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ABSTRACT

Daley, P.F., Krebes, E.S. and Lines, L.R., 2011. Reflected PP arrivals in anelastic media. Journal
of Seismic Exploration, 20: 57-72.

A homogeneous wave incident on an interface between two anelastic halfspaces in welded
contact is considered. In the anelastic sense, a homogeneous wave is defined by the condition that
the propagation and attenuation vectors are colinear. It has been indicated in a number of papers
over the past several decades that the proper definition of the real and imaginary parts of the vertical
components of the slowness vector in the reflection coefficients are not obvious for some
distributions of the quality factor, Q. This can result in anomalous behaviours of both or either of
the amplitude and phase of the PP reflection coefficient when displayed versus the incident
propagation angle or equivalently the real part of the horizontal component of the incident slowness
vector.

In an earlier work (Krebes and Daley, 2007) the question of anomalies in the amplitude and
phase of the PP plane wave reflection coefficient for these distributions of the quality factor Q in
adjacent anelastic halfspaces was discussed in considerable detail. In what follows, the above paper
(Paper 1) will be referred to often to minimize repetition of previous discussions.

The problem of the PP reflection coefficient is addressed again here. This is done within the
context of two selected approximate methods, of varying complexity, which produce acceptable
behaviour for the anomalous quantities, from a numerical viewpoint. What causes this behaviour in
the PP reflection coefficient may be attributed, at least in part, to improper signs being imparted to
the real and imaginary parts of the radical defining the transmitted P-wave vertical slowness vector
component. However, this may be looked upon as a symptom rather than the actual cause of the
problem.

Consideration of the PP plane wave reflection coefficient is the first matter dealt with and
the discussion is then extended to the high frequency geometrical optics solution of a Sommerfeld
type integral, using zero order saddle point methods for determining the particle displacement vector
of the reflected PP disturbance due to a P-wave point source incident at an interface separating two
anelastic media.
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One approximation of the saddle point method was presented in detail in Paper 1 and another
approximate approach was suggested and is expanded on here. The accuracies of approximations to
the saddle point method are established through comparison with an "exact" (numerical integration)
solution.

KEY WORDS: anelastic media, reflected PP arrivals, saddle point numerical integration.

INTRODUCTION

A recent paper in the geophysical literature [Krebes and Daley, 2007,
(Paper 1)] contains a fairly detailed discussion related to the problem of the
anomalous behaviour of the PP particle displacement reflection coefficient* at
an interface separating two anelastic media, together with a survey of the
relevant literature published over the past several decades by a number of
authors. One of the objectives of this work is to determine what is required,
from a high frequency (geometrical optics) solution perspective, to produce
acceptable accuracy in numerical modeling techniques. As the saddle point
method is computationally fast, when compared to more "exact" solutions, it is
the leading candidate for use in obtaining insight into problems related to wave
propagation in geological structures displaying anelasticity.

It has been established that for PP reflection the quantity causing the
anomalous behaviour is the vertical component of the slowness vector associated
with the transmitted P wavefront. This parameter appears as a radical in the PP
reflection coefficient but does not appear in an exponential term in the
Sommerfeld type integral, so it is not included in the computation of the saddle
point.

The problem mentioned above occurs in an expected region, where the
saddle point is near a branch point. (However, there is no indication that the
total range of incidence is not affected in some manner). The zero order saddle
point method is not valid in this region as the reflected PP geometrical optics
solution here should be in terms of a higher order saddle point method
approximation. For that reason, a modification of the saddle point approximation
will be pursued, whose major effect is (seen most clearly but not necessarily)
limited to this region. The intent is to obtain numerical results that are in
reasonable agreement with a numerical integration solution, at least in the
pre-critical region. In the post-critical region the solution is required to be
consistent with what would be seen in a similar type of problem for the elastic
case. A numerically correct remedy is sought for the anomalous behaviour,
which may not be theoretically rigorous.

