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ABSTRACT

Wu, G., Liang, K. and Yin, X., 2010. Frequency-domain weighted-averaging finite-difference
numerical simulation of P wave propagation in TTI media. Journal of Seismic Exploration, 19: 207-
229.

The finite-difference method is widely used in numerical simulation of the propagation of
seismic waves, but has the limitation that numerical dispersion reduces the accuracy and resolution
of seismic wavefield simulation. In order to decrease the numerical dispersion of conventional
finite-difference operators, this paper presents a frequency-domain weighted-averaging
finite-difference operators defined on a 25-point stencil for numerical simulation of qP waves
propagating in transversely isotropic media with a tilted symmetry axis (TTI media). We first
approximate the differential operators using finite-difference analogues defined on 25-point stencils
and then calculate the weighted average of the difference operators with weighting coefficients. The
weighting coefficients are determined by the Gauss-Newton method of optimization theory. Using
the weighted-averaging finite-difference analogues and combined boundary conditions, we
successfully simulate qP wave propagation in homogeneous TTI media, layered TTI media and VTI
Salt model. The seismic wavefields in the time and frequency domains are obtained and used to
generate single shot records. The result of numerical simulation indicates that 25-point
weighted-averaging finite-difference analogues can improve the accuracy of the numerical simulation
of wavefields and efficiently suppress the numerical dispersion of conventional difference operators.
This method may be employed in the foundation of qP migration and inversion in TTI media.

KEYWORDS: TTI media, weighted-averaging, finite-difference, wcxghtmg coefficients,
numerical dispersion.
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INTRODUCTION

The finite-difference method is a widely applied method for seismic
numerical simulation. It can accurately simulate seismic wave propagation in an
inhomogeneous medium, but this accuracy may be limited by numerical
dispersion. In order to decrease the numerical dispersion, researchers have
presented many correlative methods. To solve the 2D acoustic equation in
isotropic media, Jo et al. (1996) presented an optimal 9-point weighted-
averaging method. To improve the accuracy of finite-difference operators, Shin
and Sohn (1998) designed a 25-point weighted-averaging operator defined on a
25-point stencil and based on four different angles. Some researchers have
applied the optimal weighted-averaging finite-difference operators to
frequency-domain forward modeling in isotropic media. Stekl and Pratt (1998)
presented 9-point finite-difference operators which are calculated in rotated
coordinate systems. Min et al. (2000) proposed a weighted-averaging scheme
on a 25-point stencil for 2D elastic modeling in the frequency domain, and
developed a weighted-averaging finite-element method for forward modeling of
the acoustic wave equation (2002) and 2D elastic wave equations (2003) in the
frequency domain.

Based on that earlier work, this paper extends the frequency-domain
weighted-averaging finite-difference numerical simulation method from isotropic
media to TTI media, and presents frequency-domain weighted-averaging
finite-difference operators defined on a 25-point stencil for qP wave simulation
in TTI media. Using the weighted-averaging finite-differences on a 25-point
stencil, we have successfully simulated qP wave propagation in homogeneous
TTI media, layered TTI media and in a complex VTI model.

WEIGHTED-AVERAGING FINITE-DIFFERENCE METHOD

In order to simulate qP wave propagation in VTI media and orthorhombic
anisotropic media (OA media), Alkhalifah (1998, 2000, 2003) proposed an
acoustic approximation and obtained a qP wave equation. Zhang et al. (2003)
applied the acoustic approximation for VTI media and OA media to TTI media.
The 2D frequency-domain approximate qP wave equation in a homogeneous TTI
media is given by (Zhang et al., 2003)

o'F + Aw?V3,(02F/0x%) + Bw?V3,(82F/0z2) + Cw?V3,(9?F/0x3z)
+ DV3,(0*F/0x202%) + EVgy(3*F/0x*) + GV5,(3*F/9z*)

+ HV4,(3*F/9x°3z) + IVE,(3*F/axdz’) = 0 (1)
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where
A = (xcos20® + sin20%), B = (xsin26° + cos26®), C = (1 — x)sin26°,
D = (2 — 3sin26%n, E = Ynsin226°, G = Ynsin?20°, H = —nsind6°
and I = 7sind6’.

Ineq. (1), x =1 + 2¢ and n = ¢ — ¢ are anisotropic parameters, F is
the wavefield in the frequency domain, w is the angular frequency, p is the
density, and Vy, is the qP wave propagation velocity along to the symmetry axis
in TTI media, ¢ and § are dimensionless anisotropic parameters (Thomson,
1986) and ¢° is the angle between symmetry axis of the TTI media and the
vertical axis.

After discretization of the qP wave equation in TTI media, the wave field
F;; is assumed to be specified on the grid (i,j) where i and j represent the z- and
x-directions, respectively. The conventional finite difference analogues
approximating the related differential operators are given by eq. (2), and the
conventional finite difference schemes are shown in Fig. 1.

