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ABSTRACT

Smith, D.R., Sen, M.K. and Ferguson, R.J., 2010. Data regularization and datuming by conjugate
gradients. Journal of Seismic Exploration, 19: 321-347.

Irregular spacing of seismic sources and receivers, and strong topographic variations plus
velocity heterogeneity, cause spatial and temporal irregularity in seismic data. Because so much of
seismic processing, imaging, and inversion relies on the Fast Fourier transform for efficiency, and
because seismic modelling requires continuous reflectors for analysis, seismic regularization is
desirable. Here, we address spatial and temporal irregularity simultaneously. We use weighted,
damped least-squares to extrapolate data from an irregularly sampled, topographic surface to a
regularly sampled datum. This process requires an accurate velocity model of the near-surface, and
it returns seismic traces with a constant trace-to-trace distance and more continuous reflection events.
As an inverse problem, the Hessian in process is costly to compute, so the method of conjugate
gradients (CG) are employed so that the required matrix-matrix multiplication is reduced to two
matrix-vector multiplications. We find that use of the CG method reduces the total number of
multiplication operations from O(n’) for the direct solution to O(n*) where n is the number of trace
locations.

KEY WORDS: conjugate gradients, data regularization, seismic interpolation, damped least-squares,
seismic inversion, wave equation statics, wave equation redatum.
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INTRODUCTION

There have been many methods presented in the literature for dealing with
spatial aliasing and near-surface effects. Spatial anti-aliasing methods use some
form of interpolation such as using filters (Spitz, 1991), wave-equation based
methods (Ronen, 1987), or Fourier reconstruction (Duijndam et al., 1999).
Near-surface effects are addressed with either statics (Cox, 1999) or
wave-equation based methods (Berryhill, 1979). The quest for fast, cheap, and
accurate methods inspired the present work here which uses a wave-equation
based method and smoothing to achieve the desired results.

Spatial aliasing is commonly compensated for with interpolation. Spitz
(1991) uses prediction filters in the f-x domain so as to avoid having to calculate
true dips. He uses an interpolation operator to decrease the spatial sampling
interval of the recorded data. The operator is made up of a linear combination
of the Fourier coefficients and phase shifts for each frequency which is related
to the time shifts of the event from trace to trace. This method, however,
assumes that all the events are linear. Sacchi and Liu (2005) also try to
reconstruct the wavefield in the spatial coordinate by estimating the Fourier
components of the interpolated traces as an inversion problem while using
regularization to obtain a stable and unique solution. It takes the input data and
reconstructs the missing traces as if they were recorded with a denser array.
Ronen (1987) also uses an inversion approach to the problem but incorporates
wave propagation theory to help interpolate. The operator used to relate the
coarsely sampled data to the model or the more finely sampled data is
constructed as a block matrix of inverse DMO operators based on the
wave-equation. Zwartjes and Sacchi (2004) modify a Fourier reconstruction
algorithm to use only the unaliased lower part of the Fourier spectrum to predict
the higher frequency components.

Cox (1999) gives a comprehensive look at statics and how to remove the
time shifts caused by topography and complex near-surface velocities. Taner and
Koehler (2002) lay out a method for correcting for the near-surface effects by
correcting the amplitudes rather than applying time shifts. Berryhill (1979) gives
a wave-equation based method for dealing with near-surface effects. He
proposes to use wavefield extrapolation operators to downward continue the data
to remove the phase distortion. The operators are derived from the Kirchhoff
integral formulation of the scalar wave-equation. Bevc (1997) suggests upward
continuing the data to "flood the topography" with a replacement velocity to
remove the phase distortions caused by rugged topography. This method does
not require prior knowledge of the near-surface velocity. Shtivelman and
Canning (1988) compare statics and wave-equation based methods to show the
superiority of the wave-equation based methods when there is near-surface
complexity. Taner et al. (1982) and Kelamis et al. (2002) outline methods that
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do not require a knowledge of the near-surface velocities, but rely on the arrival
time discrepancies and the healing of the down-going wavefield. Zhu et al.
(1992) show the superiority in using turning ray tomography to model
near-surface velocities then the more traditional refraction analysis.

THEORY

A scalar, monochromatic wavefield at depth z,y,, is estimated using a
linear operator for wavefield extrapolation, U_,,, and nearby wavefield, y,,,,
according to

¢z = U—Az\//z+Az ’ (1)

where ¥, and V,,,, depend on the X, y, z, w coordinates, and subscript —Az
indicates extrapolation upward towards the recording surface. We would like to
find the model, or nearby wavefield ,, ,,, that minimizes the energy of the
squared residuals for this problem. The model is estimated by minimizing the
square of the /, norm, e, [Ferguson (2006), see also Kiihl and Sacchi (2003)]

Ey = [e]2 = [Wdy, - U_tnadl? - @)

where E, is the prediction error, and weighting matrix W, gives unit weight to
live traces and zero weight to null traces. Finding ,,,, that minimizes E,
determines the desired extrapolated-wavefield ., ,,.