* In what follows, the "PP particle displacement reflection coefficient” will be referred to simply
as the "PP reflection coefficient” as it is this quantity that is used throughout this work.



REFLECTED PP ARRIVALS 59

In Paper 1, the topic of the plane wave SH reflection and transmission
coefficients at an interface separating two anelastic media was discussed, as well
as the PP reflection coefficient at a similar boundary type. Only the PP
reflection problem will be considered here. It was determined that the
anomalous case occurred where Qy > Qy, (1 - upper or incident halfspace,
2 - lower or halfspace of transm1ss1on) and that adjustments to the formal
mathematical saddle point solution were required to be introduced to ensure
physically realistic results. The plane wave PP reflection coefficient will be
given a cursory review and, apart from plane wave dissimilarities between the
two approximate methods considered, saddle point solutions will be compared
with an "exact" numerical integration approach. One of these, a major topic of
Paper 1, will be commented on here together with the standard saddle point
method, for which it has been shown in Paper 1 that an additional assumption
must be made at the reflection coefficient stage to avoid erroneous results. This
results in the introduction of a modification, which forces the reflection
coefficient to display a behaviour that could be considered consistent with the
elastic case, and will be discussed in more detail in a later section.

Each of the anelastic halfspaces (1 - upper, 2 - lower) are parametrically
defined by a real P-wave velocity, V,, a real S-wave velocity, Vg, a density, p,
and two quality factors related to P- and S-modes of wave propagation, Qp and
Qs. The complex P- and S-velocities may be defined in terms of Q, where Q
may or may not be a function of frequency, as 1/v2 = (1/V?)(1 + i/Q). Here
v are the complex velocities, v = «:[P - Compressional] or v = $3:[S - Shear].
In slowness space, the following quantities are required: p, = a7’, p, = a3},

= (37" and p, = 33", with "1" referring to the upper halfspace and "2" to the
lower. It should be made clear that the discussion presented here is under the
assumptions that Q- > Q; p, With Q; > 1 and Qp, > 1. The quantities Qg
and Q+ s, are both chosen to be greater ‘than Q5 . The method of 1mplement1ng
a frequency dependent Q is taken from the papers of Futterman (1962) and
Azimi et al. (1968). This variation will be used in the computation of synthetic
traces, and will be formally introduced later.

THE SADDLE POINT METHOD

Consider an interface between two anelastic halfspaces where z = 0
defines the interface with the z-axis chosen to be positive downwards. A P-wave
point source is located at r = 0 at a distance —z, above the interface in a
cylindrical coordinate system and a receiver is similarly positioned at —z above
the interface at an offset of r. Thus, both the source and receiver are located in
the upper (1) halfspace, separated by a horizontal distance of r. The lower
halfspace is designated as (2). The reflected PP potential from the interface may
be written as
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oo

¢(r,z,w) = [i¢/4mp,ad]F(w) s PP(p)]o(wpr)(p/£expliwT(@)ldp ¢y
0

Aki and Richards (1980, 2002) or equivalently as

oo

¢(r,z,0) = [i¢/4mp,d][F(w)/2] s PP()HS"(wpr)(p/¢DexpliwT(@)ldp . (2)

(Abramowitz and Stegun, 1980), where F(w) is the temporal Fourier transform
of what will assumed to be a band limited source wavelet, indicated as f(t) in
the time domain. J,({) is the Bessel function of zero order, H{"(¢) is the Hankel
function of type one and order zero, PP(p) is the PP reflection coefficient at an
interface between two anelastic solids (Aki and Richards, 1980, 2002) and

TE) = &ilz + 2| 3)
The radicals &; and 7; are the vertical components of the slowness vector, and
may be defined in terms of the complex velocities o; and §; (or alternatively in
terms of the related points, p;» in the complex p-plane , defined earlier) and the

integration variable p, the generally horizontal component of the slowness
vector, as

=@ -p)'=0-" ., (=12 @)
and
=07 -p)"=0+—-p)" . (=12 S

The radicals »; (j = 1,2) appear only in the reflection coefficient PP(p), as does
£

