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ABSTRACT

Dumitrescu, C.C. and Lines, L., 2010. Integrated characterization of heavy oil reservoir using
Vp/V ratio and neural network analysis. Journal of Seismic Exploration, 19: 231-247.

The focus of this study is the southern portion of the Long Lake lease located approximately
40 km southeast of Fort McMurray, Alberta, Canada. The lease area is roughly 25,000 hectares and
contains over 8 billion barrels of bitumen in place.

For heavy oil projects, the V,/ Vg ratio is a good lithology discriminator, and the objective
of this paper is to predict a V,/Vj ratio volume based on neural network analysis. Neural network
estimation of reservoir properties has proven effective in significantly improving accuracy and
vertical resolution in the interpretation of the reservoir. The strength of a neural network analysis
is the ability to determine nonlinear relationships between logs and several seismic attributes.

The result is a new lithology calibrated attribute that, when co-rendered with edge detector
attributes, can predict the presence of muddy intervals responsible for impacting the propagation of
steam through the reservoir, thereby allowing us to more effectively describe enhanced oil recovery
in the reservoir.

KEYWORDS: heavy oil, V,/Vg, density, inversion, neural network.

INTRODUCTION

The oil sands reservoir related to the Long Lake South (LLS) Project is
situated in the Athabasca oil sands that is the most areally extensive of the three
main deposits (Peace River, Athabasca and Cold Lake Formation) of northern
Alberta, Canada (Fig. 1).
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Fig. 1. Location of the three major oil sands deposits in Alberta (Athabasca, Cold Lake Formation,
and Peace River), Canada (Crerar, 2007) and details about Long Lake South area.

This reservoir is contained within the McMurray Formation, which is the
basal unit of the Lower Cretaceous Mannville Group. The McMurray Formation
directly overlies the sub-Cretaceous unconformity, which is developed on
Paleozoic carbonates of the Beaver Hill Lake Group, and overlain by the
Wabiskaw, Clearwater and Grand Rapids Formations of the Mannville Group
(Fig. 2).

The study area is located along the axis of the McMurray Valley system,
which was localized by the dissolution of underlying Devonian evaporites,
creating the preferred depositional fairway for the Lower Cretaceous McMurray
sediments. The most significant bitumen reservoirs within the McMurray
Formation are found within the multiple channels that represent lowstand system
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tracts, incised into the regional, prograding parasequence sets that represent
highstand system tracts. During sea level rise, these incised channel systems
were filled with a transgressive estuarine complex, consisting of sandy to muddy
estuarine point bars. In the Long Lake area, the McMurray Formation is
dominantly composed of these multiple, sand rich, fluvial and estuarine
channels, which are incised into each other and stacked along a preferred path
of deposition. This preferred path is aligned north-northwest to south-southeast
in the Long Lake area (Dumitrescu et al., 2009).
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Fig. 2. Stratigraphy of the Athabasca Oil Sands deposit (modified from Hubbard et al., 1999).



234 DUMITRESCU & LINES

A typical seismic line (IL-562) from the prestack time migrated volume,
is presented in Fig. 3. The reservoir is between the McMurray and Devonian
horizons. This high-quality seismic data reveals large-scale depositional elements
such as sand-dominated point-bar deposits (#1) and mud-dominated abandoned
channel fill deposits (#2).

Fig. 3. IL-562 showing two features within the McMurray reservoir: sand-dominated point-bar
deposit (#1) and mud-dominated abandoned channel fill deposit (#2).

These depositional elements can be visualized on horizon time slices
cutting through edge-detector volume attributes such as semblance and volume
curvature (most negative, most positive and dip curvature) calculated from the
prestack time migrated volume. Fig. 4 is an example of a horizon time slice
cutting through the semblance volume 10 ms below the McMurray Formation
that shows a map view of features #1 and #2.

Depending on their size and configuration, non-reservoir shale bodies can
impede steam chamber growth and fluid drainage within a steam assisted gravity
drainage (SAGD) production process. Distinguishing between reservoir and
non-reservoir using a conventional seismic data interpretation approach has
proved ambiguous. However, petrophysical analysis has determined that V,/V
and density are key discriminators between sand and shale (Lines et al., 2005;
Dumitrescu and Lines, 2008). Therefore deriving V,/Vg and density volumes
from seismic data is a useful and important objective.