Since the number of estimated traces exceed the number of actual traces,
the regularization problem is underdetermined so damping is needed to establish
uniqueness. This is done by adding constraints to the residual norms that
penalize the objective function for excess roughness. The constraints take the
form of

E, = [Waboinl 3)

where E is the model norm and W, is a spatial derivative which smooths to
ensure minimum roughness is invoked to help find the simplest model. The cost
function E to be minimized, which consists of the prediction error E, and the
model norm E_, is

¢(¢1+Az) = E = Ed + ngm > (4)

where ¢ is a scalar that controls how much the solution is penalized for
roughness. Small values for ¢ results in a wavefield estimate that appears noisy,
and large values give a smooth appearance. A qualitative value for ¢, then, is
found by experiment.
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Minimization of cost function E with respect to desired wavefield ¢, ,,
gives the following least-squares solution (Ferguson, 2006)

‘LZ+AZ = [UéAszU—Az + ezwm]_lU—Asz\//z ’ (5)
where U is the matrix adjoint of U. Note, use of a least-squares estimate of an
extrapolated wavefield is an implicit form of wavefield extrapolation (Berkhout,
1981).

From Margrave and Ferguson (1999),

V(X,z+Az,w) = [Uy¥,1(X,2+Az,w)
= [1/27)¥] f ok, z,w)o[v(x),k ,wle **dk, , (6)

where nonstationary phase-shift operator « is given by

a[v(x),k,,w] = eV koelaz @)
and spatially-variable wavenumber k, is

k[v().k 0] = V{lo/vE)]? - Kk}, ®)
for 0 < [w/v(X)]? — K% and

k,[v(x).k,,0] = isign(Az)V{[w/vx)]? — K} ®
otherwise, where ‘sign’ is the signum function. Eq. (9) ensures rapid numerical
decay of energy in the evanescent region. The adjoint linear operator, U%,, is

given by (Margrave and Ferguson, 1999)
Y(x,z—Az,w) = [ULY,l(x,Az,0)
= [1/27)?] 5 o(k,,z,w)a*[V(x),k,,wle ** dk, (10)
where o* is the complex conjugate of « or that o*(Az) = o —Az).

The structure of the extrapolation matrices, U and U*, is given in Fig. 1
for a frequency of 16 Hz and a velocity model that is linearly increasing from
2000 to 4000 m/s. With this velocity model, U and U* are sparse with most
non-zero elements confined to the trace of each matrix and near-trace diagonals.
In general, however, U and U* are non-sparse, and any limited-diagonal
approximation (Ferguson, 2006) will break down in strongly heterogeneous
media.
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Fig. 1. Extrapolation operators. a) U,,, and b) U}, its adjoint.

The solution in eq. (5) is costly to compute. It is dominated by the
matrix-matrix multiplication of two dense matrices in the form of the composite
operator U2, ,W,U_,,. The number of floating point operations is O(n’) where
n is the number of traces and the order is dependent on the rate of convergence
to the solution. Ferguson (2006) overcomes this expensive cost by developing
an approximate analytic solution to the Hessian. This, however, adds a dip
limitation to the solution by filtering out the off-diagonal components and
restricting the matrices to diagonal and near-diagonal entries. The next costly
operation is the inversion of the Hessian and the number of operation is also
O(n®) dependent on the numerical method used to invert the matrix. For
example, LU decomposition and Gaussian elimination uses %sn’ operations if
higher order terms are ignored (Golub and van Loan, 3 1996). The gradient
U_,,W,y, is the least dominate cost and if the weighting matrix is diagonal, then
the cost is O(n?) with numerous efficient numerical techniques to carry this out.
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The method of conjugate gradients (CG) is used to solve sparse linear
systems such as equation 5 (Tarantola, 1987). It is widely used in the
geosciences to solve boundary value problems. Yang et al. (2006) uses a
preconditioned conjugate gradient algorithm for atmospheric tomography.
Mackie and Madden (1993) and Zhang et al. (1995) use a conjugate gradient
relaxation method for three dimensional magnetotelluric forward modelling and
inversion. Mou-Yan and Unbehauen (1995) incorporates conjugate gradients in
an image restoration technique for use in medical instruments and Youmaran
and Adler (2004) for deblurring noisy data. Ronen (1987) uses conjugate
gradients to perform a spatial spectral balancing in order to interpolate missing
traces in seismic data. The conjugate gradient algorithm finds the optimal
solution out of the possible solutions in an iterative fashion by starting at a point
on the objective function representing the starting model, then moving from
point to point while reducing the objective and updating the model estimate and
search direction each time. This is done by using the fact that the Hessian,
U2, W.U_,,, is a positive definite matrix. When the Hessian is a positive
definite matrix, the solution is the minimum of a quadratic form (Fig. 2) and the
residuals are the direction of steepest descent and are orthogonal to each other.
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Fig. 2. Plot of a quadratic form. The minimum is the solution of Ax = b.
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The method searches in the direction of the conjugation of these residuals.
The true residuals are r = ¢, — U_,,¥,. ., (Ferguson, 2006), whereas in the
conjugate gradient method the residual polynomials are constructed (Nocedal
and Wright, 1999) by a linear combination of the search directions and
residuals. This works by realizing that the majority of the signal lies in the
lower dimensional subspace then the higher dimensional data. If the assumption
that most of the signal lies in the subspace spanned by r,,r,,...,r, holds then the
approximation x, is a good approximation of the data. A line search is then
conducted to find the step length by minimizing the function along one
dimension or in other words a straight line along the search direction. If the
start point is ¥, which can be completely arbitrary, each update thereafter to
the model is

