1)
C0 D0

where A, By, C, and D, are 2 X2 surface-to-surface paraxial matrices (Moser
and Cerveny, 2007), which describe the transmission of the central ray between
the anterior and posterior surfaces:

x' A, B, X
= . )
P’ — P C, Dy P~ Po

Given the deviations from the central ray of the initial position (x) and
slowness (p — p,) vectors, eq. (2) yields the corresponding vectors at the
posterior surface, if the matrices A,, B,, C, and D, are known. The
surface-to-surface paraxial matrix T can also be computed from the paraxial ray
propagator matrix using surface transformation matrices (Hubral et al., 1992;
Cerveny, 2001; Moser and Cerveny, 2007).

Assuming the existence of the inverse matrix B;', eq. (2) can be rewritten
after simple algebraic operations as

P=p + By'x" — Bj'Ax (3)
and
p=p; + Cx — DB;'A;x + DB;'x" . 4)

Therefore, the initial and final slowness vectors of any transmitted ray in the
vicinity of the central ray can be computed from eqs. (3) and (4), respectively.
Traveltime of transmitted events

The traveltime difference between the central ray and a ray displaced at
the anterior surface by dX and at the posterior surface by dX’ can be found from

Hamilton’s principal equation as the total differential,

di(x,x’) = p’-dx’ — p-dg . (5)
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Hamilton’s equation was originally derived from general variational
principles. For example, the proof of eq. (5) for anisotropic media in Buchdahl
(1970) is based on Fermat’s principle. The partial derivatives (p’ and —p) of
the total differential dt in eq. (5) lead to the fundamental relationship between
phase and group velocity for arbitrarily anisotropic media. Within the
framework of our approximation, it is possible to replace the three-component
vectors in eq. (5) by their two-component counterparts (Bortfeld, 1989):

dt(x,x’) = p'-dx’ — pdx . 6)

Eq. (6) preserves the general form of Hamilton’s equation for the
two-component position and slowness vectors.

Substituting eqs. (3) and (4) into eq. (6) and integrating the resulting
expression, we obtain:

t(x,x') = t, — py’X + pi'x’ + (1/2)x"-D,B;'x’
+ (172)x'By'Ax — x'By'x’ @)

t, is the exact one-way traveltime along the central ray. Eq. (7), also known as
Hamilton’s point characteristic, yields the traveltimes of paraxial rays
transmitted through an anisotropic heterogeneous medium between the anterior
(x) and posterior (x') surfaces. If known, the special form of Hamilton’s point
characteristic allows one to determine the complete seismic system. This
property is very important for parameter-estimation techniques.

Multi-azimuth prestack time migration

Time migration moves a weighted sum of the wavefield amplitudes
measured at the diffraction time surface to the two-way traveltimes at the
emergence point of the image ray. An image ray is a transmitted ray that
originates at the surface with the slowness vector parallel to the surface normal
and ends at the reflection point (Hubral and Krey, 1980). The diffraction time
surface is obtained as the ensemble of the transmitted times to the reflection
point for all source-receiver combinations. This type of migration is also called
"diffraction stack" or "Kirchhoff-type migration".

The weighting functions are commonly applied to preserve the amplitude
behavior of reflected waves, or in some cases even to compensate the amplitude
for losses caused by geometrical spreading (Schleicher et al., 2007). For
example, simplified versions of such weights valid for horizontally layered
media are often applied in time migration and are considered as known here.
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To define the migration operator, we still need to obtain the diffraction
time function of a hypothetical diffractor at the reflection point, the associated
image ray and the two-way traveltime along that ray. Since the reflection point
is generally unknown, neither traveltime can be found. To overcome this
difficulty, we reformulate the problem by starting from the migrated volume.
The amplitude at each time sample is considered to belong to a time image point
built by stacking along the diffraction times of a diffractor at the endpoint of the
image ray. If no reflector is found at the endpoint of the image ray, the
amplitude of the corresponding time image sample is expected to vanish. A
different approach that leads (theoretically) to the same migration result operates
in the vicinity of the normal ray (see the Appendix).