F/ox? = (1/AX)(F,;,, — 2F; + Fyj_)
#F/oz2 =~ (/AZ)(F,,,; — 2F;; + Fi_) ,
#F/0x3z = (1/4AXAZ)(Fiy1j01 — Frarjo — Fioyyur + Fiogyo))
3'F/ax20z2 ~ (1/AX?AZ?)[4F,; — 2(F,1; + Fiy + Fiy_y + Fiy)
+ Fiprjar + Firjor + Fgyo + Fiogyod @

a4F/aX4 = (1/AX4)(Fi‘j+2 - 4Fi,j+l + 6Fi,j - 4Fi,j—-l + Fi,j—2) ’

34F/aZ4 = (I/AZ“)(FHQJ - 4Fi+l,j + 6Fi,j - 4Fi—-1,j + Fi-—Z,j) .

The above are second central finite difference for approximation of
(02F/0x?) or (0?F/dz?), second-order or fourth-order mixed difference operator
for approximation of (92F/dxdz) or (3*F/0x20z%) and fourth-order difference
operator for approximation of (3*F/dx*) or (9*F/dz*).

Because conventional difference schemes use information of few grids, the
numerical simulation has low accuracy and serious numerical dispersion. To
improve the accuracy of finite-difference operators, this paper presents
frequency-domain weighted-averaging finite-differences on 25-point stencils for
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(a) 0?F/0x? (b) 9%F/9z? (c) 0?F/0x0z

(d) 8*F/9x29z2 (e) 8*F/ox* (H 9*F/az*

Fig. 1. Computational grids used to approximate differential operators by the conventional scheme
for (a) (82F/dx?), (b) (32F/9z2), (c) (82F/3x0z), (d) (0*F/9x2022), () (8*F/0x*) and (f) (9*F/dz*). The
above are second central finite differences for approximation of (32F/dx2) or (32F/dz?), second-order
or fourth-order mixed difference operator for approximation of (32F/0xdz) or (8°F/dx23z2),
fourth-order difference operator for approximation of (9*F/dx*) or (3*F/dz%).

numerical simulation of qP wave propagation in TTI media. The method
approximates the differential operators using finite-difference analogues defined
on 25-point stencils and then averages the analogues with different weighting
coefficients.

The weighted-averaging finite-difference operators of d2F/0x2, 92F/dz2,
0?F/0xdz and F,; were developed by Min et al. (2000) (see Fig. 2). Fig. 2a
shows weighted-averaging scheme on 25-point stencils for 32F/dx2. Formulate
two second central difference operators using five grid points in each row,
which are averaged with the weighting coefficients ¢ (for points) and d (for
circles). Applying the same processing to all five rows, we obtain five
difference operators and average them with weighting coefficients b,,b,,b; (see
Fig. 2a). A similar scheme is applied to the approximation of 32F/dz?2 (see Fig.
2b). Average the finite-difference operators with weighting coefficients e, (for
points in Fig. 2c) and f; (for circles) in the approximation of 32F/dxdz (Fig. 2c¢).
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The wavefield F, ; at the collocation point is averaged with weighting coefficients
a,,3,,35,34,35,3, (see Fig. 2d). The finite-difference analogues of the differential
operators 9°F/dx?, 82F/dz?, 0°F/0xdz and F;; are given by Min et al. (2000) as

O%F/0x2 = ), (byy 1 /AXD[C(F,y1ju1 — 2Fiyyj + Fippyoy)
+ (d/4)(Fi+l,j+2 - 2Fi+l,j + Fi+l,j—2)] s (3)
9%F/022 = ), (byy s/ AZ)[C(Fiyy 0y — 2Fisyy + Fiprjo)

+ (/A (Fii2j00 — 2Fj0 + Fioj)] )

for/ = -2,-1,0,1,2,

0’F/9xdz = (e,//4AxAZ)(Fiy 541 — Fiyyjor — Fioyjn + Fioyo))

+ (/16AxAZ)(Fi pj42 — Fipnjos — Figjua + Figjn) )

b3 ) ® O O-O-O-0-0 © ®
¢ C TC Yo T T f, f; ds tas ta, 1ds 1dg
b,--C @ T
~ Y YO CF Gy € €l as ta, ta, \a, ids
b —& 7 o @) --®)--®-@)--®
N\ Z (3 @@ N7\ a. ta. ta ta.la
N € € 402 M M 1My
by - ® o
< D 2 RN f, f, as tay 1a, 1a; 1ds
@ o D D
bs - Y% OO0 A ¥ ag 1ds 1a, ds 1dg
z b; by by by b;
(a) 9%F/0x? (b) 0?F/dz? (c) 0?F/0x0z @ F;