Xy = X T viP; (11)
where p, = r,. The step length v is
Yi = rr/piAp; (12)
as derived by Shewchuk (1994) and A is the augmented matrix
WU,
eW,,
The new residual is constructed as
ri,, = r; — YAp; , (13)
The new direction is made as a conjugation of this new residual being
Pis1 = iy + Biapi (14)

where (3,,, is a scalar multiplier derived from the conjugate Gram-Schmidt
process. It is defined as

Biv1 = Tigri/rir; (15)

taken from Shewchuk (1994). The final model update x, is the regularized and
redatumed spectrum for a single frequency ., ,,.

The solution should converge in no more than n iterations. CG will
choose the coefficients of the polynomial that will minimize the error. With each
iteration, the polynomial tries to reach zero at each eigenvalue while attacking
the larger eigenvalues which are associated with the larger errors first
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[(Shewchuk, 1994), see also (Nocedal and Wright, 1999)]. The rate of
convergence is determined on how fast these eigenvalues reach zero. If there are
clusters of eigenvalues or eigenvalues with multiplicity > 1, it makes it easier
to minimize the error as the polynomial can pass through the points at a lower
degree and it should converge in iterations < n. Also, if the eigenvalues are
greater than one, the solution will not converge. As an operator whose
eigenvalues are greater than one is repeatedly applied to a vector within the
conjugate gradient scheme, the vector grows in magnitude. Since these vectors
are the residuals, the error is in turn growing. A singular value decomposition
analysis is helpful in determining the stability of the wavefield operators but will
not be explored here (Etgen, 1994).

The method can be made to terminate at a given tolerance, d, which can
be defined as

o6 <r/(r, — 1) , (16)

where r is the residual as described in eq. (13). The stopping criteria can be
chosen in several different ways. Here, the data fit is used as the measure of
tolerance. The minimal error conjugate gradient method (Hanke, 1995) uses the
iteration error rather than the data fit to stop the iterations.

The construction of the residual and directional polynomials can lead to
possible round-off errors due to finite precision. This can lead to
non-convergence. With each iteration, the residuals become less orthogonal and
the conjugate gradient method breaks down. Roundoff errors also cause the
search directions to lose their conjugacy. van den Eshof and Sleijpen (2004),
Schneider and Willsky (2001), and Bobrovnikova and Vavasis (2001) present
ways to compensate for these errors. van den Eshof and Sleijpen (2004) made
a slight modification to the CGLS algorithm (Hansen, 1994) to account for the
round-off errors and the modified version of CGLS is the mcgls algorithm. The
modification is in two parts. The first part is an added perturbation term to the
formation of Ap,. This term improves the structure of the problem to avoid the
ill-conditioned problem which presents itself as an elongated quadratic form.
This elongation increases the area around the solution minimum that is within
machine precision which makes it hard for the algorithm to find a suitable
solution. The second part is to correct the recurrences by scaling them according
to the perturbation term. This helps in the stability and robustness of the CGLS
algorithm which is imperative in the regularization problem addressed in this

paper.

The cost of the least squares conjugate gradient method improves upon the
direct solution of eq. (5) by avoiding the direct computation of the Hessian. The
most costly operations in the conjugate gradients are two matrix-vector
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multiplications when multiplying the forward and reverse operators, A and A",
respectively, with the search direction p,. This takes n? floating point
operations. There are several inner products to compute which take O(n)
operations. As long as the solution converges with a reasonable amount of
iterations, i.e., < n, then the conjugate gradient algorithm greatly improves on
the efficiency.