The horizontal and vertical components of the particle displacement vector

may be obtained from the reflected PP potential, eq. (1), using the formula (Aki
and Richards, 1980, 2002)

u = (u,u,) = [(3¢/0r),(3¢/dz)] , ©)
which leads to the integral expressions

u(r,z,w) = [0¢(r,z,w)/0r]
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= [—i’F(@)/dmped] | PP (wprexplioT (@)@t dp ™)
0

and
u,(r,z,w) = [0¢(r,z,w)/0z]

= [~WF(@/4np,ed] | PPE)Iy(wprexplicT®)lpdp . @®)
0

Equivalent expressions in terms of Hankel function of type one and orders zero
and one follow from eq. (2).

Only the vertical component of reflected PP particle displacement will be
dealt with here as the horizontal component is similar. After introducing the
zero order Hankel function H{"(wpr), as in eq. (2), and retaining just the first
term in its asymptotic expansion for large argument, the high frequency or
geometrical optics formula for the vertical component of reflected PP particle
displacement [eq. (8)] may be written as

u(r,z,w) = [—w*/4mp,cd][F(w)e™™/y/(27r)]

| PP@explivT@lpap . ©)
where
T) = pr + &z + zo| . (10)
The saddle point, p is given by the solution of
dTE)dp| oy = 1 = DIz + 2| /4| oy,
=1 —plz+7|E=0, (11)
where a tilde above any quantity indicates that it is to be evaluated at the saddle
point, p = p,. The notation used in Paper 1 has been retained, so that a saddle
point in the complex p-plane will be denoted as p,, except if it lies on the real

p—axis, where the designation p, will be used. Expanding T(p) in a Taylor
series in the vicinity of the saddle point, p = p, where dT/dp = 0 yields:

T) = Tpy + dT(p)ydp?| _ (@ ~ p)* + (12)

with
ETp)/dp*| - = T"(p) = —|z + zo|p¥/E} . (13)
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The definitions 7(p) = Re[T(p,)] and x(p,) = Im[T(p,)] are introduced, where
7(p,) and k(p,) are the real travel time term and exponential attenuation term,
respectively. Thus, iwT(p) has a Taylor series expansion of the form

iwT(p) = iwr(p) — wk(p) + iWT"(P)|;=, P = P> + - . (14)

In general, the saddle point solution to the integral in eq. (9) may be
written as (Brekhovskikh, 1980; Marcuvitz and Felsen, 1973)

U,(r,z,0) = [—w/4mp,0d]{F(w)PP(p,)p" e ® ey [[—rT"(p)]*} . (15)

The alternate saddle point approximation used in Paper 1 for this specific
problem differs from the above as its derivation yields a real —valued saddle
point, p,. It is dealt with quite comprehensively in that work and will not be
presented here.

The approximations to the saddle point solution of the above stated
problem, which will be used in the numerical experiments mentioned previously,
will now be discussed in more detail. The basis for a numerical integration
procedure used to establish the numerical accuracy of these approximations is

eq. (8).

PP REFLECTION COEFFICIENT

The anomalous saddle point solution dealt with here is for a specific
distribution of quality factors in the two anelastic halfspaces: Qp and Q, with
Qs > Qyp (Fig. 1). The reflected PP particle displacement in the upper
halfspace, where the source and receivers are located, has been a longstanding
problem. The motivation here is not to proceed with a rigorous mathematical
analysis, but rather to obtain formulae of the geometrical optics type that may
be used for the numerical modeling of this anomalous behaviour such that the
results are in reasonable agreement with more accurate methods of solution,
such as numerical integration. This may require taking some mathematical
liberties. However, this will be deemed acceptable if the result is the production
of realistic numerical results.