Fig. 2. Computational grids used to approximate differential operators by the weighted-averaging
scheme on 25-point stencils for (a) (92F/0x?), (b) (32F/dz?), (c) (9%F/9xdz) and (d) F, 5 To
appropriate (32F/dx?) or (32F/dz2), formulate two second central difference operators using five grid
points in each row or column, which are averaged with the weighting coefficients ¢ (for points) and
d (for circles). Applying the same processing to all five rows or columns, we obtain five difference
operators and average them with weighting coefficients b,,b,,b;. Average the finite-difference
operators with weighting coefficients e, (for points in Fig. 2c) and fi(for circles) in the
approximation of 3°F/0xdz. The wavefield F;; at collocation point is averaged with weighting
coefficients a,,a,,a;,3,,35,3, (Min et al., 2000).
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F; = aF; + aF,; + Fju + Fj + F_y)

ij

+ a3(Fiyjo + Fiyjor + Fogj + Fiogon)

+ ay(Fip; + Fiji + Fi,j—z + F.,)

+ a5(Fiy 501 + Fiagjor + Fiugeo + Fiyo

+ Fi-l.j+2 + Fi—l,j—2 + Fi—2,j+1 + Fi—-2,j-—1)

+ aG(Fi+2,j+2 + Fi+2,j—2 + Fi—2,j+2 + Fi—z,j—Z) . 6)

The weighted-averaging analogue defined on a 25-point stencil is
introduced into the difference operator 9*F/dx2dz2 (Wu and Liang, 2005). Two
finite-difference operators are formulated, both of which are 9 term fourth-order
mixed difference operator. The interval of one difference operator (points in
Fig. 3) is Ax and Az, the interval of the other (circles in Fig. 3) is 2Ax and
2Az. The two finite-difference analogues are averaged with the weighting
coefficients e, (for points) and f, (for circles). The finite-difference analogue of
8*F/0x20z2 is given by

aZF/aXZazz = (e2/Ax2AZZ)(Fi+1,j+1 - 2Fi+1,j + Fi+1,j~l - 2Fi,j+]

+ 4Fi,j - 2Fi,j—l + Fi—l,j+1 - 2Fi—1,j + Fi—l,j—l)

+ (f2/16Ax2AZZ)(Fi+2,j+2 - 2Fi+2,j + Fi+2,j—2 - 2Fi,j+2

+ 4Fi,j - 2Fi,j—2 + Fi—2,j+2 - 2Fi—2,j + Fi—2,j—2) .

EERCRCRCHE
B SR/ S
R RN
B IR e

Fig. 3. Computational grids used to approximate differential operators by the weighted-averaging
scheme on 25-point stencils for 3*F/dx29z2. Two finite-difference operators are formulated, both of
which are 9 item fourth-order mixed difference operators. The interval of one difference operator
(for points) is Ax and Az, the interval of the other (for circles) is 2Ax and 2Az. The two
finite-difference operators are averaged with the weighting coefficients e, (for points) and f2 (for
circles).
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The weighted-averaging analogues defined on 25-point stencils are
introduced into other difference terms. For 8*F/0x*, we formulate a conventional
fourth-order finite-difference analogue in each row, then average them with
weighting coefficients g,,g,,g; (see Fig. 4a). The weighting coefficient g, is used
for the third row, g, for the second and the fourth row, and g, for the first and
the fifth row. A similar scheme is applied to the approximation of 3°F/dz* (see
Fig. 4b). For 8*F/0x%0z and 9*F/0xdz°, average difference analogues with
weighting coefficients h (see Fig. 4c and Fig. 4d). The finite-difference
analogues of 3*F/dx*, 8*F/dz*, 0*F/0x*dz and 8*F/0xdz® are given by

0%F/ox* = Z (8111+1/Ax4)(Fi+1,j+2 — 4F 4 + O6F,;
— 4F -1 + Figoo) ®)

0%F/0z* = E (g|l|+1/AZ4)(Fi+2,j+l — 4F, ;4 + OF

—4F_ . + Fo) ©

forl = -2,-1,0,1,2,

23

@ h gh | hy h E E

g1

I h (h hi h h h

g3 h h

g 2 g £ 8
(a) 9*F/ox* (b) 0*F/az* (c) °F/ax30z (d) 0*F/oxaz’

Fig. 4. Computational grids used to approximate differential operators by the weighted-averaging
scheme on 25-point stencils for (a) (8*F/ax*), (b) (3°F/z*), (c) (3°F/0x°dz) and (d) (8*F/3xdz>). For
8°F/ox*, we formulate a conventional fourth-order finite-difference operator in each of five rows,
then average them with weighting coefficients g,,g,,g;. The weighting coefficient g, is used for the
third row, g, for the second and the fourth row, and g; for the first and the fifth row. A similar
scheme is applied to the approximation of 8*F/dz*. For 3*F/dx°0z and 3*F/dxdz>, average difference
analogues with weighting coefficients h.