SYNTHETIC EXAMPLE

A synthetic data example is constructed to apply the method of inversion
by least squares using conjugate gradients in order to test the viability of this
method for regularization and datuming. The synthetic data are generated by a
ninth-order finite differences modelling algorithm with a line source to simulate
a flat reflector and point sources at depth to simulate seismic events with steep,
conflicting dips. This allows the algorithm to be tested for its ability to
reconstruct the wavefield with a wide range of dips. A laterally heterogeneous
velocity model, shown in Fig. 3, is used to add the effects of a heterogeneous
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Fig. 3. The model setup used in the synthetic example. It simulates a line source (diamonds) and five
point sources (large diamonds) and a highly irregular receiver array (triangles) (Ferguson, 2006).
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near-surface layer. The velocity is linearly increasing from the left to right from
2000 to 4000 m/s. The experimental setup is an exploding reflector model with
a flat line of weak sources and five strong point sources at a depth of 300m.
The receiver array (green triangles in Fig. 3) consists of the live and dead
receivers spaced at 20 m and is set at a depth of 100 m. The line of receivers
are irregularly spaced to simulate a highly irregular data set. The depths of the
receivers and sources were chosen to demonstrate the stability of the method
over large extrapolation distances, which in this case is 200 m. Using the finite
difference algorithm for the forward wavefield modelling, the sources are then
exploded and the data are recorded at the receivers.

The data generated by this model are in Fig. 4a. Fig. 5b is a magnified
view showing the flat reflector and apexes of the point diffractions. The record
length is just over one second with a temporal sampling interval of 4 ms. The
data are padded with zeros so that the total number of traces is 512 in order to
suppress operator wrap-around and to get a power of 2 in the number of traces
to accommodate the FFT algorithm. A 1D Fourier transform from t - w using
the FFT was applied to the data in Fig. 4 to decompose the wavefield into its
planewave components. Each row of the transformed data is a monochromatic
wavefield spectrum and the range of frequencies is user defined depending on

Table 1. The Least-Squares Conjugate Gradient algorithm following van den Eshof and Sleijpen
(2004).

s, = b;r, = A's,

P, = Iy;X, = 0
fork = 1 : Ky
Q-1 = APx-
Yier = Irc il a1 + el o2

X = Xy YeoPro

Sk = Sk-1 T Yi-1Gk-1

r, = As, — v Q-

B = lIrll?/reil?

Pi = I + B P
end

Vovar = X
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the bandwidth within the data that needs to be extrapolated or the bandwidth that .
contains the greater part of the signal. For this data set, the bandwidth selected
from the data is from 12 to 40 Hz and the frequency sampling, Af, is 0.9766
Hz. Each monochromatic wavefield is then fed into the least squares conjugate
gradient algorithm. A pseudo-code is displayed in Table 1. The modifications
to the algorithm in order to improve convergence are found in van den Eshof
and Sleijpen (2004) algorithm 2. No a priori information is needed so the
starting model for the conjugate gradient scheme is x, = 0. Each
monochromatic wavefield is extrapolated to collapse the point diffractions and
to move the line source to the depth of the sources at 300 m. After each
wavefield is extrapolated, an isotropic phase-shift extrapolation operator is
applied to the solution to back extrapolate the wavefield to the desired depth
using a constant velocity. In this case, it was extrapolated back to the depth of
100 m or the depth of the receiving array for comparison with the original data.

b) c)
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i |\a \r" \‘w' ‘l'f
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0 0
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Fig. 4. Plot of the results for the synthetic seismic data set. a) The input data, b) solution using the
conjugate gradient scheme and c¢) Newton’s least square solution.



332 SMITH, SEN & FERGUSON

The velocity used was the mean of the velocity array which in this case was .
2862 m/s. A band-limited 1D inverse Fourier transform was applied to get the

results displayed in Fig. 4b with a magnified view in Fig. 5b. The results show

the line source is continuous as well as the steep dipping events and apexes of

the point diffractions. The velocity effects are removed from the data. This can

be seen by the repositioning of the flat reflector to a horizontal direction from

a sub-horizontal direction.

