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ABSTRACT

Hashemi Gazar, A., Javaherian, A. and Sabeti, H., 2011. Analysis of effective parameters for
semblance-based coherency attributes to detect micro-faults and fractures. Journal of Seismic
Exploration, 20: 23-44.

Coherency attributes are useful in the interpretation of seismic data and can be applied to 3D
seismic data. When coherency attributes are applied to seismic data, they indicate the continuity
between two or more traces within a seismic window. The rate of seismic continuity is an index of
geological continuity. Areas of traces that change with faults or other geological phenomena have
lower coherency in comparison with adjacent traces. Coherency attributes can be divided into three
major groups: (1) cross-correlation, (2) eigenstructure and (3) semblance.

In this paper, first, the ability of the three coherency attributes mentioned above to detect
micro-faults was tested over 3D real data. The results proved that the semblance algorithm was much
more powerful than the other algorithms in detecting micro-faults. Therefore, in the remainder of
the study only the semblance attribute was employed. The effect of the dominant frequency, the
signal-to-noise ratio, the dimensions of the analysis cube, and the apparent dip in the x- and in the
y-directions on the semblance coherency attribute was investigated. The effects of these parameters
were tested on 3D synthetic seismic data consisting of (1) horizontal layers, (2) dipping layers, and
(3) cross-dipping layers. It is shown that for frequencies up to 20 Hz, there was no clear image of
the micro-faults. However, for frequencies above 20 Hz, the resolution of micro-faults was
increased. The results indicate that micro-faults are detectable with a signal-to-noise ratio of 1 or
higher. When a signal-to-noise ratio of 0.5 is selected, micro-faults can still be detectable but with
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a lower resolution. According to synthetic models, a temporal window of 32 ms (k = 8) showed the
best results for horizontal and dipping layers. The best size for the spatial window is 10x10 for
horizontal and dipping layers. Therefore, the optimum cube dimensions of analysis are 10Xx10X8.
For these dimensions, the signal-to-noise ratio increases and micro-faults are clearly detectable.
Regarding the cross-dipping model, apparent dip directions, p and g, were analyzed. The same
optimum value of 10 ms/m was obtained for both. Real data which is related to carbonate units
showed satisfactory results as well: micro-faults and minor fractures hidden in the primary data were
detectable after applying the algorithm.

KEY WORDS: coherency attributes, micro-faults, cross-correlation, eigenstructure, semblance,
cross-dipping, 3D seismic data.

INTRODUCTION

Seismic attributes include all the information obtained from seismic data,
either by direct measurements or by logical or experience-based reasoning
(Taner, 2001). Seismic attributes are very useful in the characterization of faults
and fractures on 3D seismic data (Chopra and Marfurt, 2007a). Seismic
coherency is a geometrical attribute that establishes temporal and lateral
relationships with other attributes. Seismic discoherency denotes a lateral change
in seismic response caused by geologic, lithologic, porosity or hydrocarbon
existence. The coherency attribute is a mathematical measure of similarity.
When it is applied to seismic data, it gives an indication of the continuity
between two or more windowed seismic traces (Gersztenkorn and Marfurt,
1999). Coherency attributes are performed on 3D seismic cubes. The first
coherency attribute algorithm, called the cross-correlation, was proposed by
Bahorich and Farmer (1995) to cross correlate each trace with its in-line and
x-line neighbor and then combine the two results after normalizing based on the
energy. Since this approach deals with only three traces, it is computationally
efficient but lacks robustness, especially when dealing with noisy data. The
second generation coherence algorithm (Marfurt et al., 1998) uses a multitrace
semblance measure. Using more traces in the coherence computations results in
greater stability in the presence of noise. The third generation algorithm is also
a multitrace coherence measure. However, it is based on the eigenstructure of
the covariance matrix formed from the traces in the analysis cube (Gersztenkorn
and Marfurt, 1996a,b; Gersztenkorn et al., 1999). In addition, the eigenstructure
algorithm incorporates various filters and interpolation schemes to aid with
problems such as poor signal-to-noise ratios and aliasing. These enhancements
can often significantly improve the results. Roberts (2001), Hart et al. (2002),
Sigismondi and Soldo (2003), and Masaferro et al. (2003) introduced the idea
of using the reflection curvature in order to detect fractures. More
improvements have been obtained by Al-Dossary and Marfurt (2006) and
Chopra and Marfurt (2007b). They used a volume calculation of the reflection
curvature to analyze fractures. There are now more than 50 distinct seismic
attributes calculated from seismic data and applied in the interpretation of the
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geologic structures, stratigraphy, and rock/pore fluid properties (Chopra and
Marfurt, 2005). Micro-faults and minor fractures were not studied in these
previous works. In this paper the ability of these coherency attributes in
detecting the micro-faults are studied, first on the 3D real data, then on 3D
synthetic data, consisting of horizontal, dipping and cross-dipping layers. The
effects of some parameters on the semblance algorithm are analyzed so that
micro-faults and fractures can be detected.

