JOURNAL OF SEISMIC EXPLORATION 19, 371-386 (2010) 371

EVALUATING MARINE GAS-HYDRATE SYSTEMS
PART I: STOCHASTIC ROCK-PHYSICS MODELS FOR
ELECTRICAL RESISTIVITY AND SEISMIC VELOCITIES
OF HYDRATE-BEARING SEDIMENTS

DIANA SAVA and BOB HARDAGE

Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin,
Austin, TX 78713, U.S.A. diana.sava@beg.utexas.edu

(Received June 12, 2010; revised version accepted September 1, 2010)

ABSTRACT

Sava, D. and Hardage, B.A., 2010. Evaluating marine gas-hydrate systems. Part I: Stochastic
rock-physics models for electrical resistivity and seismic velocities of hydrate-bearing sediments.
Journal of Seismic Exploration, 19: 371-386.

There is an increased need for investigating marine gas-hydrate systems to estimate the
magnitude of the energy resource represented by the hydrate and to identify any unstable seafloor
conditions that may result from hydrate dissociation, which can jeopardize drilling activities.
Deep-water gas-hydrate systems can be studied on large scales with geophysical techniques, such
as seismic and electrical surveys. To evaluate near-seafloor gas-hydrate environments we first need
to build rock-physics quantitative relations between measurable parameters, such as elastic and
electrical properties of sediments containing hydrates, and gas-hydrate saturation. In this study we
assume a model of isotropic, load-bearing hydrates, uniformly distributed in the near-seafloor
sediments. This Part I of a 2-paper series presents a method for stochastic joint modeling of elastic
properties and electrical resistivity of gas-hydrate sediments. The petrophysical parameters involved
in the modeling are difficult to estimate and are uncertain. Therefore, probability distribution
functions (PDFs) are used to account for the uncertainty associated with each of the petrophysical
quantities involved in the modeling. Both electrical resistivity and seismic velocities depend on
porosity of the sediments and hydrate concentration, and we refer to them as common model
parameters. A Monte Carlo procedure is used to draw values for these common parameters from
their associated PDFs and then compute the corresponding velocity and electrical resistivity values
using Monte Carlo draws from the PDFs for each of the petrophysical parameters that are required
for elastic modeling and for Archie equation for electrical resistivity. The outcome of this procedure
is represented by many Monte Carlo realizations that jointly relate hydrate concentration, resistivity,
and seismic propagation velocity. This joint relation varies with depth and it is non-unique and
uncertain due to variability of the input parameters. These theoretical relations can then be used to
estimate hydrate concentration in Green Canyon Gulf of Mexico through a joint inversion technique
presented in the Part II.
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INTRODUCTION

Evidence is accumulating that numerous hydrate systems exist across
many of the deep-water areas of the Gulf of Mexico. These deep-water systems
need to be evaluated to determine the magnitude of the energy resource
represented by the embedded hydrate and to identify unstable seafloor conditions
that may be associated with hydrate dissociation. Local sampling (drilling,
logging, and coring) is invaluable for evaluating deep-water hydrates, but such
data cannot characterize volumetric distributions of hydrates. Remote-sensing
techniques, such as seismic reflection profiling, must be combined with these
in situ data to survey large areas where there is evidence of deep-water
hydrates.

Gas hydrates increase both the elastic moduli and the electrical resistivity
of the sediments in which they occur (Collett, 2001). Therefore, the most
common data used to characterize hydrate systems are electrical resistivity and
sonic and dipole-sonic logs acquired in wells, combined with remotely acquired
seismic, electromagnetic, and direct-current data. The relation between hydrate
concentration and resistivity of strata containing hydrates is non-unique and
uncertain. Similarly, any relationship between hydrate concentration and seismic
propagation velocity in sediment containing hydrate is also uncertain. Some of
these sources of uncertainty are related to data-measurement errors, limited
availability of data, inability to define accurate mineral fractions that exist in the
sediment that host hydrate, inaccurate porosity information, poor understanding
of how hydrate is distributed among sediment grains, unexpected spatial
variability of rock properties, and inadequate understanding of numerous other
physical conditions and processes associated with hydrate systems. Therefore,
by combining quantitatively various types of hydrate-sensitive information, we
can better constrain the predictions about gas hydrate distribution.

The modeling approach described in the paper combines rock-physics
theories and empirical relations with stochastic simulations. We show examples
from the Green Canyon area, Gulf of Mexico.