We consider an arbitrary image ray (coveniently treated as the central ray)
and build the diffraction time function for every time sample. Parameters related
to this central ray will be denoted by the subscript "I". For example, the
traveltime of the ray that connects the receiver x, and the diffraction point x" at
the reflector is obtained from Hamilton’s point characteristic for transmitted rays
[eq. (7)] by employing the image ray condition p; = 0 (Bortfeld, 1989; Hubral
et al., 1992; Moser and Cerveny, 2007):

t(x,x") =t + pi'x’ + (1/2)x""DB7'x’
+ (1/2)x-BT'Ax, — xB7'x' | ®)

where t; is the traveltime of the image ray, and A, B,, C,;, and D, (see above)
are the surface-to-surface paraxial matrices along the image ray (Moser and
Cerveny, 2007).

If the diffraction point coincides with the endpoint of the image ray, all
terms containing x’' in eq. (8) vanish (i.e., the dependence on the primed
coordinates is eliminated). Hence, the hyperbolic approximation for the
traveltimes of rays transmitted from any receiver position to the hypothetical
diffraction point at the endpoint of the image ray simplifies to

t(x,,x'=0) = ¢ + txB7'Ax, . )

Using eq. (9) and an equivalent expression for the ray transmitted from the
source position, the needed traveltimes may be calculated through the paraxial
matrix combination B7'A, by performing dynamic ray tracing along the image
ray. Although it would be attractive to build the complete migration operator by
tracing only the central ray, it is not feasible in most practical applications
because the depth-domain velocity model is seldom known at the stage of time
imaging.

Next, we take advantage of the fact that the diffraction time function in
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eq. (9) depends only on the receiver coordinates at the anterior surface. Further,
the 2 X2 surface-to-surface matrix combination includes the "global" parameters
of the seismic system (around a given central ray), which may be estimated by
data search. The receiver position vector in eq. (9) can be expressed through the
azimuthal angle ¢ (measured counter clockwise from the x-axis) and the distance
d, between the image ray and receiver position:

tH(x,,x'=0) = tf + d/Viy(e) , (10)
with
Via(e) = t(Ulcos2p + 2Ulcosgsing + UlysinZg) . 1D

Vim(@)is the time-migration velocity defined by the three independent "global”
parameters (Uj,, U}, and U}) of the symmetric matrix combination B7'A,. (The
symmetry of B'A, is easily proved by building second-order partial derivatives
with respect to the coordinates in eq. (9) and interchanging the order of
differentiation). Eqs. (10) and (11) are similar to the equation of the NMO
ellipse in common-midpoint geometry derived by Grechka and Tsvankin (1998).
A major difference between these two formulations is related to the definition
of azimuth. While the azimuthal angle in the NMO formula is a data acquisition
parameter (i.e., the direction of a source-receiver pair), the angle ¢ in egs. (10)
and (11) is defined as the azimuth of the receiver position vector (i.e., the
vector from the image ray to the receiver position), which generally deviates
from the source-receiver direction (see the Appendix).

Eq. (11), which represents the 3D velocity ellipse for time migration in
heterogeneous anisotropic media, relates the three unknown parameters U}, U},
and Uj;, of Hamilton’s point characteristic tc the azimuthally varying
time-migration velocity. Eqs. (10) and (11) can be applied to rays between the
source and the diffraction point by substituting the distance to the source
position, dg, and the corresponding azimuthal angle . The diffraction time
function for multi-azimuth 3D prestack time migration is obtained by adding the
traveltimes for both legs of the reflected ray:

Trv =t + tg = [t} + d/Viy(@®)] + VIt} + dZ/Viy(y)]

Thus, the velocity ellipse and the time-migration operator are defined by
three independent parameters, which can be estimated by time-migration velocity
analysis in at least three distinct azimuthal directions. In practice,
azimuthally-varying migration velocities are obtained from time-image gathers
computed in regular surface intervals, which makes it possible to build the
migration operator without knowledge of the medium parameters. Fig. 2 shows
the slice of a multi-azimuth time-migration operator for zero offset; there is a
20% difference between the migration velocities in the principal directions.
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Fig. 2. Time slice of the multi-azimuth time-migration operator.

o

The method outlined here is designed to solve the mismatch problem that
occurs in time migration of multi-azimuth data (i.e., when the same depth point
creates different time images in different azimuthal directions). It is devised for
weakly heterogeneous media of arbitrary symmetry and can be applied prior to
anisotropic parameter estimation. The accuracy, however, is limited by the
second-order approximation of the diffraction time function valid for small and
moderate offsets. In contrast, the time-migration approach described by Grechka
and Tsvankin (1999) for orthorhombic media does not rely on traveltime
approximations but requires knowledge of the P-wave time-processing
parameters (the azimuths of the vertical symmetry planes, the symmetry-plane
NMO velocities V}:;?, and the anellipticity parameters n"*%).