COHERENCY ATTRIBUTES

In attribute classification, the seismic coherency attribute is a branch of
geometric attributes. Geometric attributes generally describe the space and
instant relationships between all other attributes. Coherency attributes are useful
in the interpretation of seismic data and can be applied to 3D seismic data.
When coherency attributes are applied to seismic data, they indicate the
continuity between two or more traces within a seismic window. The rate of
seismic continuity is an index of geological continuity. Areas of traces that
change with faults or other geological phenomena have lower coherency in
comparison with adjacent traces. These attributes can be divided into three
major groups of cross-correlation, semblance-based and eigenstructure
coherency algorithms.

Cross-correlation coherency algorithm

The cross-correlation coherency algorithm was developed primarily by
Bahorich and Farmer (1995). This algorithm was extended by Marfurt et al
(1998) and made it possible to interpret seismic data more precisely. In this
approach, to calculate the coherency, three traces are chosen (one as a base and
two others in the direction of in-line and x-line). First, coherency is calculated
in a finite-time interval along the in-line and, second, along the x-line. Then,
the measure of coherency is achieved by multiplying the root of the maximum
coherency values in each time interval along in-line and x-line. First, the in-line
l-lag cross-correlation is defined as p, at time t between data traces u at
positions (x;,y;) and (X;,,,y;) to be
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where 2w is the temporal length of the correlation window (Marfurt et al 1998).
Although this algorithm is computationally efficient, it is somewhat limited in
dealing with noisy data and this is a disadvantage of the algorithm.

Semblance-based coherency algorithm

The semblance-based coherency algorithm was presented by Marfurt et
al. (1998). It is more efficient in comparison with the correlation algorithm.
This algorithm starts by defining an elliptical or rectangular analysis window
containing a number, J, of traces. The results of the analysis will assign to the
center of the window (Fig. 1). Next, the coordinates of this center point (x,y)
should be calculated to define the semblance, o(7,p,q), by applying the
following equation:

] J
o(7,p,q) = [Z u(T—px;—qy;, X,y + [Zu“(r-pxj—cn/j,xj,yj)]2
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where J shows the number of traces, the triple values (7,p,q) define a local
planar event at the time , p and q are the apparent dips in the x- and
y-directions, respectively, measured in ms/m, and H denotes the Hilbert
transform or quadrature component of the real seismic trace u (Marfurt et al.,
1998). This method is employed using as narrow a temporal analysis window
as possible and is typically determined by the highest usable frequency in the
input seismic data. Near-vertical structural features, such as faults, are enhanced
well when using a longer temporal analysis window. By using this algorithm,
one would be able to balance the conflicting requirements between maximizing
lateral resolution and the increasing signal-to-noise ratio.

Eigenstructure coherency algorithm

The eigenstructure coherency algorithm was presented by Gresztenkorn
and Marfurt (1999). This algorithm is based on the determination of seismic
trace continuity using a covariance matrix. One definition of the
eigenstructure-based coherence estimation makes use of the numerical trace of
the covariance matrix C, denoted by Tr(C) (Golub and Van Loan, 1989). The
numerical trace of C may be expressed in terms of the matrix D, the matrix C,
or the eigenvalues of C. The matrix D, which represents a multi-channel time
series, is a mathematical description of the data enclosed by the analysis cube.
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Fig. 1. (a) Elliptical and (b) rectangular analysis windows centered around an analysis point defined
by the length of major axis a, the length the of minor axis b, and the azimuth of the major axis ¢,,
(c) the calculation of coherency over an elliptical analysis window with apparent dips (p, q) = (0.1
ms/m, —0.1 ms/m) (Marfurt et al., 1998).