The smoothing operator, ¢ in eq. (5), is found by trial and error and a
value of 0.5 was applied to produce the desired results, reducing the noise
sufficiently but not oversmoothing the result. The tolerance level, defined in
eq.(16), was chosen to be 1% of the magnitude of the original residual. The
convergence histories for a low (15 Hz), moderate (25 Hz), and high (39 Hz)

0.5 1 1.5 2 25 3 35 4 45 5
Distance (km)

0.5 1 1.5 2 25 3 35 4 45 5
Distance (km)

0.5 1 15 2 25 3 3.5 4 4.5 5
Distance (km)

Fig. 5. A magnified view of the results in Fig. (4) for the synthetic seismic data set. a) The input
data, b) the solution using the conjugate gradient scheme and c) Newton’s least-square solution.
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frequency are shown in Fig. 6. The error reduction within the first few
iterations is greater than in later iterations. This is expected as the conjugate

gradient method attacks the eigenvalues associated with the larger error first and

then moves to reduce the smaller errors. For the histories of 15 and 25 Hz in

Fig. 6, the error reduction slows and then there is a sharp drop. This could be

attributed to clusters of eigenvalues where with each iteration the error reduction

associated with distinct eigenvalues is small, but with a group of eigenvalues the

error reduction is much larger in a single iteration. The average number of

iterations for all frequencies is 19 with the higher frequencies requiring, for the

most part, more iterations to converge.

The exact Newton’s method solution is displayed for comparison in Fig.
4c with a magnified view in Fig. 5c. These results are achieved by the direct
solution of eq. (5) for each monochromatic wavefield. In comparing the
conjugate gradient method results to that of the Newton’s method, there is no
discernible difference. However, due to the direct computation of the Hessian

15 Hz 25Hz

(@

Fig. 6. Plot of normalized error vs. iteration for various frequencies. a) 15 Hz, b) 25 Hz, and c) 39 Hz.
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within the least-squares solution, the exact Newton is computationally costly. An
approximation can be applied to make the Hessian more efficient as done by
Ferguson (2006) but this adds a dip limitation onto the outcome. The
computations for each monochromatic wavefield are O(n’) as previously
discussed.

Fig. 7 shows the data fit for a single frequency. The blue line is the input
data or the monochromatic wavefield spectrum. The red and green lines are the
result of the conjugate gradients and Newton’s method respectively. The results
from the conjugate gradient and Newton’s method are similar and show the
reconstruction of the missing traces. The methods reconstruct the zeros in the
input data thereby filling in the missing traces as can be seen in Fig. 8a once the
wavefield is extrapolated and transformed back to the time domain. The results
are also smoother than the input data due to the constraints imposed on the
inversion by the operator W, . The velocity effects are removed as seen in Fig.
8a. The conjugate gradients and Newton’s method both shifted the trace to
correct for the low-velocity effects.

Spectrum at 12.7 Hz

3 T T
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—— Newton Solution
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25F B
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Fig. 7. Plot of the results of the extrapolation of a single monochromatic wavefield spectrum input
with the blue line as the input data. The green line is the Newton’s least square solution and the red
line is the conjugate gradient solution.
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Fig. 8. Plot of the results for a single reconstructed trace and a redatumed trace with blue line as
the input data, the red line is the CG result and green is the Newton’s result. a) The reconstructed
trace and b) the redatumed trace.

Results on this data set from other common methods for redatuming and
trace interpolation are shown in Fig. 9. The PSPI method (Gazdag and
Sguazzero, 1984) is in Fig. 9a. This method takes and extrapolates the data for
various reference velocities and then interpolates to get the full data section. An
f-x operator as derived by Spitz (1991) is used to get the results in Fig. 9b. This
operator tries to interpolate traces through a filtering approach where the filter
is derived from a spatial prediction filter. The assumption though is that the
events are linear. The flat reflector is discontinuous and the diffraction events
are not fully reconstructed. Fig. 9c is similar to the Newton’s method but it uses
an approximation for the Hessian in the Newton’s method (Ferguson, 2006).
The data is reconstructed well but there is a dip limitation due to the
approximation.
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Fig. 9. Results for using alternate methods on the synthetic data set. a) The PSPI method following
Gazdag and Sguazzero (1984), b) an f-x operator as derived by Spitz (1991), and c) using an
approximation for the Hessian in the Newton’s method (Ferguson, 2006).

CANADIAN FOOTHILLS EXAMPLE

The synthetic data example was designed to demonstrate the stability of
the method over large extrapolation distances. The large extrapolation steps can
only be used when the velocity is constant in the vertical direction within the
large extrapolation step. In a real world example, the velocity usually varies
significantly in the vertical direction over similar distances and so the large
extrapolation steps cannot be used. When the near-surface is highly
heterogeneous, the extrapolation steps need to be small enough so that the
assumption that the velocity is constant in the vertical direction over the
extrapolation step holds. To demonstrate this method for a real world example,
a real seismic data set of source and receiver pairs are continued downward in
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order to redefine the reference datum on which the pairs are located. The .
wavefield y(x,z = 0,t) is extrapolated down to a new depth so that the new
wavefield is now y(x,z = z,,t) where z, is the new depth and use z, as the new
reference surface. This can then be done in a recursive process where the
extrapolation is done over several steps and the output wavefield of the previous
is used as the input wavefield of the current step.