SYNTHETIC TESTS

Conventional time migration leads to a mismatch of time-migrated events,
if the velocity model is either laterally heterogeneous or azimuthally anisotropic.
First, we illustrate migration errors caused by lateral heterogeneity by
performing a test for an isotropic model with an intermediate plane dipping
interface (Fig. 3). The synthetic volume included two 3D data sets with the
acquisition azimuths in the dip and strike directions of the interface.
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Fig. 3. Dip (a) and strike (b) sections of an isotropic velocity model with an intermediate dipping
interface. Animage ray at x = 5 kmand y = 5.025 km (the position of the image gathers in Figs.
4 and 5) is displayed along with two rays recorded at an offset of 2.5 km in the dip and strike
directions.
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Conventional prestack time migration including common image-gather
(CIG) velocity analysis was applied to each data set separately. Fig. 4 shows
image gathers for a horizontal reflector beneath the dipping interface computed
in the dip and strike directions. Although the gathers obtained with the best-fit
velocity in each direction are flat, they show a time difference sufficient to
degrade the quality of stacking. This difference, caused by the 30°-dip of the
intermediate interface (i.e., by lateral heterogeneity), is the reason for
destructive interference on time-migration stacks often observed in multi-azimuth
time imaging.

For isotropic media, conventional processing leads to distortions when the
overburden is laterally heterogeneous and the image point is located outside the
incidence (sagittal) plane. The presence of heterogeneity requires application of
an azimuthally-dependent migration operator that can handle out-of-plane image
rays corresponding to azimuthal imaging angles (i.e., the angles between the
x-axis and the lines from the source/receiver positions to the emergence point
of the image ray) different from the source-receiver azimuth. In our simple
example, the image rays for reflections recorded on the strike line deviate from
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Fig. 4. Conventional CIG gathers in the dip (a) and strike (b) directions for the isotropic model from
Fig. 3. The gathers are computed with the optimal migration velocity for each direction. The
smallest offset and the offset increment in the gathers are 400 m.
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the incidence plane, which distorts the migration result obtained using a single
best-fit velocity estimated for the strike direction.

Next, the same image gathers in the dip and strike directions were
computed by our multi-azimuth prestack time migration, which takes the
azimuthal velocity variation into account (Fig. 5). After application of the
optimal migration-velocity ellipse, flat gathers from different azimuthal
directions are recorded at the same time and can be stacked to obtain a
high-quality final image.

We also tested our algorithm on a laterally homogeneous, azimuthally
anisotropic model that includes an HTT layer sandwiched between two isotropic
layers. The parameter 6", which determines the elongation of the P-wave NMO
ellipse in HTI media (Tsvankin, 1997), was intentionally chosen to be
uncommonly large by absolute value. The synthetic data were generated with
anisotropic ray tracing code ANRAY developed by Gajewski and Psencik
(1987). Fig. 6 shows several input common-offset, common-azimuth sections
for the reflection from the bottom of the HTI layer.
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7.4

0 2 4 6 8 0 2 4 6 8
Offset Offset
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Fig. 5. Multi-azimuth CIG gathers in the dip (a) and strike (b) directions for the isotropic model
from Fig. 3. Both gathers are computed with the optimal migration-velocity ellipse.
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Fig. 6. Input common-offset, common-azimuth sections for a model composed of three horizontal
layers. The top and bottom layers are isotropic with the same velocity V, = 2.5 km/s; the middle
(second) layer is HTI with the P-wave vertical velocity Vp,., = 3.25 km/s, 6" = —0.348, and
e = 0.4. The azimuth and offset are 90° and 1000 m (a); 0° and 1000 m (b); and 0° and 100 m (c).