214 WU, LIANG & YIN

0°F/ox*0z = (WAAX’AZ)(Fiyy 4 — 2Fii1 41 + 2Fii o

~ Fijos = Fiogjoa + 2P0 — 2F o + Fioyyp) » (10)
0'F/9x0z°> = (WAAXAZ®)(F ;1 — Fiyzjor — 2Fiyjn

+ 2F o1 + 2F 0 — 2P0 — By + Fyyo) o (1D

Substituting egs. (3)-(11) into eq. (1), the 2D frequency-domain difference
equation for the qP wave is

A}-2+2,j+2Fi+2,j+2 + A}iz,j+1Fi+2,j+1 + A}RZ,jFHZ,j + A?+2,j—1Fi+2,j-1

+ A?+2,j—2Fi+2,j—2 + Az+1,j+2Fi+1,j+2 + A?+1,j+1Fi+1,j+1 + A?+1,jFi+1,j

+ A?+l,j—1Fi+1,j—l + A?+1,j—2Fi+1,j—2 + A%,j+2Fi,j+2 + A%,j+lFi,j+1

+ A?,jFi,j + A},j—-lFi,j—l + A%,j—ZFi,j—2 + A3i—1,j+2Fi—1,j+2 (12)

+ A‘i‘—l,j+1Fi—1,j+l + A?—l,jFi—l,j + A?—l,j—lFi—l,j—l + A?—l,j—zFi—l,j—z

+ A?—-z,j+2Fi—2,j+2 + A?—Z,j+1Fi—2,j+1 + A}EZ,jFi—-Z,j + A%-l-z,j-lFi—Z,j—l

+ A!l—2-2,j—2Fi—2,j—2 =0 .

This is the difference equation at the collocation point F;; using the
weighted-averaging operators defined on a 25-point stencil (see details of eq.
(12) in the Appendix). Such difference equations are obtained for each
collocation point. Introducing the body force vector G, we get the matrix
equation (see details in the appendix)

ANXNF = G . (13)

Solving eq. (13), we obtain the wavefield in the frequency domain.
Transforming the wavefield from the frequency domain to time domain using
a Fourier transform, snapshots in time-domain and synthetic seismograms for
qP wave propagation in a TTI media are obtained.

DETERMINATION OF WEIGHTING COEFFICIENTS
For the numerical simulation for qP wave propagation in TTI media using

weighted-averaging finite differences, the key is to determine the weighting
coefficients. In order to minimize numerical dispersion, we determine the
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optimal weighting coefficients using normalized phase velocity in TTI media,
which is obtained from the dispersion relation. The weighting coefficients are
determined by the Gauss-Newton method.

According to eq. (1), we obtain the finite-difference approximation
equation for the homogeneous qP wave equation, from which we can obtain the
dispersion relation. Substituting the weighted-averaging finite differences on a
25-point stencil and let A = Ax = Az, we have

W = —(VE/2A’P)AP,, — (Vi/2A%P,)BP,,
— (V3/2A%P,)CP,, + (VR/2AP WM’ (14)

where
M’ = (AP,, + BP,, + CP,,)?
- 4Pm(DPxxzz + EPXXXX + GPZZZZ + HPXXXZ + IPXZZZ) .

The quantities Pxx7 Pzz’ sz’ Pxxzz, Pxxxx’ Pzzzz’ Pxxxz’ szzv and Pm are
functions of the weighting coefficients, direction of wave propagation, and
number of grid points per wavelength. 0 is the angle between the direction of
wave propagation and the z-axis and L is the number of grid points per
wavelength. The phase velocity is defined as V,, = w/k, so that the phase
velocity of difference equation is

Vo = [Ve/27(1/L)VI(A/2P,)(—AP,, — BP,, — CP,, £ YyM")] , (15)
where

M" = (AP,, + BP,, + CP,,)?

— 4P, (DP,,,, + EP,,, + GP,,, + HP,,, + IP,,,,) .

Eq. (15) is the phase velocity obtained from the dispersion relation of the
difference equation. The phase velocity of the wave equation is obtained in a
similar manner. The dispersion relation for the qP wave equation is

o' — (AK2 + BK? +Ckk,)V3w?

+ (DkX? + Ek} + Gk + HkXk, + kk)Vs =0 , (16)
where the horizontal and vertical components of the wave vector are k, = ksinf

= wp, and k, = kcosf = wp,, respectively. k = (k,sinf,k,cosf) = (wp,,wp,) is
the wave vector. Solving eq. (16), the phase velocity of the qP wave equation
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may be written as
Vi, = Vpe/{2[xsin?0’ + cos?’
+ /((xsin20" + cos?0')* — 8ysin20'cos20)]} , 17)
where 0" = 6 + 6°.

We expect the phase velocity of the difference equation to be equal to that
of the wave equation, so that the numerical dispersion is very low. The
normalized phase velocity is defined as f = Vg,/Vy.. This is a non-linear
optimal problem. The optimal weighting coefficients, which make the
normalized phase velocity close to unity, are determined by the Gauss-Newton
method (Lines and Treitel, 1984; Min et al., 2000).