ELECTRICAL RESISTIVITY OF GAS-HYDRATE SYSTEMS IN MARINE
ENVIRONMENTS

The host sediments of gas-hydrate systems in deep-water, near-seafloor
environments are represented by highly unconsolidated, high-porosity,
near-suspension-regime sediments. In these environments, sediment grains are
loosely packed, and electrical current can flow freely through the conductive
phase represented by brine. The electrical resistivity of such sediments is well
characterized by the Hashin and Shtrikman (1962) lower bound on electrical
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resistivity for composite materials (Mendelson and Cohen, 1982; Berryman,
1995; Wempe, 2000).

Gas hydrates increase the resistivity of sediments because hydrates are
electrical insulators, as hydrocarbons are. Therefore, in principle, we can use
the same techniques to estimate hydrate saturation as those used to estimate
hydrocarbon saturation in the oil industry. The most common empirical
technique used to determine hydrocarbon saturation is the Archie equation. This
equation has been used to analyze resistivity responses of fluid-filled porous
rocks and to determine their water saturation for more than six decades in the
form (Archie, 1942),

R = aR,¢™"S;" , (n

where R is the resistivity of the logged interval (ohm-m), a is a dimensionless
parameter related to the grain shape of the sediments and the tortuosity of the
pore space, R, is the resistivity of the pore fluid (ohm-m), ¢ is the porosity of
the sediments (dimensionless fraction), m is a dimensionless parameter related
to the degree of consolidation and grain cementation, Sw is water saturation
(dimensionless fraction), and n is the saturation exponent (also a dimensionless
parameter). In typical oil and gas reservoir applications, the internal geometric
parameter, a, is ~1.0, n ~ 2, and the cementation exponent, m, usually ranges
from 2.0 to 2.56. However, for deep-water, near-seafloor strata within the
hydrate stability zone, the cementation exponent, m, has significantly lower
values than it does in deeper reservoirs (Mendelson and Cohen, 1982).

For sediments close to the suspension regime, the empirical parameters
in the Archie Equation (cementation exponent, m, and internal geometric
parameter, a) can be calibrated using the Hashin-Shtrikman (1962) lower bound
on electrical resistivity. For a two-component system represented by insulating
mineral grains and conductive brine, the internal geometric parameter a, and the
cementation exponent m, are given as follows [Berryman, 1995, eq. (25)]:

a=@0B—-¢)/2 , m= 1. )

Therefore, for highly unconsolidated sediments with large porosities and
small effective pressure as found in deep-water, near-seafloor strata, we should
use significantly smaller values for the cementation exponent m (as low as 1)
than we do for deeper hydrocarbon reservoirs. Small values for the cementation
exponent for unconsolidated sediments have also been observed by other
researchers who have studied marine sediments (Jackson et al., 1978:
Mendelson and Cohen, 1982).

To estimate hydrate concentration in marine sediments from electrical
resistivity measurements, we need to build a baseline that describes the
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resistivity of 100% brine-saturated sediments as a function of depth across the
hydrate stability zone. The electrical resistivity of marine sediments fully
saturated with brine is derived using the Archie equation with S, set to 1. Other
parameters in the Archie equation, such as porosity of the sediments ¢,
resistivity of the brine R, cementation exponent m, and internal geometric
parameter a, vary with depth. These depth-dependent variations need to be
calibrated at each study site.

Porosity information for near-seafloor strata across the study area in
Green Canyon is available from geotechnical borings. Fig. 1 presents
laboratory-measured porosity data as a function of depth compiled from two
study sites.
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Fig. 1. Porosity fraction of sediments within an interval of the gas hydrate stability zone (GHSZ)
as a function of depth below seafloor. The data are compiled from geotechnical borings collected
by Chevron at two sites in Green Canyon, Gulf of Mexico. The superimposed curve is a non-linear,
least-squares fit to the data.
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The curve superimposed on the data from Fig. 1 is a non-linear least
squares fit of the form:

¢ = ¢exp[—klog(z)] , withz > 1 m. 3)

In eq. (3), ¢ represents the porosity of the sediments as a function of
depth, and z is depth in meters below seafloor. The empirical parameters in eq.
(3) are ¢, (which represents the porosity of sediments 1 m below the seafloor)
and k (which represents the decay rate of porosity with the logarithm of depth).
For this data set, we used a non-linear, least-squares method to obtain a value
of 0.887 for ¢, and a value of 0.1343 m™' for the decay constant k. The
relations for porosity variation with depth due to compaction in previous
published studies (Rubey and Hubbert, 1958; Allen and Allen, 1990; Ramm and
Bjoerlykke, 1994) do not include such a logarithmic dependence on depth.
However, previous empirical relations without the logarithm of depth cannot fit
the porosity data from deep-water, near-seafloor strata in the Green Canyon,
GOM. Porosity reduces more rapidly in the shallow sediments than in deeper
sediments.