28 HASHEMI GAZAR, JAVAHERIAN & SABETI

A single column of D represents the N samples of a single trace j whereas a
single row of D denotes the same time sample n common to all J traces. The
single entry d,; is therefore the amplitude of the n-th sample of the j-th trace
(Gresztenkorn and Marfurt, 1999):

1=

%=Z%=ZN’ ®)

j=1 i=1

Tr(C) = ),

j=1n

where J is the number of rows (traces), N shows the number of columns
(samples), and \; shows eigenvalues.

Fig. 2 shows the comparison between the cross-correlation, semblance and
eigenstructure algorithms in detecting micro-faults. Panel (a) shows the vertical
seismic section from a 3D seismic cube (in the in-line direction). From this
figure it is concluded that the semblance algorithm is superior to the other two
algorithms in detecting micro-faults; therefore, the remainder of the study
focused on establishing effective parameters only for the semblance algorithm.
It should be mentioned that the running time for the cross-correlation,
eigenstructure and semblance algorithms were compared in this study. It was
considered that the semblance algorithm takes much more time than the
cross-correlation and much less time than the eigenstructure algorithms.

EFFECTIVE PARAMETERS ANALYSIS ON THE SEMBLANCE
ATTRIBUTE

Among three algorithms related to the coherency attribute, the semblance
algorithm is chosen since it can acceptably detect micro-faults in both horizontal
and dipping layers. In this section, the dependency of semblance coherency
attribute on seismic wavelet dominant frequency, signal-to-noise ratio, analysis
window dimensions, and the p and q parameters is analyzed and the optimum
values are defined. It is assumed that the seismic wavelet is a time-independent
zero-phase Ricker wavelet. Two synthetic models have been used to test the
algorithm (Hashemi Gazar and Javaherian, 2008). The first model uses 3D
seismic data with dimensions of 300X 50X 50 (300 ms time interval), 50 in-lines
and 50 x-lines (Fig. 3a). The sampling interval of the first model is 4 ms and
the seismic wavelet is a 30 Hz Ricker. There are two normal micro-faults, a and
b, generated by a 4 ms shift in time samples. The second model uses 3D seismic
data with dimensions of 200X 100X 100, a time interval of 200 ms, and 100
in-line and 100 x-line traces (Fig 3b). Three dipping layers are assumed in this
model. The sampling interval of the second model is 4 ms and the seismic
wavelet is a 35 Hz Ricker. Two micro-faults are generated by a 4 ms shift in
the time samples.
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Fig. 2. Comparison among cross-correlation, eigenstructure and semblance coherency algorithms
to detect micro-faults. (a) An in-line section from 3D real data, coherency measured by (b)
cross-correlation, (c) eigenstructure, and (d) semblance; it can be concluded that the semblance can
detect micro-faults better than other two coherency attributes (panels (b) and (c) are from Javaheri
Niestanak et al., 2008).
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Fig. 3. 3D synthetic seismic cubes with dimensions of (a) 300 x50 x50 with two horizontal layers
and two micro-fault planes and (b) 200X 100X 100 with three dipping layers and two micro-fault
planes.
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Dominant frequency

Various dominant frequencies of the seismic wavelet are applied to find
the differences. For frequencies up to 20 Hz, there is no clear image of the
micro-faults. However, for frequencies above 20 Hz, the resolution of
micro-faults will increase. By increasing the dominant frequency from 20 to 40
Hz, the data resolution improves. Increasing the dominant frequency causes an
increase in differential color between the area of the micro-faults position and
other areas of layers. In addition, layers show in normal thickness. For
horizontal layers a dominant frequency of 30 Hz is satisfactory, and for dipping
layers a dominant frequency of 35 Hz. One of the advantages of semblance
algorithm is its ability to detect micro-faults in a lower dominant frequency
situation. This accuracy cannot be obtained using the cross-correlation
algorithm.

Signal-to-noise ratio

In order to investigate the effect of signal-to-noise ratio in the efficiency
of the algorithm, the signal-to-noise ratio of 0.5, 1, 2, and 3 have been tested.
Signal-to noise-ratio is calculated using the following equation (Teleford et al
1976)

SNR = Psignal/Pnoise = (‘A‘sign'«ll/Anoise)2 > (4)

where SNR is the signal-to-noise ratio, P is the power and A is the amplitude.
Results introduce signal-to-noise ratio as an effective parameter in the
performance analysis of the semblance algorithm. Micro-faults are detectable
with a signal-to-noise ratio of 1 or higher. When the signal-to-noise ratio of 0.5
is selected, micro-faults can be detectable but with a lower resolution. By
increasing the signal-to-noise ratio to 2, high resolution detection will be
possible. Models illustrated in Fig. 3 have been applied to the semblance
algorithm. The algorithm is able to detect micro-faults in a low signal-to-noise
ratio. Apparently, by increasing the signal-to-noise ratio, results can be seen in
higher resolutions.