Wavefield extrapolation can also be done recursively when there is
irregular topography using a filter as shown in (Reshef, 1991). The column and
row positions in the filter coincide with the columns and rows of the velocity
model. The filter applies zero weight to any receivers above the irregular
topography and unity weight to the receivers at or below the irregular
topography down to the depth of the current step. Therefore, the extrapolation
process is started using the receiver at the highest elevation. This receiver is
extrapolated down to the next depth using the velocity corresponding to that
elevation and horizontal coordinate from the velocity model. At the next step,
the receivers are activated that are at or above this new reference surface. This
is continued until the minimum of the topography has been passed so the new
datum is either flat or the process can continue until an irregular datum (i.e.,
weathering layer) is established by shutting off the receiver once it has passed
the desired depth. After the wavefield extrapolation process of regularization
and redatuming is done, an isotropic wavefield extrapolation can be applied to
move the datum to the desired height as done in the synthetic data example. The
real data example is from the Canadian foothills in Alberta and a typical shot
gather which is used for an example is shown in Fig. 12a. The data were
acquired by Husky Oil Ltd. and is a publicly accessible data set. The data set
was made accessible by Husky Oil and Talisman Energy to be used as a
benchmark example of a 2D seismic land data in an area with complex structure
and topography. The area where the data were recorded is in the Canadian
foothills overthrust belt region. The region is characterized by overthrust
structures of various geometric complexity dominated by the typical fold-fault
structure and stratigraphy units ranging from carbonates, shales as well as other
clastics (Stork et al., 1995). Because of the complexity of the subsurface and the
topography, this area has historically been a challenge for imaging. Traditional
statics can have problems in this area due to the large variations in velocity and
topography. The imaging of this area was sensitive to even small variations in
the velocity (< 5%) (Stork et al., 1995).

A common shot gather (Fig. 12a) is used to demonstrate the effectiveness
of the method described in this paper on a real data example. The vertical axis
1s two-way traveltime. The horizontal axis is the distance along the entire survey
line so the receiver array is approximately 6 km long starting for this shot at
7686 km and ending at 13684 km from the start of the survey line with a
receiving spacing of 20 m. The source was excited at 10645 km and the
duration of recording was just over 4 s with a temporal sampling interval of 4
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ms. Reflection events in a shot gather should approximately follow a hyperbolic
curve. The reflection events in Fig. 12a are discontinuous and do not follow
such a curve. The steep, linear events present are caused from ground roll and
also present problems in processing. The velocity model in Fig. 10 shows the
strong lateral variations within the aperture of the seismic survey. The velocity
model (Fig. 10) for this area was derived by turning-wave tomography (Stork,
1994) as the near-surface heterogeneity did not allow for refraction velocity
analysis. The red line in Fig. 10 are the elevations of the receivers and shows
the highly irregular topography along the line. The elevation changes
approximately 300 m along the line. The effects of the near surface and
topography can be seen in Fig. 12a by the distortions in the reflection events,
especially the strong event at just over 3 seconds.

Depth (m)

0.8 0.9 1 1.1 1.2 1.3
Distance (m) x 10*

Fig. 10. Velocity model used to regularize and redatum the shot record. The topography is shown
in red.
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The receiver spacing for this line was fairly regular as shown by the blue .
circles in Fig. 11. Receivers are small and mobile and can be placed in areas
of irregular topography. Shot sources or shot-hole drilling units for land can be
large and cumbersome depending on the strength of the source needed to image
the problem. The red diamonds in Fig. 11 show the locations of the shots taken
along the seismic line. The irregular spacing of the shots is because of
inaccessible areas to the sources due to the irregular topography. The common
shot gathers (field records) as represented in Fig. 12a are for the most part
regularly spaced. The common receiver gathers, however, are irregularly spaced
due to the irregular shot spacing and therefore are sparsely sampled along the
horizontal coordinate. This can present problems in processing steps such as
migration by introducing artifacts and noise due to spatial aliasing.
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Fig. 11. Elevation profile shown by the positions of the receivers by blue circles. The red diamonds
show the positions of the shots along the line with the green asterisk as the shot position of the input

data in Fig. 12. The green dashed line shows the height of the final datum after the wavefield
extrapolation.
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The common shot gather in Fig. 12a was decimated from 300 traces to .
56 traces to simulate a truly sparsely sampled common receiver gather (Fig.
13a). The common shot gather was taken and decimated to simulate a sparse
gather instead of using a common receiver gather so we could see the quality
of the reconstruction and redatuming by comparing with the original regularly
sampled data. However, for complete redatuming of the seismic data, both
common shot and common receiver gathers should be redatumed. Therefore, the
conjugate gradient based method was applied recursively to the full and
decimated gathers using the filter as described above incorporating the velocities
in Fig. 10 in the computation of the wavefield extrapolation operators. The
source or receiver gathers are then back extrapolated to the elevation of the
green dashed line in Fig. 11 by an isotropic wavefield extrapolation operator
using a constant velocity of 3184 m/s which is the mean of the first row of the
velocity model. Figs. 14a-d shows the input and results for various values of ¢
as used in eq. (5). For ¢ = 0.2 (Fig. 14b), there is significant noise present due
to the lack of smoothing caused by the low value of the smoothing parameter.