The cementation exponent m increases with depth due to the increasing
degree of consolidation. Even though porosity decreases significantly within the
first few tens of meters of seafloor sediment, the expected variation of the
cementation exponent may not be as drastic. A study by Wempe (2000) shows
that for sediments close to the suspension regime (with porosities greater than
40% and low effective pressures), there is a small variation in electrical
resistivity when porosity decreases from 80% to 40%. The electrical resistivity
of such sediments close to the suspension regime are well described by the
Hashin-Shtrikman lower bound. In this analysis we assume that the cementation
exponent m increases linearly with depth and effective pressure, as opposed to
a non-linear variation with depth. The variation of the cementation exponent is
determined such that the computed electrical resistivity for brine saturated
sediments using Archie Equation qualitatively matches the observed background
trend in the well logs, with the constraint that at seafloor, cementation exponent
is equal to 1. This linear increase of cementation exponent with depth should be
calibrated at each study site.

The internal geometric parameter, a, also increases with depth. For this
parameter, eq. (2) shows its dependence on porosity when sediments are close
to being in a suspension regime. The resistivity of brine R, increases with depth
because temperature increases according to the local geothermal gradient.
Geotechnical measurements made on seafloor cores also provide information on
formation salinity. Based on this information, and using the assumption of a
normal geothermal gradient, we estimate the variation of brine resistivity with
depth. The saturation exponent n does not enter into the computation of the
baseline for brine-saturated sediments because S, = 1 in this case.
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Fig. 2. Resistivity (R) log data for three randomly chosen wells in Green Canyon, GOM.
Superimposed is the baseline for sediments fully saturated with brine. The cementation exponent m
varies linearly from 1 at the seafloor to 1.7 at 600 m below seafloor. The internal geometrical factor

a increases with decreasing porosity as in eq. (2).

Fig. 2 shows electrical resistivity logs for three different wells across
Green Canyon, Gulf of Mexico. These measurements were performed while
drilling. On each panel, we superimpose the baseline for resistivity of sediments
that are fully saturated with brine, computed using the Archie equation and the
depth variations of the Archie equation parameters described above. From this
figure we observe that the baseline resistivity for 100% brine-saturated
sediments is a good description of the background trend in all three wells.
Long-wavelength deviations from the baselines to larger resistivity-log values
are interpreted to be caused by the presence of hydrates or free gas in the pore
space.

Using the calibrated parameters a and m in the Archie equation for
unconsolidated sediments saturated with brine, hydrate concentration can be
predicted using electrical resistivity log-data (R), porosity information (¢), and
resistivity of the brine (R,,). The hydrate concentration in sediment pores can be
estimated from the Archie equation as a function of the volumetric fraction of
water saturation [S,, from eq. (1)]:

Cou =1 -8, =1 — [@R/R)p™"" . )
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ELASTIC PROPERTIES OF GAS-HYDRATE SYSTEMS

Our goal of rock-physics elastic modeling of marine hydrate systems is
to define quantitative relations between hydrate concentration in marine
sediments and seismic measurements. Many published relations between hydrate
concentration and seismic attributes are empirical (Pearson et al., 1983; Miller
et al., 1991; Wood et al., 1994; Holbrook et al., 1996; Lee et al., 1996; Yuan
et al., 1996; Collett, 1998; Lu and McMechan, 2002, 2004). Empirical
approaches are easy to implement, but they do not have predictive power and
should be used only at the specific site where the relationships are derived. An
additional shortcoming is that empirical relations do not provide insights into the
morphological character of how gas hydrates are distributed within sediments.

There are also studies that use physics-based, effective-medium models
of hydrate systems to relate hydrate concentration to seismic properties
(Helgerud et al., 1999; Ecker et al., 2000; Carcione and Tinivella, 2000; Chand
et al., 2004; Winters et al., 2004; Waite et al., 2004; Kleinberg and Dai, 2005;
Murray et al., 2006; Zillmer, 2006). Some of these effective-medium models
are based on Dvorkin and Nur’s (1996) model of unconsolidated sediments,
which uses Hertz-Mindlin’s contact theory (Mindlin, 1949; Mavko et al., 1998).
These models for unconsolidated sediments have been applied successfully to
deeper marine sediments (Prasad and Dvorkin, 2001), but they do not explain
lab observations (Zimmer, 2003; Yun et al., 2005) and in-situ observations
(Hardage et. al, 2010) made within the first 200 meters below the seafloor
where sediments have small shear strengths, large V,/Vj ratio, and low effective
pressure.