It is well known and accepted by the industry that inversion is a necessary
step in imaging and interpreting a reservoir, and there is a continuous struggle
to improve the resolution of inverted volumes. Depending on the seismic data
and the number of wells available, a V,/V ratio volume can be obtained from:
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(i) traveltime measurements on the vertical and radial components of
multicomponent records (Lines et al., 2005), (ii) amplitude versus offset (AVO)
analysis and prestack (simultaneous) inversion using only the PP component
(Dumitrescu and Lines, 2006), or (iii) joint inversion of the PP and PS
(registered in PP time) poststack seismic data (Dumitrescu and Lines, 2007).

For this project, the processing was designed to preserve prestack
amplitudes and involved true amplitude recovery, noise attenuation, statics, and
prestack time migration. These steps were followed by the creation of
supergathers (5x5) with a bin size of 50 m X 50 m. Prestack (simultaneous)
inversion was performed with the computed angle gathers. The output of this
deterministic inversion consisted of volumes of P-impedance, S-impedance,
V,p/Vs, and density. Neural networks analysis (NNA) was used for estimating
a new seismic volume by integrating well information and several seismic
volumes. The estimated V,/Vg ratio volume was used successfully in mapping
bitumen sands in heavy oil reservoirs.

Fig. 4. Horizon time slice of the semblance at McMurray + 10ms (showing features #1 and #2)
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PETROPHYSICAL ANALYSIS

The LLS Project includes 3D seismic data and approximately 50 logged
and cored wells over a 50 km? surface area. The 3D seismic data was acquired
in 2005 using a Sercel digital multi-component recording system. Out of 42
wells with dipole sonic logs, only 31 were used in the NNA.

Petrophysical analysis was performed on all the wells in order to provide
a trustworthy set of logs (Fig. 5) for inversions and neural networks analysis.
The analysis included edits and corrections for poor-quality logs. Missing curves
(e.g., shear sonic and density) were estimated using either the specific mud-rock
line for the zone of interest or the multi-attribute analysis that allows us to
estimate logs from existing logs (Hampson et al., 2001).
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Fig. 5. Typical set of logs for a well in the project.
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Crossplotting the well data can help identify the elastic properties of
different lithologies and fluid fills. By using specific cut-offs, we separated gas
sand, bitumen sand, and shale. This procedure answered two of the main
questions: (1) what is the fluid content; and (2) what is the lithology variation?
The crossplot in Fig. 6 shows density and V,/Vg logs from wells in the study
area. Four zones labeled gas sand, bitumen sand, water sand, and shale are
defined based on the associated histograms. Gas sands have low density and the
lowest Vp/V ratio, bitumen sands have low density and V/V values that vary
with bitumen quality, and shales have high values for densities and V,/Vj.
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Fig. 6. Crossplot of density logs (vertical axis) and V,/Vg (horizontal axis), colored by gamma ray
(GR)

METHOD - NEURAL NETWORK ANALYSIS

Neural network analysis (NNA) acts as a pattern-recognition tool, similar
to the human brain. We used a supervised neural network technique to
quantitatively predict reservoir properties (such as Vp/Vg and density) away from
the wells. This technique tie well properties to seismic attributes derived from
inversions. Some of the inversion attributes (P-impedance (Z;), S-impedance
(Zg), and V,/Vy) used in the NNA are results from prestack inversion. Prestack
inversion is a relative impedance inversion that uses a low-frequency model
build from interpolating well log data. Prestack inversion uses the fact that the



238 DUMITRESCU & LINES

basic variables Z,, Zs, and density are coupled by two relationships which
should hold for the background "wet" trend. Fig. 7 presents two crossplots in
logarithmic domain between: (1) P-impedance and S-impedance, and (2)
P-impedance and density. These regional rock property trends were derived
from log data within the Wabiskaw to Devonian interval. Impedances are
important in inversion because they bridge the gap between petrophysical
variation and seismic amplitudes.