The Gauss-Newton method requires the Jacobian matrix J (Min et al.,
2000). We can construct the Jacobian matrix J by changing the anisotropic
parameters ¢ and 8, the angle 6° between the symmetry axis of TTI media and
the vertical axis, propagation angle 6, and L (number of grid points per
wavelength). We change ¢ and § from 0.0 to 0.3 in steps of 0.01, 6° from —90°
to 90° in 15° steps, 6 from 0° to 90° in 15° steps, 1/L from 0.01 to 0.3 in
steps of 0.01. The matrix J then becomes an overdetermined matrix.

The set of optimal weighting coefficients for weighted-averaging finite
differences of the qP wave in TTI media is
a, = 0.41306, a, = 0.12387, a; = 0.015088, a, = —0.0017319,

a; = 0.0031605, a, = —0.00084488, b, = 0.6021, b, = 0.1667,

o
w
|

= —0.0010569, ¢ = 0.66688, d = 0.38711, e, = 0.97882,

f, = 0.0029809, e, = 0.59822, f, = 0.38236, g, = 0.61924,

g, = 0.17461, g; = 0.0041994, h = 0.44051. (18)

The set of weighting coefficients in eq. (18) is suitable for most weak
anisotropic media, because we take the majority of propagation angle and weak
anisotropic media into consideration when choosing the weighting coefficients.
Once the weighting coefficients are determined, we can apply them to most
weak anisotropic models.
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DISPERSION ANALYSIS

Given the optimal weighting coefficients, the dispersion relations are
analyzed by plotting phase velocities for different propagation angles, different
numbers of grid points per wavelength, and different tilted angles from the
symmetry axis. The qP wave phase velocities are obtained from egs. (15) and
(17).

We design models for isotropic media with ¢ = § = 0.0, 6° = 0°, VTI
media with ¢ = 0.2, § = 0.3, 6° = 0° and TTI media with ¢ = 0.2, § = 0.3,
6° = 45°. 1/L is varied from 0.01 to 0.3 in steps of 0.01, and 6 is varied from
0° to 90° in 15° steps. Fig. 5 shows the normalized phase velocity obtained
using conventional difference operators for isotropic media (Fig. 5a), VTI media
(Fig. 5c), TTI media (Fig. Se), and weighted-averaging operators defined on a
25-point stencil for isotropic media (Fig. 5b), VTI media (Fig. 5d) and TTI
media (Fig. 5f). For conventional difference operators, there is serious
numerical dispersion of the qP wave normalized phase velocity, no matter if the
media is isotropic (Fig. 5a), a VTI media (Fig. 5c) or a TTI media (Fig. Se).
For weighted-averaging difference operators defined on 25-point stencils, the qP
wave normalized phase velocity is close to unity in all of the three media types
(Fig. 5b, 5d and 5f). The result of dispersion analysis indicates that numerical
dispersion for qP wave is greatly decreased by weighted-averaging operators
defined on 25-point stencils.

NUMERICAL EXAMPLES

To examine the accuracy and efficiency of weighted-averaging operators
defined on 25-point stencils, we designed a set of homogeneous media,
including isotropic media, elliptical anisotropic media and TTI media A and B.
The parameters of the homogeneous media are listed in Table 1. The grid
dimensions of the model are 101 X 101, with spatial intervals of Ax = 10 m
and Az = 10 m. The dominant frequency of the Ricker wavelet is 40 Hz. The
time sample rate is 2 ms and the source locations are near the center of the
model.

Figs. 6 to 9 are the snapshots in the frequency-domain and the
time-domain for isotropic media, elliptical anisotropic media and TTI media A
and B, respectively, that is, monochromatic snapshots for conventional
finite-difference operators (a) and weighting-averaging finite-difference operators
(b), the snapshots in the time-domain for conventional finite-difference operators
(c) and weighting-averaging finite-difference operators (d). In these figures, the
qP wavefront in isotropic media is circular, in elliptical anisotropic media is
elliptical. However, in the TTI media A and B, the qP wavefront demonstrates
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Fig. 5. Normalized phase velocity obtained using conventional difference operators (a, c, €) and
weighted-averaging operators defined on a 25-point stencil (b, d, f). The models are isotropic media
with e =6 = 0.0, 6° = 0° (a, b), VTI media with e = 0.2, § = 0.3, §° = 0° (c, d) and TTI media
with ¢ = 0.2, § = 0.3, ° = 45° (e, f). L is the number of grid points per wavelength, and
propagation angle 6 is varied from 0° to 90° in 15° steps.
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Table 1. Parameters of the homogeneous media.