In this paper, we use models of hydrate systems applicable to the highly
unconsolidated, low-effective-pressure zone that spans the first 200 or 300
meters of sub-seafloor strata (Sava and Hardage, 2006; 2010). The host
sediments are modeled using the approach by Dvorkin and Nur (1996), with the
distinction that the elastic properties of sediments at critical porosity (Nur et al.,
1998) are described by Walton’s smooth model (Walton, 1987), as opposed to
the Hertz-Mindlin model (Mindlin, 1949; Mavko et al., 1998). Walton’s theory
seems particularly appropriate for highly unconsolidated sediments at low
effective pressure, where grain rotation and slip along grain boundaries are
likely to occur during compaction. Therefore, we assume that at critical porosity
the effective elastic moduli of the dry-mineral frame of sediments can best be
calculated by using Walton’s smooth contact model for elastic particles.

The expressions for bulk and shear moduli of a random arrangement of
dry spheres that resembles the unconsolidated dry sediments of near-seafloor
strata at critical porosity are (Walton, 1987):
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Ko = VICA1 — ¢)?G*/[187%(1 — »)*|P} , ©)

Geff = (3/5)Keff . (6)

In egs. (5) and (6), K. and G, are the effective bulk and shear moduli,
respectively, for the granular material. C is the coordination number, which
represents the average number of contacts between a grain and its neighboring
grains. ¢, is the critical porosity of the sediments, G is the shear modulus of the
mineral grains, » is the Poisson’s ratio of the mineral grains, and P is the
effective pressure, taken here as the simple difference P,,, — Py,.

For porosity values smaller than critical porosity, the elastic properties of
the dry-mineral frame are estimated using the modified Hashin-Shtrikman lower
bound (Hashin and Shtrikman, 1963; Dvorkin and Nur, 1996). For porosity
values larger than critical porosity we use a modified Hashin-Shtrikman (1963)
upper bound to derive the elastic properties of the dry-mineral frame of granular
materials (Dvorkin et al., 1999). Gassmann’s (1951) theory is then used to
derive the density and bulk and shear moduli of the sediments saturated with
various fluids.

The model for unconsolidated sediments described above is used to derive
the depth-dependent baseline, across the gas hydrate stability zone, for elastic
properties of sediments that are 100% saturated with brine.

The porosity variation with depth was discussed in the previous section.
The effective pressure as a function of depth is derived assuming hydrostatic
pore pressure, and total pressure increasing according to the density. The
coordination number increases with depth because of increasing effective
pressure and decreasing porosity. In this study we relate the coordination
number linearly to effective pressure and depth rather than to porosity. At the
seafloor, the coordination number is 1, and it increases linearly with depth so
that at 600 m below the seafloor, it has a value of 6.7. Any calibration of the
coordination number is site specific.

We assume that the density and the elastic moduli for the mineral grains
are those corresponding to Gulf of Mexico clays (Mavko et al., 1998) because
geotechnical borings indicate clays are the dominant minerals. The brine density
and bulk modulus are derived as a function of pressure and temperature using
Batzle and Wang (1992) empirical relations, assuming a brine salinity of 59000
ppm from geotechnical data.

Using this model for unconsolidated sediments and the assumptions
discussed above, we derive the baseline for P-wave velocities of brine saturated
sediments as a function of depth.
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Fig. 3. Seismic P-wave interval velocities, as a function of depth below seafloor, estimated at three
different well locations. Superimposed are baselines for brine-saturated sediments with 95% clay
minerals and 5% quartz.

Fig. 3 presents seismic P-wave interval velocities determined using a
raytrace-based velocity analysis technique (DeAngelo et al., 2008) at different
well locations. Superimposed on these seismic velocities is the computed
baseline for P-wave velocities as a function of depth for sediments saturated
with brine (the same baseline for all three cases). Intervals with higher P-wave
velocities than the baseline occur within the hydrate stability zone at all three
well-locations. These intervals are likely hydrate-bearing. In each of the
examples from the three panels in Fig. 3, there is an interval with lower
velocity below the higher-velocity interval, which appears to correspond to free
gas below the hydrate stability zone. In Fig. 3, the baseline velocities assumes
a mineralogy with an average of 95% clay, the rest of 5% being represented
by quartz.