The saddle point approximation discussed in Paper 1 will first be briefly
considered. As is standard convention, the derivative of the function T(p), with
respect to p, when set equal to zero specifies the saddle point, p,. T(p), in this
first case, is separated into real and imaginary parts. The value of p, is obtained
from the solution of d{Re[T(p)]/dp |;=; = 0. As this solution involves only real
values, the saddle point is a real valued quantity, located on the real positive
axis in the complex p—plane. Substituting this value into the imaginary part of
the exponential function T(p) produces the attenuation factor expected for wave
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Fig. 1. The geometry used to model PP reflection at an interface between two anelastic halfspaces.

propagation in an anelastic medium. This modification of the typical saddle
point method results in an improved behaviour of the radical £, = (p? — p3)”
= (a3* — pd)” and as a consequence, of the PP reflection coefficient. As
indicated earlier, a more detailed analysis of this specific procedure may be
found in Paper 1. In what follows this will be referred to as Approximation 1.
The plots of the amplitude and phase versus the incident P-wave angle for the
PP reflection coefficient approximation are shown in Fig. 2, together with the
elastic case. The parameters of the media are given in Table 1 and are the same
as those used in Paper 1. The definition of the manner in which frequency
independent (hysteretic) values of Q; j = P,,P,,S,,S,) are introduced, is given
in the introduction. The insert in the phase panel gives a clearer picture of the
behaviour of the phase in the vicinity of the elastic case critical point.

From Aki and Richards (1980, 2002) it may be seen that the numerical
integration path for this particular problem is along the real p-axis (0< p < »).
Assume a closed contour integral in the complex p-plane, and neglect the
contributions from any poles contained within this closed contour. For a
function of p, say {(p), which is analytic at all interior points (except the
possible aforementioned poles), within this simple closed contour C, may be
written as a consequence of Cauchy’s Theorem (Churchill and Brown, 2003) as

IR [=

0
| o)p = f S + | todp + | ¢ydp =0 . (16)

|R|~o0

Assuming that certain radiation conditions are satisfied for {(p), such that it
tends to zero as |[R| = o, | X {(p)dp = 0, leaving (Fig. 3)
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Fig. 2. The PP reflection coefficient at the interface between the two anelastic halfspaces described

in Table 1. Approximation 1 (Al) (grey curve) is compared to the elastic case (black curve).
Anelasticity is introduced using frequency independent complex velocities.
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Fig. 3. A schematic of the saddle point and/or numerical integration paths specific to Approximation
2 (A2). The saddle point, p,, lies on the line connecting the origin with the point p,. The imaginary
axis is scaled significantly with respect to the real axis for this assumption (black curve). The two
numerical integration contours employed are indicated in the figure as C,; and C,.
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tpdp = | cpydp . (17)

0 0

The above equation shows that the numerical integration along the two paths
produces identical results. That part of the contour related to the integration
along the real p-axis will be denoted as C,, while the other contour in eq. (17)
will be labelled C,. It is known from earlier work that the saddle point solution
for this problem is constrained to lie on the line joining the origin and the point
p = a7' = p; , where ;! and p, were previously defined. That the "correct”
saddle point path lies along this path cannot be assumed from eq. (17) because
the saddle point is in the vicinity of a branch point along at least part of this
path. However, a discrepancy of the type observed in earlier numerical results
related to this problem would indicate some additional problem.

It was suggested and demonstrated by graphing the PP reflection
coefficient in Paper 1 that "forcing" the radical £, = (p} — pd)*, in the PP
reflection coefficient, to take on its complex conjugate value for all values of p,
along the saddle point line in the complex p-plane produces good numerical
results. This will be referred to as Approximation 2. The plots of the amplitude
and phase versus the P-wave incident angle of the PP reflection-coefficient for
this approximation as well as the elastic case are presented in Fig. 4. An insert
in the phase panel provides a clearer picture of the behaviour of the phase in the
vicinity of the elastic critical point. The values for the media parameters used
in the computations are the same used in the Approximation 1 case above.
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Fig. 4. The PP reflection coefficient at the interface between the two anelastic halfspaces described
in Table 1. Approximation 2 (A2) (grey curve) is compared to the elastic case (black curve).
Anelasticity is introduced using frequency independent complex velocities.
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Before considering the saddle point synthetic trace results related to these
two approximations the equality of the two numerical integration contours
should be addressed. The model used has both the source, and receiver line
located at a distance z = —1000 m above the interface between the two
anelastic halfspaces. If the elastic case is taken as an guide, the critical distance
is at an offset of about 1155 m. The total offset range considered is from r =
0O m tor = 1200 m with the horizontal distance between two adjacent receivers
being 40 m.