Media Vpo (m/s) e 5 6°
Isotropic media 2500 0.0 0.0 /O°
Elliptical anisotropic media 2500 0.2 0.2 30°
TTI media A 2500 0.2 0.1 90°
TTI media B 2500 0.2 0.3 —45°

@ (b) ©) d

Fig. 6. The snapshots in isotropic media. The parameters are Vy, = 2500 m/s, ¢ = 6 = 0.0, §° =
0°. They are the monochromatic snapshots for conventional finite-difference operators (a) and
weighting-averaging finite-difference operators (b). The frequency is 40 Hz. Others are the snapshots
in time-domain for conventional finite-difference operators (c) and weighting-averaging
finite-difference operators (d). In these figures, the qP wavefront in isotropic media is circular.

© (d

Fig. 7. The snapshots in elliptical anisotropic media. The parameters are Vp, = 2500 m/s, ¢ = §
= 0.2, 6° = 30°.They are the monochromatic snapshots for conventional finite-difference operators
(a) and weighting-averaging finite-difference operators (b). The frequency is 40Hz. Others are the
snapshots in time-domain for conventional finite-difference operators (c) and weighting-averaging
finite-difference operators (d). In these figures, the qP wavefront in elliptical anisotropic media is
elliptical.
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anisotropic features and is neither circular nor elliptical, no matter whether
conventional finite-difference operators or weighting-averaging finite-difference
operators are used. In the monochromatic snapshots for conventional
finite-difference operators and weighting-averaging finite-difference operators,
the wavefields are very similar. However, in the snapshots in the time-domain
using conventional finite-differences, there are many wavefronts, which are
caused by numerical dispersion. In the snapshots in the time domain using
weighting-averaging finite-differences on 25-point stencils, there is one intact
wavefront. It shows that weighted-averaging finite-differences on 25-point
stencils reduce the numerical dispersion in a quite efficient manner.

© Cy

Fig. 8. The snapshots in TTI media A. The parameters are V,, = 2500 m/s, ¢ = 0.2, 6 = 0.1, §°
= 90°. They are the monochromatic snapshots for conventional finite-difference operators (a) and
weighting-averaging finite-difference operators (b). The frequency is 40 Hz. Others are the snapshots
in time-domain for conventional finite-difference operators (c) and weighting-averaging
finite-difference operators (d). In these figures, the P wavefront demonstrates anisotropic features

and is neither circular nor elliptical.
© @

Fig. 9. The snapshots in TTI media B. The parameters are Vp, = 2500 m/s, € = 0.2, § = 0.3, 6°
= —45°. They are the monochromatic snapshots for conventional finite-difference operators (a) and
weighting-averaging finite-difference operators (b). The frequency is 40 Hz. Others are the snapshots
in time-domain for conventional finite-difference operators (c) and weighting-averaging
finite-difference operators (d). In these figures, the qP wavefront also demonstrates anisotropic
features.

(b)
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To study the TTI media B further, we design a set of homogeneous TTI
B media with the same velocity Vp, and anisotropic parameters, but different
values of 6°. The tilted angle 6° has the values of 0°, 30°, 90°, and —45°. The
snapshots in the TTI media B with 6° = 0°, 30°, 90° and —45° are shown in
Figs. 10 (a) to (d), respectively. In Fig. 10 the wavefronts in the four TTI
media are similar, and show anisotropic features, except for the symmetry axis.
The angle between symmetry axis of the wavefront in TTI media and the
vertical axis equals 6°, which is in good agreement with the theory. The result
of numerical simulation shows the numerical dispersion is almost completely
removed by weighted-averaging finite-difference operators defined on a 25-point
stencil.

(@ (b) © (d)

Fig. 10. The snapshots in a set of TTI media B with the same velocity V,, and anisotropic
parameters, but different values of 6°. The tilted angle §° has the values of 0°, 30°, 90° and —45°,

corresponding to (a) to (d), respectively. The wavefronts in the four TTI media are similar, except
for the symmetry axis. \

To examine the effect of TTI media on the qP wave propagation and
synthetic seismograms, we simulate the qP wave propagation in layered TTI
media using the weighted-averaging finite-differences on 25-point stencils. The
anisotropic parameters of the layered TTI media are listed in Table 2. The first
and the last layer are isotropic media, the third layer is a VTI medium, and the
second layer is a TTI medium with 6° = 0° (degenerate into VTI media), ° =
45°, and ° = —45°. The grid dimension of the model is 201 X 101, with
spatial intervals of Ax = 10 m and Az = 10 m. The dominant frequency of the
Ricker wavelet is 40 Hz. The time sample rate is 2 ms. The source is placed at
the top of model. Figs. 11 and 12 show the snapshots and synthetic seismograms
for the layered TTI media: (a) 6° = 0° (degenerate into VTI media), (b) 6° =
45° and (c) 6° = —45° In Fig. 1la, all the wavefronts are symmetric
including the direct wave, reflected wave, and transmitted wave, so that all
events are also symmetric in Fig. 12a, because both the isotropic media and VTI
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media have vertical symmetry axes. But in Fig. 11b and 11c, the wavefronts are
not symmetric except in the first layer, because the second layer is a TTI
medium. The energies of corresponding reflections from the second and the
third reflector are asymmetric (Figs. 12b and 12c), because the TTI medium has
a tilted symmetry axis. In addition, the numerical dispersion is also almost
completely removed in Figs. 11 and 12.