Analysis cube dimensions

One of the parameters that seems to be the most effective in enhancing the
performance of the semblance coherency attribute is the dimensions of the
analysis cube. To find the best size, several dimensions were applied to the
algorithm. First, the optimum analysis cube dimensions for the horizontal layers
model were determined. Then, a similar procedure was applied to the dipping
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layers model. Figs. 4 and 5 show the efficacy of temporal window on the
coherency seismic attribute for the seismic cubes of Fig. 3. As shown, by
increasing the k value (i.e. the length of the temporal window in the vertical
direction), the vertical resolution is increased. Generally, a vertical analysis
window (temporal) is used to detect micro-faults and to improve signal-to-noise
ratio. By increasing the vertical-correlation window for the highly dipping layers
and normal micro-faults, the signal-to-noise ratio increases but the lateral
clearness decreases and the thickness of layers is exaggerated. Horizontal-
analysis window (spatial) is used to balance the lateral resolution against the
signal-to-noise ratio. By increasing the number of traces, the time of calculation
increases naturally. Increasing the number of traces leads to signal-to-noise ratio
improvement (Marfurt et al 1998). According to the results, the best k values
are 5, 8 and 12, and by going from 5 to 12, the vertical resolution increases
(Figs. 4 and 5). For the assumed models here, a k value of 8 for horizontal and
dipping layers shows good results (Figs. 4c and 5c). The best spatial window
is 10X 10, and after that 10x5. Therefore, the optimum cube dimensions of
analysis are 10X10x8, which is shown in Figs. 4c and 5c. For these
dimensions, the signal-to-noise ratio increases and micro-faults are clearly
detectable.

In this method, we are unable to use signal frequency for defining the
window width. That is because if we have a low frequency in data by increasing
window width we lose lateral resolution even though we may achieve a higher
signal-to-noise ratio. Increasing the time-window width increases the
signal-to-noise ratio but decreases the lateral resolution and the thickness of
layers is exaggerated. Therefore, the time-window could not mainly estimated
by the dominant frequency of the signal.

p and q parameters

The values of p and q (i.e., apparent dip in x- and y-directions,
respectively, in ms/m) should be effective in the performance of the algorithm.
The efficacy of these parameters was studied to detect micro-faults over the
cross-dipping layer model. Fig. 6a shows the synthetic seismic cube including
two cross-dipping layers with the dimensions of 200X 100X 100. The time
sampling interval is 4 ms. The dominant frequency is 35 Hz and the
signal-to-noise ratio is 1. In order to find the optimum values for p and q,
several values were applied. With analysis cube dimensions of 10X 10X5, as
shown in Fig. 6b, the algorithm could detect the micro-faults, but the coherency
value is high. The high value of the coherency in the micro-faults is incorrect.
Therefore, it is necessary to add p and q parameters to the algorithm. In Figs.
6¢c and 6d, the location of the micro-faults and coherency values are estimated
correctly. The optimum value of the parameters for this model is 10 ms/m for
both p and q.
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Fig. 4. Semblance attribute of the in-line section of Fig. 3a, showing the effect of the
temporal-window length (k) on this attribute. In this analysis, the signal-to-noise ratio is 1 with the
dominant frequency of 35 Hz and a spatial window of 10X 10, where for (a) k = 2, (b) k = 5, (c)
k = 8, and (d) k = 12. Increasing the temporal-window length causes the vertical resolution to
increase. For this data, k = 8 seems better than the others.
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Fig. 5. Semblance attribute of the in-line section of Fig. 3b, showing the effect of the
temporal-window length (k) on this attribute. In this analysis, the signal-to-noise ratio is 1 with the
dominant frequency of 35 Hz and a spatial window of 10X 10, where for (a) k = 2, (b) k = 5, (c)
k = 8, and (d) k = 12. Increasing the temporal-window length causes the vertical resolution to
increase. For this data, k = 8 seems better than the others.
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Fig. 6. (a) A 3D synthetic seismic cube with dimensions of 200x100x100 contains two
cross-dipping layers with micro-fault planes; (b) an analysis cube with dimensions of 10X 10X5,
showing that the semblance algorithm detects the positions of micro-faults but the coherency values
are incorrect; and analysis cubes with dimensions of (c) 5X10X5 and (d) 10x10 X5, with p and q
= 10 ms/m. Ellipses show the semblance algorithm detects the positions of micro-faults.
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REAL DATA