In theory, integration along the real p-axis (C,)is equal to the integration
along the line from the origin of the p-plane to the point p = p, (C,). However,
in practice, the two integrations are equal only if the complex conjugate of the
quantity £, is used along the second integration path (C,) fromp = Oto p = p,.
If this is not done, the critically refracted (head) wave displays unphysical
properties in that it propagates backwards in space and time with apparently
incorrect amplitude. This behaviour is shown in panel (a) of Fig. 5. Panel (b)
shows the correct result if it assumed that the integration along the real p-axis
(C,) is the indicator of correct results. It may be inferred from this that
"forcing" the radical &, to display the same behaviour in the PP reflection
coefficient and in any subsequent zero saddle point computations is justified, if
only from a numerical perspective.

In computing the synthetic traces by the numerical integration method the
velocities are assumed to be frequency dependent. This dependence is
established in the fashion described by Futterman (1962) and is discussed in
detail in Aki and Richards (1980, 2002). The introduction of an additional
parameter for each halfspace, a reference frequency, fy, is required and given
in Table 1. The choice for this is the predominant frequency, f,,, of the Gabor*
source wavelet — f = f; = 30 Hz. The relevant formulae at some other
circular frequency, w, in terms of wy = 2xf; of the real values Q(w) and V(w)
and complex value velocity v(w) are determined by the sequence of relations

Q@) = Qupll — {I/mQ(wp)}In(w/wp)] (18)
Vi) = V(wp)[Qwp)/Q(w)] 19

SO

which results in
I/viw) = [I/V()][1 + i/2Qw] . v =«aor and Qu > 1 (20)
Egs. (18)—(20) correspond to those which appear in Zahradnik et al. (2002).

* Gabor wavelet: f(t) = sin2aft)exp[ —(27f,t/y)?], where +y is a dimensionless damping that
controls the amplitude spectrum width in the frequency domain and the side lobes of the wavelet in
the time domain.
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Table 1. Parameters of an anelastic two halfspace model used in producing the numerical results
presented. These real quantities are used to specify either a constant Q type structure or with the
addition of the halfspace reference frequencies, f;, an anelastic model that is frequency dependent.

p (glem?) Vi (m/5) Vs (km/s) Q Qs fr (Hz)
2.1 2500 1000 25 15 30
2.2 5000 2000 40 20 30

§ o 200 00 1200

“
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—\.N\;
\

Time (ms)

»
A
=
N\

——=
(\/"\-\_

(=)

400

Time (ms)
800

1000

M g% %?"??%%‘P%&%%%

(b)

Fig. 5. Integration along C, in the complex p-plane. Panel (a) shows the erroneous results obtained
if the constraint that £, is not replaced by its complex conjugate in the integration process. In panel
(b), the "correct"” synthetic numerical integration traces are displayed. If the results from integrating
along C, were overlaid in panel (b), the match would be almost exact.
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In the next section zero order saddle point synthetic traces will be
compared with those obtained from numerical integration for the anelastic model
discussed above.

ZERO ORDER SADDLE POINT APPROXIMATIONS

Synthetic traces computed using the two approximate zero order saddle
point methods described above are shown next. The model used is as described
for the numerical integration synthetic traces. The first offset is at r = 0 with
30 further receivers placed at 40 m intervals so that the maximum offset is
1200m. If the elastic parameters are used the critical distance is 1155 m, which
lies at about trace 29 in the common shot gather of 31 traces. The post-critical
offsets were included to see how the saddle point approximations behave without
the inclusion of the critically refracted P,P,P, (head) wave (Cerveny and
Ravindra, 1971) or any modification of the saddle point approach to
accommodate the range of offsets where a higher order approximation should
be used to compensate for a saddle point in the vicinity of a branch point
(Marcuvitz and Felsen, 1973; éerveny’r and Ravindra, 1971, as examples).