Table 2. Anisotropic parameters of the layered TTI media.

Layer  Depth (m) Vo (m/s) P ) 0°
1 300 2500 0.0 0.0 0°
2 500 2900 0.2 0.3 0°/45°/—45°
3 800 3300 0.189 0.204 0°
4 1000 3700 0.0 0.0 0°

Using the weighted-averaging operators, we simulate qP wave propagation
in a VTI Salt model. The anisotropy of the VTI Salt model is characterized by
Thomsen’s parameters which are linear functions of the perturbation of the qP
velocity in this model (Han and Wu, 2004), i.e.,

8(X,Z) = 0485[VP0(X’Z) - VPOmin]/VPOmax ’

6(X,Z) = 0606[VP0(X’Z) - VPOmin]/VPOmax .

Distance (x10m)
100 150

Distance ( X Distance (x10m)
50 100 150 50 100 150

(WL =) yideqg
(wpLx) yideg

g

100

(@) (b) ©

Fig. 11. Snapshots for the layered TTI media: the first and the last layer are isotropic media, the
third layer is layer is a VTI medium, and the second layer is a TTI medium with (a) 6° = 0°
(degenerate into VTI media), (b) 6° = 45°, and (c) 6° = —45°. All the wavefronts are symmetric

in (a), and are not symmetric except in the first layer in (b) and (c).
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Fig. 12. Synthetic seismograms for the layered TTI media. All the energies of events are symmetric
in (a), and asymmetric except in the first layer in (b) and (c).

Fig. 13 shows the VTI Salt model. The salt body is an area of high
velocity and isotropy. The grid dimension of the model is 1290 X 300, with
spatial intervals of Ax = 10 m and Az = 5 m. The dominant frequency of the
Ricker wavelet is 20 Hz and the time sample rate is 2 ms. The source is placed
at three positions (denoted by stars in Fig. 13). Fig. 14 shows the synthetic
seismograms for the VTI Salt model with different source positions. There
events that may be seen in the synthetic seismograms are the direct wave, the
primary reflected wave and multiply reflected and/or refracted waves due to the
complexity of the model. The result of numerical simulation can lay the
foundation for qP wave migration in VTI media. Fig. 15 shows pre-stack depth
migration results using the Born approximation migration method for qP wave
in a VTI media (Liang et al, 2008). The reflections are correctly imaged and the
scattering wave is convergent because anisotropy is taken into consideration.

Distance (10m) V,, (m/s)
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] 3002
“’ y L s

— 1524

Fig. 13. Velocity model of the VTI Salt model. The salt body is an area of high velocity and
isotropy. The anisotropy of the VTI Salt model is characterized by Thomsen’s parameters which are
linear functions of the perturbation of the gP velocity in this model the stars are the positions of the
source locations: (a) s, = 4500 m, (b) s, = 7500 m, and (c) s, = 10500 m.
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Fig. 14. Synthetic seismograms for the VTI Salt model, observed on the surface for source locations
of (a) s, = 4500 m, (b) s, = 7500 m, and (c) s, = 10500 m. Three events that may be seen in the
synthetic seismograms are the direct wave, the primary reflected wave and multiply reflected and/or
refracted waves due to the complexity of the model.
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Fig. 15. Common shot pre-stack depth migration profile for the VTI Salt model using the Born
approximation migration method for qP wave in a VTI media (Liang et al., 2008). The reflections
are correctly imaged and the scattering wave is convergent because anisotropy is taken into
consideration.

CONCLUSIONS

The finite-difference method has the problem of numerical dispersion
which reduces the accuracy and resolution of seismic wavefield simulation. In
order to decrease the numerical dispersion, this paper presents frequency-domain
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weighted-averaging finite-differences on 25-point stencil operators for the
numerical simulation of qP wave propagation in TTI media. Using the
weighted-averaging operators defined on 25-point stencils, we simulate the gP
wave propagation in homogeneous, layered TTI media and a VTI Salt model
successfully. The result of numerical simulation, which can lay the foundation
for qP wave migration and inversion in TTI media, indicates that
weighted-averaging finite-difference operators defined on 25-point stencils
improve the accuracy of wavefield numerical simulation, and efficiently reduce
the numerical dispersion of conventional difference operators.
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APPENDIX
2-D frequency-domain difference equation for the qP wave

According to eq. (12) and introducing the body force vector G, we get the
matrix equation

AyF =G, (A-1)

where

F:(F;),O’FEJ,I’“"F('),Nx—-l’F;,O’FI,I"“’F;,Nx—I’ """ F, F,

T
s LNz-1,00 Nz—l,l"“’FNz—l,Nx—l) ’

= oo cee (. . sesese “ee T
G - (GO,O’GO,I’ ’GO,Nx—I’GI,O’GI,I’ ’Gl,Nx—l’ ’GNz-l,O’GNz—I,l’ ’GNz—-l,Nx—l) ?