In order to investigate the application of the semblance algorithm to real
seismic data, both a stacked and a time-migrated cube were used. These cubes
are related to one of the gas reservoirs located in northeastern Iran. The time
sampling interval was 4 ms. The trace interval was 25 m in both in-line and
x-line directions. The migrated cube dimensions were 2525 m in the in-line
direction (101 in-lines), 1775 m in the x-line direction (71 x-lines) and 1000 ms
in the time direction (Fig. 7). Two time slices, in 848 ms and 260 ms, were
selected to examine the resolution ability of the semblance algorithm.

200~
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time (ms)

1500 — i 1500

1000 : - " 1000

500 500

in-line (m) x-line (m)

Fig. 7. A 3D seismic cube from one of the oil fields situated in the northeast of Iran. The size of
data is 2525 m in the in-line direction and 1775 m in the x-line direction with 1 sec depth length.
the trace interval is 25 m, and the sample interval is 4 ms.

Fig. 8 shows the efficacy of the coherency attribute to detect micro-faults
in the time slice of 848 ms from Fig. 7 using analysis cubes of (a) 16 X5 X5,
(b) 16 X10X5, (c) 12X15%10 and (d) 12X15X%15 dimensions. Micro-fault
positions in panels (c) and (d) are identified better than in panels (a) and (b). By
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Fig. 8. Efficacy of the coherency attribute in detecting micro-faults in the time slice of 848 ms from
Fig. 12 by analysis of cubes with dimensions of (a) 16 X5 X5, (b) 16 X10X5, (c) 12x15X10, and
(d) 12Xx15x15. The micro-fault positions in panels (c) and (d) are identified better than those in
panels (a) and (b).
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Fig. 9. Efficacy of the coherency attribute in detecting micro-faults in the time slice of 260 ms from
Fig. 7 by analysis of cubes with dimensions of (a) 16 X5X5, (b) 16 X10X5, (c) 12X15X10, and
(d) 12x15x15. The micro-fault positions in panels (c) and (d) are identified better than those in
panels (a) and (b).
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increasing the analysis window dimensions from 5X5 and 10 X5 to 15X 10 and
15X 15, resolution of the images improved as shown in Figs. 8c and 8d. When
the dimensions of the analysis window exceed 15X 15, no further improvement
was observed and the computation time for running the algorithm increased
significantly. From this figure, it can be concluded that by increasing the
analysis cube dimensions, micro-faults are shown more clearly and the important
factor in improving the horizontal resolution is the lateral window dimensions.
It was found that the optimum dimensions of the analysis cube for the real data
are 12X 15X 10 whose results showed the micro-faults in the clearest quality and
obviously had less running time in comparison with the 12X 15X 15 cube. Fig.
9 shows the ability of the coherency seismic attribute in detecting micro-faults
in a time slice of 260 ms. In Figs. 9a and 9b, the algorithm could detect the
micro-faults but had poor resolution. By increasing the analysis window
dimensions, the resolution of the images improved, as shown in Figs. 9c and
9d. This higher resolution could improve the interpretation of seismic sections.

Fig. 10 shows the sections extracted from the seismic cube in Fig. 7 in
in-line and in x-line directions, in which micro-faults are not clear. After
applying the semblance algorithm, more information could be extracted. Fig. 11
shows the results of applying the method to the seismic section of Fig. 10a.
Four analysis cube dimensions of (a) 16 X5X5, (b) 16 X10X5, (¢c) 12X 15X%5,
and (d) 12x15x10 were used. The results are more convincing in a cube with
dimensions of 16XxX5X5 (Fig. 11a) as compared with 16 X10X5 (Fig. 11b).
Outcomes of the algorithm in two analysis cubes with dimensions of 12X 15X 5
and 12X 15X 10 are presented in Figs. 11c and 11d. In comparison with Figs.
11a and 11b, micro-faults are clearer in Figs. 11c and 11d. Fig. 12 shows the
ability of the algorithm in the seismic section of Fig. 10b. Four analysis cube
dimensions of (a) 20X5X5, (b) 20X 15X5, (c) 12Xx15X5, and (d) 12x15X%10
were used. In comparison with Figs. 12a and 12b, micro-faults are clearer in
Figs. 12c and 12d.