As mentioned earlier, a Gabor wavelet is used with a predominant
frequency f, = 30 Hz and a dimensionless damping factor, v = 4. The time
sampling rate is 1 ms in all traces. The manner of introducing a frequency
dependent Q into the saddle point computations is the same as that used for the
numerical integration traces described in the previous section.

The three panels in Fig. 6 show the 2 saddle point approximations
together with the numerical integration result for the model described above and
in Table 1. To preserve space, only 500 time points of the traces were plotted,
starting at 601 ms which was assigned as the zero tie point in all of the traces
in this figure. The two saddle point approximations are indicated in Fig. 6 by
Al and A2 and numerical integration traces by NI.

In the three panels in Fig. 7, the two approximations and the numerical
integration traces are compared by plotting all three on a single axis for the
offsets r = 0,600, and 1200 m. The line types used in the plotting of the three
different traces are defined in the figure caption. The fit between all
approximate traces with the numerical integration traces is quite evident, except
at r = 1200 m, which is in the range of offsets for which the reflected and
critically refracted arrivals interfere. This is known as the "interference zone".
More on this topic may be found in Cerveny and Ravindra (1971).

After viewing the panels in Figs. 7, it becomes evident, that at least in the
high frequency or geometrical optics solution, the two saddle point
approximations produce consistent results, with approximation 2 producing the
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Fig. 6. The two saddle point approximations, Al and A2 , discussed in the text plotted together the
numerical integration, NI, solution of the vertical component of reflected PP particle displacement
due to P-wave incidence on an interface separating two anelastic halfspaces. Each of the gathers
consists of 31 receivers spaced at 40 m intervals for an offset range of (O m < r < 1200 m). A 30
Hz Gabor wavelet was used as a source with a-time sampling rate of 1 ms for P-wave incidence at
a plane interface between two anelastic halfspaces. Zero time on the traces corresponds to an actual
time of 601 ms. Each of the traces are 500 ms in length.
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Fig. 7. A comparison of traces at selected offsets of r = 0, 600 and 1200 m . Synthetic traces
obtained using the two saddle point approximations, A1 and A2, and the numerical integration, NI,
approach are plotted on a single time axis. The code identifying each trace type is given in the insert
in panel (c). The offset r = 1200 m corresponds to a point within the interference zone, where the
reflected wave and critically refracted (head) wave are both present. In the saddle point
approximations the critically refracted wave and the effect on a saddle point approximation in the
vicinity of a branch point are not included.

best fit with the numerical integration traces. This is to be expected, as Al
incorporates more approximations to produce synthetic results.

CONCLUSIONS

A comparison of saddle point approximations for the case of PP reflection
due to incidence of a P-wave , emanating from a point source, at an interface
separating two anelastic media has been presented. The two zero order saddle
point approximations considered provide numerically proper approaches of
dealing with the anomalous amplitude behaviour, observed in problems of this
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type due to a specific distribution of Q, values in the two halfspaces. Acceptable
results, when compared to the "exact" solution, obtained from a numerical
integration algorithm were realized. This comparison of results was done within
a numerical context and it may be concluded that if the PP reflection coefficient
displays appropriate behaviour, so too will the associated saddle point
approximation. Further investigation is still required to determine a proper
theoretical explanation for the anomalous behaviour observed.

The first of these approximations, because of its minimized memory
requirements and computational speed is in the process of being implemented
in a plane layered structure with an arbitrary number of layers and receivers.
This is being done for both amplitude versus offset, (AVO), and vertical seismic
profile, (VSP), modeling applications.
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