The NNA was performed on wells and several seismic attributes that can
be classified as: (i) instantaneous attributes, derived from a combination of the
input seismic trace and the Hilbert transform of the trace (i.e., trace envelope,
instantaneous phase and instantaneous frequency), (ii) recursive attributes,
derived by applying a recursive operator along a seismic trace (i.e., the
integrated and differentiated seismic trace), (iii) bandpass attributes of the
seismic trace, (iv) AVO attributes derived from prestack seismic data (i.e., P
and S-wave reflectivity and fluid factor) (v) attributes derived from prestack
inversion (i.e., P and S-impedance and V,/V) and from previous NNA (density)
(Herrera et al., 2006).
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Fig. 7. Crossplots of (left) In(Zg) versus In(Z,) and (right) In(Dn) versus In(Z;) using data from the
Wabiskaw to Devonian interval measured in 20 wells.
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Neural networks analysis consists of four steps:
1. perform a multi-attribute step-wise linear regression and its validation,

2. train neural networks to establish nonlinear relationships between seismic
attributes and reservoir properties at well locations,

3. validate results on wells withheld from the training,

4. apply trained neural networks to the 3D seismic data volume.

Neural networks can be classified (i) by the type of problem that can be
solved, i.e., classification or prediction, and (ii) by the type of training used,
i.e., supervised or unsupervised. In our approach we used a supervised
prediction type that has the advantage that the output can be interpreted based
on the training values. In terms of implementations, there are several different
types of neural network: (i) a multilayer feedforward neural network (MLFN),
(ii) a probabilistic neural network (PNN), and (iii) a radial basis function (RBF).
In our approach we selected the PNN that uses Gaussian weighting functions
which fit seismic attributes to training samples by a generalized nonlinear
regression approach. The key parameter in the PNN method is the sigma factor
that controls the width of each Gaussian function and is allowed to vary for each
input attribute (Hampson et al., 2001).

Using the ranking process available within the software and after checking
the errors, we selected the attributes for training the networks. The neural
networks were used in an effort to account for non-linear relationships between
properties taken from the real wells and the attributes extracted from the seismic
at those locations, after first testing the linear multi-attribute method alone. The
final product is a property cube which can be used in a reservoir simulation
model.

NEURAL NETWORK ANALYSIS RESULTS

With respect to the Long Lake project, neural network analysis was used
to predict V,/Vg and density in an attempt to get a better definition of bitumen
sand and to better differentiate between sands and shale in the McMurray
Formation. Fig. 8 shows a comparison between a V,/Vg volume from
deterministic inversion and one from a neural network analysis. Vp/Vy results
are comparable with the deterministic data, but NNA results are less noisy and
calibrate better with logs. Later we will try to integrate this lithology indicator
attribute with the edge detector attributes in order to ease the interpretation.
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Fig. 8. Horizon slice at McMurray +7ms on V,/V, volume obtained from (top) prestack inversion
and from (bottom) neural network analysis.
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The logs used for petrophysical analysis were used in the prestack
inversion and in the neural networks analysis. Only well ties with good
correlations were used in the analysis. As a result, 31 out of 42 wells were
used. For each well, the data used in the training procedure were the Vp/Vy
curve, along with eight extracted and correlated seismic attributes at each well:
the PSTM stack, P-wave reflectivity (Rp), S-wave reflectivity (Rg), fluid factor
(FF), P-impedance (Zp), S-impedance (Zg), Vp/Vg and density from NNA
(Dn_NNA). An example of training data for well 16-34 is presented in Fig. 9.
For each of the reflectivity traces, we used not only the trace itself but also
transforms of this trace, such as instantaneous phase, instantaneous frequency,
etc.

400 ms.
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Fig. 9. An example (at well 16-34) of the V,/V log and the seismic attributes used in the training
procedure. The first track from the left is the V,/V, log, the second is the PSTM stack, the third

is Ry, the fourth is R, the fifth is FF, the sixth is Z,, the seventh is Zg, the eighth is V,/Vy, and the
ninth is Dn_NNA.

As mentioned before, the first step in NNA is to perform a multi-attribute
step-wise linear regression and its validation. The analysis indicated that the
optimum number of attributes to use was nine, and the attributes, ranked on
their ability to predict the V;/Vg logs, were:

®  V,/Vj ratio,

¢ integrated fluid factor trace,

* integrated S-wave reflectivity trace,
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e PSTM stack,
e density from neural networks analysis,
e apparent polarity of the fluid factor,
e amplitude weighted frequency of the PSTM stack,
e filter 5/10 - 15/20 of the S-wave reflectivity,
e quadrature trace of the P-wave reflectivity.
The correlation coefficient between the actual and the predicted result was
0.73 and the prediction error was 0.22. The validation was computed by leaving
out one well at a time and then predicting values for that well using the other
wells in the training and the defined linear relationship.
The next step was to train the neural networks (using the PNN algorithm)
and to establish the nonlinear relationships between seismic attributes and

reservoir properties at well locations. A comparison between real V,/Vg and
predicted V,p/Vy logs is presented in Fig. 10.