Once the elastic properties of the host sediments as a function of depth are
derived, hydrates are introduced into the system to derive the quantitative
relation between seismic velocities and hydrate concentration. Hydrates can
occur in various morphologies in relation to their host sediments (Sava and
Hardage, 2006; 2010), for example disseminated (load-bearing or floating in the
pores), layered (horizontally or vertically), or massive. In this paper we assume
the model for disseminated, load-bearing hydrates because laboratory
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observations (Yun et al., 2005; Winters et. al, 2004) indicate this option may
be the most likely model for hydrate distribution in marine sediments.

FORWARD MODELING AND MONTE CARLO SIMULATIONS OF
Csy-R-V, JOINT RELATION

In this section we discuss the forward modeling problem for which we use
the Archie equation and the rock-physics elastic model described in previous
sections. The outcome of the forward modeling is a joint theoretical relation
between hydrate concentration, electrical resistivity, and velocity of sediments
containing hydrates. Based on this joint theoretical relation calibrated for our
study area in Green Canyon, Gulf of Mexico, we can then estimate hydrate
concentrations using actual measurements of electrical resistivity-log and seismic
velocity (Part II).

Both electrical resistivity and elastic properties of hydrate-bearing
sediments depend on sediment porosity (¢) and hydrate concentration (Cgy) in
pores. They also depend on the volumetric fraction of clay minerals (V ), when
the resistivity of clays is significantly lower than that of the other mineral
grains. The volumetric fraction of clay minerals can be estimated from
gamma-ray logs. Therefore, we can model the joint relation between hydrate
concentration, resistivity and velocities using the Archie equation or a form of
it modified for clay volume, and the rock physics elastic model for
unconsolidated sediments with load-bearing hydrates.

Any theoretical relation linking hydrate concentration, resistivity, and
velocity is non-unique and uncertain. The uncertainty is caused by the fact that
the parameters needed in the modeling, such as porosity, cementation exponent,
geometric factor, resistivity of brine, saturation exponent, elastic properties of
mineral, brine, and hydrates, volumetric fraction of clay minerals, effective
pressure, critical porosity, and coordination number do not have fixed values,
but are themselves uncertain and variable. Thus, each parameter in the
rock-physics elastic modeling, and in the Archie equation (with a clay term), is
expressed as a probability distribution function (PDF). The PDFs used in the
modeling are either Gaussian distributions or uniform distributions. Gaussian
distributions are used for parameters whose expected values can be calibrated
or measured. The mean of the Gaussian function is the expected value of the
parameter, and the standard deviation defines the uncertainty associated with this
expected parameter value. These expected values for parameters such as
cementation exponent, geometric factor, resistivity of brine, volumetric fraction
of clay, elastic properties of brine, coordination number, and effective pressure
vary with depth, as discussed in previous sections. Therefore, their individual
PDFs vary with depth. The standard deviation for these parameters is assumed
to be 5%, and does not vary with depth. Other parameters described by
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Gaussian distributions are the elastic moduli and density of mineral grains,
whose expected values are assumed from published laboratory results (Mavko
et. al, 1998). The PDFs for the elastic properties of the mineral grains do not
change with depth, and their standard deviation is assumed to be also 5%. The
mean values used for the mineral grains are displayed in Table 1.

Table 1. Mean values for elastic moduli and density of clay and quartz minerals.

Kc]ay Gclay d)clay Kquar(z unurlz ¢quanz
(GPa) (GPa) (g/cm®) (GPa) (GPa) (g/cm®)
25 9 2.55 37 44 2.65

In contrast to a Gaussian distribution, a uniform distribution is used when
the range of variability for a certain model parameter can be defined. A uniform
distribution assumes that within the range of variability being considered, any
value of the described parameter is equally probable. Uniform distributions are
used for the saturation exponent n, needed in the Archie equation, resistivities
of clay minerals, critical porosity, elastic moduli and density of hydrates, and
hydrate concentration. These parameters and their associated PDF do not vary
with depth. The range of variability for the model parameters with uniform
distributions are given in Table 2.