The substantial time difference between the reflections in the planes
parallel and perpendicular to the symmetry axis is caused by the pronounced
azimuthal anisotropy (here associated with the parameter 6’). This difference
would result in a significant imaging mismatch after conventional time
migration, if a single velocity is used for both principal azimuthal directions.
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Note that image rays excited in either vertical symmetry plane of the HTI layer
do not deviate from the incidence plane. Therefore, for this model it is possible
to avoid the mismatch by migrating narrow-azimuth data for each symmetry
plane with the best-fit velocity estimated for that plane by the conventional

algorithm (i.e., the approach that failed for the isotropic model discussed
above).
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Fig. 7. Time-migrated common-offset, common-azimuth sections generated by our multi-azimuth

algorithm using the input data in Fig. 6. The azimuth and offset are 90° and 1000 m (a); 0° and
1000 m (b); and 0° and 100 m (c).
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Multi-azimuth time-migration velocity analysis was carried out using eq.
(12). The time-migration velocity ellipse was estimated by flattening the
common-image gathers for the available offsets and azimuths. Because the
symmetry-axis orientation is assumed to be known, velocity analysis has to be
applied only in the principal directions of the model. The time-migrated images
of the azimuth-offset sections from Fig. 6 are displayed in Fig. 7. Clearly, the
reflection from the bottom of the HTI layer is imaged at the same position using
all azimuth-offset combinations in the input data. Fig. 8 shows a time slice and
two cross-sections of the time-migration response for one of the
constant-azimuth, constant-offset volumes.

Time (s)
1

1

Midpoint Y (km)
1.5
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0 0.5

Fig. 8. Multi-azimuth time-migration response for the input data with the azimuth 90° and offset

1000 m. The time slice at 1.3 s (top left); the inline section at y = 1.25 km (top right); and the
crossline section at x = 1.25 km (bottom).



202 SOLLNER, TSVANKIN & FILPO FERREIRA DA SILVA

CONCLUSIONS

We introduced a method for multi-azimuth prestack time migration
(MAPSTM) based on the azimuthally-dependent diffraction time function.
Hamilton’s principal equation was used to obtain a relationship between
azimuthally varying time-migration velocities and 3D prestack time-migration
operators for arbitrarily anisotropic, weakly heterogeneous media. The current
version of the method employs a second-order traveltime approximation, which
makes the MAPSTM operator sufficiently accurate only for small- and
moderate-offset data. The operator depends on three independent parameters that
form the "time-migration velocity ellipse". The ellipse is obtained from
time-migrated multi-azimuth data by flattening common image gathers for all
available offsets and azimuths. In contrast to existing migration methods for
azimuthally anisotropic (e.g., orthorhombic) media, our algorithm does not
require estimation of the normal-moveout velocities and relevant anisotropy
parameters.

To compare MAPSTM with conventional processing, we generated
multi-azimuth synthetic data for two models, one of which is isotropic but
laterally heterogeneous (it contains a dipping interface), while the other includes
an HTI layer with strong azimuthal anisotropy. Even when conventional time
migration produces flat gathers in the principal azimuthal directions, the time
of migrated events may vary with azimuth (the case of our isotropic model).
This time difference is sufficient to cause destructive interference on
time-migration stacks often observed in multi-azimuth time imaging. The time
mismatch problem was fully resolved for both models by applying MAPSTM
with the best-fit time-migration velocity ellipse.
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APPENDIX
REFLECTED RAYS AND THE NMO-VELOCITY EQUATION

Here, we consider the same model as in the main text, but the normal ray
will be treated as the central ray. By definition, the final slowness vector of the
normal ray vanishes: p; = 0. Hamilton’s point characteristic for reflected rays
is obtained by treating a reflected ray as the combination of the two downgoing
transmitted rays, which obey Snell’s law at the reflection point (Bortfeld, 1989;
Hubral et al., 1992):
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T(x.x) = Ty — 2p(1/2)(%, + x) + (1/2)(x, + x) D' Co(1/2)(x, + x,)
+ (1712)(x, — x)'By'A(172)(%x, — x,) , (A-1)

where T, is the exact two-way traveltime along the normal ray with the source
and receiver positions x, = x, = 0. Eq. (A-1) gives the reflection traveltimes
of reflected rays from any source position x, to any receiver position X, in the
second-order approximation. The 2X2 symmetric surface-to-surface matrix
combinations B;'A, and D;'C, are related to the NIP and normal wavefront,
respectively (Hubral and Krey, 1980). The hyperbolic reflection time function
is obtained by squaring both sides of eq. (A-1) and keeping terms up to the
second order (Schleicher et al., 1993):

Txx,,x,) = [Ty, — 2py (172)(x, + x,)]?
+ 2To(172)(x, + x)-D5'Cy(1/2)(x, + x,)
+ 2T (172)(x, — x)'By'Ao(1/2)(x, — x,) . (A-2)
Eq. (A-2) has found a wide range of applications (Jager et al., 2001).
The reflection time function for a CMP gather with the midpoint at the

origin of the coordinate system is obtained from eq. (A-2) by setting x, + X, to
Zero:

Towe = T + 2To(1/2)(x, — x)'B5'Ag(1/2)(x, — %)) . (A-3)

We denote the three independent elements of the symmetric 2 X2 matrix
B;'A, by W, W,, and W,,, and express the offset vector x, — x, through its
magnitude h and angle « with the x-axis. After carrying out the vector-matrix
operations, eq. (A-3) becomes:

Téwp = T3 + (To/2)(W, cos2a + 2W ,cosasina + W,,sin2a)h?