DISCUSSION

Seismic interpreters use different tools to improve the interpretation of
seismic data. Employment of coherency algorithms may be useful at all levels
of interpretation. Detection of small-scale discontinuities such as micro-faults
can be difficult or even impossible. However, by using coherency algorithms,
particularly the semblance-based one, this aim is feasible. The quality of the
images depends on input data quality. If the input data has a high noise level,
considering the goal, the dimensions of the analysis cube can be modified until
the best result is obtained. Near-vertical structural features, such as micro-faults
are better enhanced when using a longer temporal analysis window. With this
algorithm, it is possible to balance the conflicting requirements of maximizing
the lateral resolution and increasing the signal-to-noise ratio.



40 HASHEMI GAZAR, JAVAHERIAN & SABETI

~ 400
(]
E
@
E
= 600

800

1000

500 1000 1500 2000 2500
in-line (m)
(@)

time (ms)

500 1000 1500 1750
cross line (m)

(b)

Fig. 10. A vertical seismic section from the 3D seismic cube of Fig. 9, showing (a) the in-line

direction and (b) the x-line direction. As can be seen, the micro-fault positions are not assigned in
ellipses.
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Fig. 11. Efficacy of coherency attributes in detecting micro-faults in Fig. 10a. Analysis cubes are:
(a) 16 X5x5, (b) 16 xX10X5, (c) 12Xx15%5 and (d) 12X15X10. Arrows show the micro-faults.
Microfault positions in panels (c) and (d) are identified better than those in panels (a) and (b).



42 HASHEMI GAZAR, JAVAHERIAN & SABETI

Fig. 12. Efficacy of coherency attributes in detecting minor micro-faults in Fig. 10b. Analysis cubes
are (a) 20 X5 %5, (b) 20X15x%5, (c) 12X 15x5, and (d) 12X 15x10. Arrows show the micro-faults.
Micro-fault positions in panels (c) and (d) are identified better than those in panels (a) and (b).
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CONCLUSIONS

Coherency attributes can help interpreters in the interpretation of seismic
data. These attributes are sensitive to several parameters, such as the dominant
frequency of seismic wavelet, the signal-to-noise ratio, and the dimensions of
the analysis cube. In coherency algorithms, by increasing both the dominant
frequency of seismic wavelet and the signal-to-noise ratio, the resolution of
images is improved. Also, increasing the dominant frequency of seismic wavelet
can detect layers in their actual thicknesses and prevent layer widening.
Generally, the quality of the images depends on input data quality. If the input
data has high noise, considering the goal, the dimensions of the analysis cube
can be changed until the best result is obtained. An increase in the spatial
window of the dimensions of the analysis cube will lead to an increase in the
signal-to-noise ratio and a decrease in the lateral resolution. Therefore, the
optimum dimensions should be obtained. The length of the time window affects
the signal-to-noise ratio. Changing this parameter is useful in the detection of
thin layers. Analyses show that semblance is better than cross-correlation or
eigenstructure algorithms in detecting micro-faults.

In this study, several parameters of the semblance algorithm are analyzed
and some parameters are defined. The results indicate that micro-faults are
detectable with a signal-to-noise of 1 or higher. When a signal-to-noise ratio of
0.5 is selected, micro-faults can be detectable but with a lower resolution. For
frequencies up to 20 Hz, there is no clear image of the micro-faults, but for
frequencies above 20 Hz, resolution of micro-faults will increase. The size of
temporal window of 32 ms (k = 8) for horizontal and dipping layers shows
good results. The best size for the spatial window is 1010, and after that
10x5. Therefore, the optimum cube dimensions of analysis are 10X 10X 8. For
these dimensions, the signal-to-noise ratio increases and micro-faults are clearly
detectable. For cross-dipping layers it is necessary to add p and q parameters
to the algorithm because the location of the micro-faults and coherency value are
estimated correctly. The optimum value of the parameters is 10 ms/m for both
p and q. In the case of dipping layers, p and q parameters are effective in the
semblance-based algorithm results. The real data used in this study is related to
carbonate units and resulted in a satisfactory performance. Micro-faults and
minor fractures hidden the primary data were detectable after applying the
algorithm.
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