Table 2. Range of variability for parameters with uniform distribution: saturation exponent in Archie
Equation (n), Resistivity of clay minerals (R,,), critical porosity (¢...), bulk moduli of gas-hydrate
(Kgn), shear modulus of gas-hydrate (Gg,), and density of gas-hydrate (pog,). The values for moduli
and density of hydrates are taken from Sloan and Koh (2008).

n Rclay Deritic Kou Gay ben
(ohm.m) (%) (GPa) (GPa) (g/em®)
1.7-2.3 20-1000 75%-85 % 6-8.7 2.4-3.6 0.90-0.94

The PDFs are assumed to be mutually independent. For example, the
PDFs for the elastic moduli are not coupled together, and the Monte Carlo
draws for K and G might yield a high value for K and a low value for G, even
though this implies an unlikely mineralogy and/or microstructure. As a result,
the joint PDFs might be broader than they would be if the PDFs were mutually
dependent. However, the range of variability assumed for the elastic moduli of
the minerals and gas-hydrates used in the modeling is small, within the limits
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encountered by various authors when studying Gulf of Mexico clays (Mavko et .
al., 1998) and gas-hydrates (Sloan and Koh, 2008).

The parameters involved in both the rock physics elastic modeling and the
Archie equation (modified for clay) are denoted as common parameters. There
are three of these common parameters: porosity (¢), hydrate concentration
(Cgp), and volumetric fraction of clay (V). A Monte Carlo procedure is used
to draw values for these common parameters from their associated PDFs and
then compute the corresponding velocity and resistivity values using Monte
Carlo draws from the PDFs for each of the petrophysical parameters that are
required for elastic modeling and for Archie equation. In this fashion we obtain
many Monte Carlo realizations that jointly relate hydrate concentration,
resistivity, and seismic propagation velocity. This joint relation is non-unique
and uncertain due to variability of the input parameters and varies with depth.
The theoretical relation of hydrate concentration, electrical resistivity, and
velocity can be expressed mathematically as a probability distribution function
in a three-dimensional model space (Cgy, Vp, R). This model space is updated
with depth.

Increasing depth

20
v, (mis) 1400 © Cg,, % in pores

Fig. 4. Monte Carlo simulations for the joint theoretical relation between hydrate concentration
(Cgn), P-wave velocity (V,), and resistivity (R). Data are color-coded by depth. The arrow indicates
increasing depth over the gas hydrate stability zone. Gas hydrate is assumed to be disseminated and
load-bearing.
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Based on these Monte Carlo realizations, we derive at each depth-step a
joint theoretical PDF for hydrate concentration, P-wave velocity, and resistivity,
generically denoted as £(Cgy, Vp, R). This PDF represents mathematically the
quantitative relations between hydrate concentration, P-wave velocity and
electrical resistivity with their inherent uncertainty.

Fig. 4 presents the results for Monte Carlo simulations of the joint
theoretical relation between hydrate concentration, P-wave velocity, and
resistivity. The data are color-coded by depth, and the arrow indicates
increasing depth within the gas hydrate stability zone (GHSZ). As expected,
both electrical resistivity and P-wave velocity increase with increasing hydrate
concentration and with increasing depth. At a fixed depth, the scatter in the data
is caused by the uncertainty in the input parameters used in the elastic
rock-physics model and Archie equation.

Based on these theoretical relations expressed as PDFs, calibrated for our
study area in Green Canyon Gulf of Mexico, we can estimate the in-situ hydrate
concentration using the actual measurements on electrical resistivity in wells and
seismic velocity at well locations, as presented in Part II.

CONCLUSIONS

We have derived rock-physics joint theoretical relations between hydrate
concentration, seismic velocity, and electrical resistivity for sediments from a
deep-water of Green Canyon, Gulf of Mexico. These quantitative relations are
uncertain because the parameters involved in both rock-physics elastic model
and Archie Equation for electrical resistivity cannot be estimated exactly. We
account for this uncertainty by using probability distribution functions (PDF) for
each of the modeling parameters as a function of depth. One of the key petro-
physical parameter that affects both elastic and electrical resistivity of sediments
with hydrates is porosity. We derived a new porosity variation with depth for
the deep-water near-surface sediments from geotechnical data in Green Canyon.

Both electrical resistivity and elastic properties of hydrate-bearing
sediments depend not only on sediment porosity (¢), but also on hydrate
concentration (Cgy) in pores. A Monte Carlo procedure is used to draw values
for these common parameters from their associated PDFs and then compute the
corresponding velocity and electrical resistivity values using Monte Carlo draws
from the PDFs for each of the petrophysical parameters that are required for
elastic modeling and for Archie equation. In this way we obtain many Monte
Carlo realizations that jointly relate hydrate concentration, electrical resistivity,
and seismic propagation velocity as a function of depth. Based on these joint
theoretical relations we can then estimate hydrate concentration using the joint
inversion technique presented in Part II.
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