400 ms

500 ms

14-26

Fig. 10. Application of the PNN comparing predicted V;/V; logs (in red) and real V/V; logs for
some of the wells used in the training.
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Fig. 11. Crossplot of the V,/V predicted by the neural networks analysis versus the actual V,/Vj.
Data points are from the analysis zone of all 32 wells.

After this second step, the correlation coefficient increased to 0.87 and the
error dropped to 0.15. A crossplot of the predicted V,/V and the actual V,/Vy
for all the wells in the study area is presented in Fig. 11.

The last step was to apply the trained PNN to the whole 3D seismic
volume. Fig. 12 shows the estimated V/V results on inline 75 located in the
north part of the 3D area and wells no more than 50 m offline. The V,/Vy
volume was estimated within a target interval extending from 5 ms above the
McMurray Formation to 5 ms below the Devonian. (All the data outside the
calculation interval are extrapolated end points values.)

The predicted Vp/Vg volume obtained from the NNA analysis provides
meaningful and reliable information about the McMurray Formation reservoir.
Density is also an excellent discriminator between gas sand, bitumen sand, and
shale. Fig. 13 shows the estimated V,/Vg and density on a horizon time slice at
McMurray Formation+ 7ms.
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Fig. 12. V;/V; results at IL-75 with inserted V,/Vg logs. All the wells shown tie this line within a
50 m projection distance.

Fig. 13. Horizon time slice at McMurray+7ms from V,/Vg (left) and from the density volume
(right) obtained from neural networks analysis.

INTEGRATION OF NEURAL NETWORK ATTRIBUTES WITH OTHER
SEISMIC ATTRIBUTES

By integrating all available attributes we characterized and mapped
reservoir heterogeneities impacting SAGD operations, i.e. the extent of bitumen
sand, gas saturated, and shale zones. Two ways of doing this are presented
here: (i) crossplotting the rock physics volumes (Fig. 14) and (ii) co-rendering
V,/Vs with semblance (Fig. 15). Fig. 14 shows the spatial distribution of the
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Fig. 14. Horizon slice at McMurray + 10 ms showing the distribution of gas sand (yellow), bitumen
sand (green), and shale (brown) resulting from crossplotting density versus Vp/Vs.

three zones created in the crossplot given in Fig. 6. Fig. 15 shows a horizon
slice at 10 ms below the McMurray Formation from the Vy/Vg volume
co-rendered with semblance. By displaying these two attributes in this manner,
we combined edge information with the variation of a physical property (the
V,/ Vg ratio).
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Fig. 15. Horizon slice at McMurray + 10 ms showing V;/V results from neural networks analysis
co-rendered with semblance.

CONCLUSIONS

The combination of rock physics, AVO analysis, prestack inversion, and
neural network analysis can provide properties such as Vp/Vg and density that
are useful for reservoir simulation.



CHARACTERIZATION OF HEAVY OIL RESERVOIR 247

We have presented a case study for improving the resolution of a Vp/Vy
volume (obtained from deterministic inversion) by using neural networks
analysis. The first step in the NNA was multi-attribute regression that provided
the optimum number and ordering of attributes. The next step was to use a
probabilistic neural network to increase the resolution of the predicted Vp/V
logs. The attributes that were used were standard seismic attributes as well as
attributes from AVO analysis and prestack inversion. The derived neural
networks results showed a strong correlation with target logs, both at training
well locations and other wells, suggesting that rock properties can be accurately
estimated with neural networks analysis when deterministic inversion results are
used as external attributes in training the networks.

The results of this analysis correlated well with recent drilling, making
neural networks analysis part of the workflow for future projects. Utilizing the
Vp/Vg volume computed with neural networks analysis minimizes the uncertainty
in gas sand, bitumen sand, and shale identification, thereby contributing to
optimal horizontal well placement. This outcome has the ultimate effect of
increased production and economic efficiency.

Finally, the integration of edge attributes with rock physics attributes
creates a realistic geological model that can be used for oil sands development
purposes.
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