5oL o

DB LoD

0

B oLLLoL
LB Lo

Ay =

-2 -1 0 1 2
LNz—-S LNz—4 LNz—3 LNz—2 LNz—l
-2 -1 0 1
LNz—4 LNz—3 LNz~2 LNz—]

-2 -1 0
L LNz—3 LNz—Z LNz-l |
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and
SO S0+S1 S0+2S1 B
i,0 il )2
S0+52 S0 S0+S1 S0+251
i0 i1 i2 i3
S0+252 S0+52 S0 S0+S1 S0+251
i0 il )2 i3 i 4
S0+252 S0+52 S0+S0 S0+S1 S0+251
L’,-‘ _ 7 2 3 4 s ’
S0+252 S0+52 SO Sl 251
i, Nx—5 i, Nx—4 Ai,Nx—B i, Nx-2 i,Nx~1
S0+252 S0+S2 SO S
i, Nx—4 i, Nx—3 i, Nx—2 i, Nx—1
S0+252  4S0+S2 480
L M3 M2 Nt
for k = —2,-1,0,1,2. The subscripts in the above matrix equation are given
by
sign(k) k= —-2,-1,,1,2
S0 =5 % |k|, Sl =
1 k=0
and
—signk) k = -2,-1,,1,2
S2 =

and the A,»l- are

A, = (b;d/4)(A,;+B,) + (/4C;; + (f/16)D,; + g(E,;+G,) + agw’,
Al = bycA;; + (b,d/4)B,; — 48:E,; + 8,G,; + hl,; + a0’

A’ = =2by(c+d/9A;; + (b, d/4)B,; + 68:E,; + g,G,; + aw’,

A}, = bycA,; + (b, d/4)B,; — 4g:E;; + g,G,; — hl; + axw’,

A}, = (b;d/4)(A,;+B;) — ((/4C,; + (f/16)D,; + g(E,;+G,) + aw’,
A]; = (b,d/4)A;; + bieB,; + g.E,; — 48,G,; + hH,; + aw’,

AS; = byc(4,;+B;) + e,C;; + e,D;; — 48,(E;;+G,y) — 2h(H;;+1,)+ asw®,
A}, = —2by(c+d/4)A;; + bicB,; — 2e,D,;; + 6g,E,; — 48,G,; + a,»*,
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4
i~ hH;; + asw”,

A2, = (bd/4)A;; — 2by(c+d/4)B;; — (f/8D;; + gE; + 68;G,; + aw’,

AL, = bicd,; — 2by(c+d/4)B,; — 2e,D,; — 4g,E;; + 68,G,; + au’,

N
)
|

= — 2bs(c+d/4)(A,;+B,) + (d4e;, + f,/4D,; + 6g,(E;; + G;)) + a,w* .

Dispersion relation of difference equation
According to eq. (1) and the weighted-averaging finite differences on a

25-point stencil, we have

2 2 .
2 _ Vl’zo AP - szo BP VPO CP + Vro /M' (A-2)

20°P, % 2AP, T F 2A’P, %7 2A%PR,
where

P =a,+2a, [cos( 7 sin 0)+ COS(T cos)]+4a, cos(~— sin @) cos(—L~ cosf)+
2a, [cos(T sinf) + COS(T cos&)]+4ag COS(T sin 8) COS(T cosd)+

4r .
4a, [cos(—ﬂ sin &) cos(~2£ cosé) + cos(2—7r sin &) cos(i’{ cosd)]
L L L L
[b +2b, cos(—— cos6) +2b, cos( 7 cos 9)] [4c sin? (% sin@) + d'sin? (27” sin 9)}
_ 2z . Ar . .2 T . 2,27
P,=—|b+2b, COS(T siné) + 2b, cos(—L— sind) || 4csin (z cos@)+dsin (T cosd)

A

. 2r . .2 . Arm . .
P, =—¢ sm(—L— sin @) sm(Tﬂ cosf)— Tsm(—L£ sin ) sm(% cosé)
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2z . 2z f Az . 4r
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- 2[ (L )}[ (L )] 4[ (L )][ (L )}
.2 T .2 27, 27 4
P, =-4|4sin (zsm9)—sm (—L—sme) g,+2g, cos(—z—c039)+2g3 cos(—L—-cose)
. 2 T . 2 27 27 . 4r .
P__ =-4|4sin (Ecosﬁ)—sm (—I:—cose) g +2g, cos(Tsm9)+2g3 cos(—L—smH)

P_=h |:2 sin(zg sinf) sin(gl—i£ cosf)— sin(%r sin H)Sin(ELZ sin 6)]

xzzz

P_=h |:2 sin(zT” sin ) sin(27” cosf) - sin(zg sind) sin(4Tﬂ cos G)jl .