a)

0.5

08 09 1 11 12 13 08 09 1 11 12 13
Distance (m) x10° Distance (m) x10*

Fig. 12. Input data. a) Shot record, b) redatumed results of the input data in Fig. 12a using CG
method.
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The reconstructed data show significant diffraction off the edges of the original
traces due to the extrapolation process which is in agreement with wave
propagation theory. A spherical wave will be generated from the gap, and these
waves present themselves as hyperbolic diffractions on seismic records. Greater
smoothing is needed to rid the section of these diffractions. For ¢ = 0.5 (Fig.
14c), a good result is achieved and the diffractions have been smoothed over but
still 'some noise is present and will be discussed below. For ¢ = 0.75 (Fig.
14d), the noise has been removed but the result seems to have an overly smooth
appearance so this value is disregarded. A smoothing parameter of ¢ = 0.5 was
determined to give the most desirable result and was used to obtain the results
shown in Figs. 12b and 13b.

b)

0.5

150

Time (s)
Time (s)

25

3.5

08 09 1 11 12 13
Distance (m) x 10" Distance (m) x10*

08 09 1 1.1 12 13

Fig. 13. Input data a) Decimated record, b) Regularized and redatumed results of the input data in
Fig. 13a using CG method.
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The results in Fig. 12b of extrapolating the gather from the surface
topography to the datum show improved lateral continuity in the reflections with
the input data in Fig. 12a for comparison. The regularized and redatumed gather
in Fig. 13b shows the robustness of the method in that it successfully
reconstructs the data and improves the lateral continuity of the reflectors through
redatuming. For example, the strong reflector in both gathers at just over three
seconds is laterally continuous. The missing traces have been successfully filled
in for the reconstructed gather. The ground roll has also been suppressed due
to the finite bandwidth that was extrapolated. Steep events are associated with
high wavenumbers, k,, the extrapolation process only extrapolates a certain
spatial bandwidth. If these steep events are outside of the bandwidth, then these
events are filtered out.

Input Data
1
@
o 2
£ |
|_
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4 ‘ g . ::
08 09 1 11 12 13 08 09 1 11 12 13
Distance (m) x 10* Distance (m) x 10*
e=05
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4 —— =
08 09 1 11 12 13 08 09 1 11 12 13
Distance (m) X 10* Distance (m) X 10*

Fig. 14. Decimated shot gather after regularization and redatuming with varying values of the
smoothing parameter ¢. a) Decimated input data, b) ¢ = 0.2, ¢) ¢ = 0.5, and d) ¢ = 0.75. Notice
the increase in noise with decreasing ¢ and increased smoothing with increasing e.
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Figs. 12b and 13b however still have some noise present. There are still
some problems with spatial aliasing in the reconstruction. In the upper part of
the section near the apexes of the reflection events, the spatial aliasing is
evidenced by the upward change in direction of the flanks of the reflection
events. This is also an issue with the spatial bandwidth that is being
extrapolated. Events outside the bandwidth can be aliased and consequently
treated as lower frequencies. Figs. 15a-d shows the f-k spectrum for the various
gathers. Notice the aliased energy in Figs. 15a and 15c for the two input
gathers. The aliased energy is suppressed in the resulting gathers of the
regularization and redatuming process. The evanescent energy is also
successfully filtered out as seen in the lack of energy outside the red lines which
represent the boundary of the evanescent region. This decrease in the spatial
bandwidth could be the cause of the problems in the treatment of higher spatial
frequencies seen in the results. The aliased energy is represented as lower
frequency content. This could also be associated with the instability of the
operators in the lower frequencies (Etgen, 1994).
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Fig. 15. The f-k spectrum of a) the shot gather, b) the redatumed shot gather, c) the decimated shot
gather, and d) the redatumed and regularized shot gather. The red lines indicate the boundary of the
evanescent region.
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CONCLUSIONS

A method for regularization and redatuming is presented using conjugate
gradients for the optimization of the solution (equation 5) for weighted damped
least squares. The method is used to downward continue irregularly sampled
data onto a regularly spaced grid while removing the low-velocity effects of the
near-surface. This method is applied to highly irregularly sampled synthetic data
as well as real data as well as decimated versions of real data to demonstrate its
effectiveness. The synthetic data are generated to test the stability of the model
with extreme conditions such as large extrapolation steps and conflicting, steep
dips. The real data are taken from an area of complex structure where there are
large distortions from the highly heterogeneous near-surface and irregular
topography. The real data are also irregularly sampled in the horizontal
coordinate as can be seen from the shot spacing. The data in this area require
extensive processing to achieve moderate results in imaging. Removal of the
near-surface effects and regularizing using a more accurate method could help
solve some of the issues plaguing the imaging results in this region.