= T% + (hz/V%mo(a) 5 (A-4)
where

V32 (o) = (Ty/2) (W cos?a + 2W ,cosasina + W,,sinZa) . (A-5)

Egs. (A-4) and (A-5) are equivalent to the equation of the NMO ellipse
derived by Grechka and Tsvankin (1998). The parameters W,;, W,, and W,, of
the global matrix combination Bj'A, define the NMO ellipse and can be
estimated from hyperbolic moveout analysis for at least three distinct azimuths
of the CMP line. The NMO-velocity eqs. (A-4) and (A-5) appear to be similar
to eqgs. (10) and (11) for the azimuthally-varying time-migration velocity.
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However, NMO and time-migration velocities are identical only in the special
case of laterally homogeneous media, in which the normal and image rays
coincide. To derive a time-migration operator from NMO velocities (around the
normal ray), it is necessary to add dip information.

Time migration based on NMO velocities

To develop a time-migration formalism using the normal ray and NMO
velocities, we use an approach different from the one described in the main text.
As before, we consider the diffraction time function of a hypothetical diffractor
at the reflection point. But here we start from the normal ray (instead of the
image ray), treating every time sample along the normal ray as a possible
reflection point and stacking along the corresponding diffraction time function.
The stacked amplitude value is assigned to the image time (the two-way
traveltime along the image ray). The image ray, as defined in the main text, is
the transmitted ray between the earth’s surface and the reflection point, whose
initial slowness vector is perpendicular to the surface. If no reflector is found
at the endpoint of the normal ray, the amplitude obtained by summation is
expected to vanish.

The diffraction time function of a diffractor at the endpoint (x' = p, = 0)
of the normal ray (in this case chosen as the central ray) is obtained from
Hamilton’s point characteristic in eq. (7). For example, the traveltime from the
receiver X, to the diffraction point is

tx,x' = 0) =t, — p'x, + (1/2)x-B;'Axx, , (A-6)

where t, is the exact one-way traveltime along the central ray; the initial
slowness vector p, and the product B;'A, also correspond to that ray. The
second-order (hyperbolic) approximation is obtained by squaring both sides of
eq. (A-6) and dropping third- and higher-order terms:

2(x,x" = 0) = (t, — py'x)? + tx, ' By'Agx, . (A-T)

The three independent elements W,;, W, and W, of the 2 X2 symmetric
matrix By'A, can be found from azimuthal moveout analysis, as discussed above
[egs. (A-4) and (A-5)]. Finally, the diffraction time function is obtained by
substituting the NMO ellipse into eq. (A-7) and adding a similar traveltime term
for the transmitted ray from the source position x:

TD = \/{[to - p()'xr]2 + [l%/V%mo((b)]}

+ Vlty = poxJ? + [B/VE,(W]} (A-8)
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The distances /, and [/, are measured from the normal ray (where the NMO
ellipse is determined), and y and ¢ are the azimuths to the source and receiver,
respectively. Given the NMO ellipse and the initial slowness vector of the
central ray, eq. (A-8) yields the diffraction times for any source-receiver
combination in the prestack data. The final image time and image position are
found by simply searching for the shortest two-way time among all rays
transmitted from the surface to the diffraction point.

Eq. (A-8) helps us understand the difference between the two
time-migration approaches discussed here. Whereas the algorithm based on the
image-ray parameters [eq. (12)] requires only the time-migration velocities, time
migration operating with the normal-ray parameters [eq. (A-8)] needs not just
the NMO ellipse but also the initial slowness vector p, (i.e., the horizontal
slowness) of the normal ray. However, with the vector p, estimated from
zero-offset time slopes, the two approaches produce equivalent time-migration
operators (in the second-order approximation). A poststack version of time
migration based on NMO velocities and zero-offset slopes is used in S6llner and
Andersen (2005) for 3D kinematic imaging.