Weighted, damped least squares problems present themselves in many
applications, especially with boundary value problems. The first step in solving
these problems is developing an accurate forward model [eq. (1)]. With an
accurate forward model, we can solve the inverse problem by finding a model
estimate that best fits the forward relationship between model and data. The data
are significantly undersampled causing an underdetermined problem where there
are more model parameters than data available. When the problem is ill-posed
as there is insufficient data to solve the problem, damping is needed to ensure
a unique solution. Damping is simply adding equations to the system of
equations in the forward model which puts constraints on the model. In this
case, the operator W, puts a penalty of minimum roughness on the solution.
This ensures that the model is the simplest geologic model that solves the
system. Repeated tests on the real data reveal that a smoothing parameter of 0.5
gave the best results, balancing the noise and oversmoothing.

With computational costs in mind, the solution needs to be reached within
the least amount of time. Conjugate gradients is an optimization technique that
is used to minimize the error between the model and data. Conjugate gradients
were employed to improve efficiency of computing the Hessian by reducing the
computation of the Hessian from matrix-matrix multiplication to vector-matrix
multiplication within each iteration. In other words, we do not need to construct
the Hessian. We only need to know the effect of the Hessian on an arbitrary
vector. Convergence to a solution with iterative techniques are sometimes a
challenge. When dealing with finite precision which is always the case with
digital data, the algorithm used needs to be accurate, robust, and stable for the
problem at hand. The structure of the problem greatly affects the algorithm’s
ability to achieve a solution. With an ill-posed problem such as this due to the
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irregular sampling, the structure of this problem was not suited for a traditional
approach using conjugate gradients. With smaller eigenvalues and large number
of iterations, the round-off errors worsen. Algorithms need to be efficient but
also need to converge in a suitable amount of iterations while also reducing the
error associated with each eigenvalue sufficiently and effectively. Several
algorithms were used to attain a solution with only one producing acceptable
results. The others either did not converge to within machine precision or just
simply diverged. The multishift version of conjugate gradients incorporates some
modifications to the traditional least squares conjugate gradients method. These
modifications compensated for the loss of orthogonality and conjugacy by
adjusting for round-off errors. The method was able to improve the structure of
the problem in order to achieve convergence within 1% error and an average
of 19 iterations. Other means of compensating for these errors could be to apply
a preconditioner such as linear combinations of Chebyshev polynomials
(Akcadogan and Dag, 2003) or to apply some other means of reorthogonali-
zation, however these are not within the scope of this paper.

This method successfully regularizes and removes the lateral velocity
effects from a synthetic model. The line source is continuous and the steep dips
are restored. The method also successfully reconstructs the real data with some
artifacts and also removes the phase distortions caused by the near-surface which
is apparent in the improved lateral continuity of the reflectors. The f-k spectrum
of the data and results show an improved result in which the aliased energy has
been significantly reduced. In addition, the evanescent energy has been
successfully filtered out.

In the future, we would like to expand this method to handle 3D data. The
cost using the conjugate gradients method has been reduced by an order of
magnitude when compared to the direct solution in 2D data and we expect to see
a greater cost savings in 3D data. As with all multichannel 3D data processing,
it is considerably more complicated in application compared to 2D data
processing. Berkhout and Verschuur (2005) describe how to arrange
monochromatic 3D data into large 2D matrices. This could be a starting point
for development of a 3D algorithm incorporating the principles used in this
thesis such as conjugate gradients for the indirect building of the Hessian and
its inverse. For a complete 3D survey the computational cost for the direct
solution is O(10"7) operations. The computational cost for each trace using the
conjugate gradient method is O(n), where n is the number of traces. This could
translate into a computational cost for a 3D survey to be O(10'°) operations.

Irregularly sampled data and near-surface effects as well as irregular
topography present significant challenges to the geophysical acquisition and
processing communities. The acquisition teams try to develop geometries that
will compensate for the finite length and sampling within a survey. Processing
groups use all the tricks in the book or at least what their managers will allow
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to bring out the best image. The interpreters who in turn use all the tools
available to them to interpret the best possible geology that science has allowed
them. I hope that this method will be a meaningful tool in creating a better
understanding of the subsurface and what it holds.
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