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ABSTRACT

Wang, W., Gao, J. and Chen, W., 2011. Robust estimates of seismic reflector orientations with
weighted vector directional filter. Journal of Seismic Exploration, 20: 119-134,

A major difficulty in estimating seismic reflector orientations (dip and azimuth) arises at
discrete lateral and vertical discontinuities across which reflector dip and azimuth change. To
overcome this problem, we explore a weighted vector directional filter (WVDF) for smoothing
volumetric dip and azimuth computed by a finite-difference method. The approach falls into three
steps: (1) set a reference direction, (2) invert opposite vectors to convert directions into orientations,
and (3) smooth the vector field with the WVDF. The smearing and confusing variations that arise
across latera] and vertical geological boundaries with traditional dip and azimuth estimations are
avoided by the proposed method. This method is more robust for estimating seismic dip and azimuth
and has potential for applications such as structure-oriented filtering and coherence. A still more
promising application of this method is high-resolution dip and azimuth analysis through volumetric
estimations of reflector curvature. Both synthetic and real data examples are used to demonstrate the
ability and efficiency of our approach.

KEY WORDS: finite difference, gradient vector, seismic dip and azimuth, vector filter.

INTRODUCTION

Seismic reflector orientation (dip and azimuth) has several applications in
seismic data processing and interpretation, such as structure-oriented smoothing
(Fehmers and Hocker, 2003; Hoeber et al., 2006; Lavialle et al., 2007),
dip-steered coherence (Luo et al., 1996; Marfurt et al., 1998; Gersztenkorn and
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Marfurt, 1999; Marfurt et al., 1999) and curvature attributes estimation
(al-Dossary and Marfurt, 2006). Seismic reflector orientation itself provides
stratigraphic and geographic information and is a valuable interpretation tool
(Dalley, 2008).

Several methods have been proposed to compute the volumetric reflector
orientation. One standard scheme for extracting local dips is the local slant stack
(Ottolini, 1983). Plane-wave destruction filters are also used to determine dips
and are usually followed with smoothing (Fomel, 2002). Besides, instantaneous
dip estimation algorithms are also adopted in practice (Barnes, 1996; Luo et al.,
1996). They are based on attributes computed from the analytical traces. Since
the estimation of instantaneous attributes suffers from singularities when
reflector events interfere with each other, Barnes (2000) locally averages
instantaneous attributes prior to estimating dip and azimuth, thereby improving
stability with only minor lateral resolution loss. Another feasible way to estimate
dip and azimuth is the dip scan methods (Marfurt et al., 1998; Marfurt et al.,
1999), which calculate coherency attributes over a multiplicity of trial dips, with
the dip having the highest coherency measure corresponding to the local dip of
the reflector. A disadvantage of the dip-scan approach is that they discretely
sample inline and crossline dips so that one may miss subtle features. Moreover,
Marfurt (2006) proposes the multiwindow dip scan scheme to avoid the
limitations of conventional centered dip and azimuth estimations.

Another solution is to use a Finite-Difference method. It is easy to
implement and seismic dips and azimuths are represented by gradient vectors.
However, it is a first-derivative operation and therefore tends to amplify
high-frequency noise. A smoothing scheme is needed to suppress the noise and
extract geological features. It is straightforward to calculate gradient vectors
with the finite-difference method, but smoothing this vector field is nontrivial
because a seismic event has two opposite normal directions, one of which
represents the orientation. For example, both 0° and 180° dips are horizontal
events, but their average (90°) is vertical. Therefore, raw directions cannot be
taken for a smoothing operation unless some maneuvers are used.

One possible approach to smooth the gradient vector field is the gradient
structure tensor method (Randen et al., 2000; Luo et al., 2006). In the method,
the gradient structure tensor is constructed by the outer product of the gradient
vector with itself and followed by smoothing each element of this tensor
individually by a low-pass spatial filter:
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In eq. (1), VT = Vo, V,, V) = [(dU/3x),(dU/dy),(8U/dz)] represents the
gradient vector at every point, T denotes the transpose, U is the input data, and
LP is a low-pass spatial filter. The eigenvector with the largest eigenvalue will
by definition best represent the variability of the seismic data and therefore will
be aligned with the vector normal to the reflector events. But the gradient
structure tensor approach may fail, when a dominant eigenvalue does not exist
and the wrong eigenvector is still selected to determine the reflector orientation
(Wang et al., 2008a). In order to avoid inherent instabilities of the gradient
structure tensor approach, Wang et al. (2008a) propose an iterative
inverse-vector method, which iterates a loop of three steps: (1) set a guide
direction, (2) invert opposite vectors, and (3) smooth vectors using an arithmetic
average and update the guide. Several iterations are used to update the guide
direction progressively to a meaningful average. Although the estimated
orientations can be slightly enhanced by this iterative process, lateral and
vertical geological boundaries are blurred by the simple Arithmetic Mean Filter
(AMF) and cannot be restored in their method. Moreover, these aforementioned
smoothing schemes are all centered dip and azimuth estimations with a single
analyzing window and they may fail when the analyzing window spans a fault,
where they provide at best an estimation of the apparent dip across the fault
rather than true reflector dip (Marfurt, 2006).

The edge-preserving filters have been widely used to reduce random noise
while preserving the edges. Luo et al. (2002) and AlBinHassan et al. (2006)
propose the 2D and 3D edge-preserving smoothing (EPS) algorithms,
respectively. However, these edge-preserving methods are designed for scalar
seismic data rather than vector data. In order to achieve better preservation of
geological boundaries and accurate dip estimations in the vicinity of
discontinuities, we propose an edge and detail preserving vector filter, namely
weighted vector directional filter (WVDF), for smoothing volumetric dip and
azimuth. In this paper, first we apply the enhanced isotropic gradient operator
(Wang et al., 2008b) to calculate gradient vectors and then invert them
according to the reference direction. Second, the WVDF method is presented
to smooth the inversed gradient vector field and to obtain the suitable reflector
orientations. We demonstrate the merit of this method through synthetic data and
show its efficiency by using real seismic data with a comparison with the AMF
method, the instantaneous dip estimation and the dip-scan approach. Finally, we
discuss our results and conclude.

GRADIENT VECTOR FIELD COMPUTATION AND INVERSION

For a 3D seismic data U, its gradient at every position X, of the grid can
be computed by the symmetric finite-difference method:

V,(,),k) = (Ui+1,j,k - Ui—l,j,k) . 2)
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Alternatively, in this paper, we use the enhanced isotropic gradient operator
(Wang et al., 2008b), which is designed to reduce anisotropic inaccuracies of
conventional numerical operator such as simple difference, Sobel, and Prewitt,
and produce generic frequency-independent operators. In the 2D case, it is

Viij) = Uiy = Uiny))
+ 0.25% (Uit oy — Uimyjor + Uiy — Uisyen) - (3)
In the 3D case, it is
Vx(i’j’k) = (Ui+1,j,k - Ui~1,j,k)
+ 0.245 = Uitijorx — Uiijoik T Uirrjere = Uisrjern)
+ 0.245 = (Ui+1,j,k—1 - Ui—l,j,k—l + Ui+1,j,k+1 - Ui—l,j,k+1)
+ 0.085 % (Uit jo1x-1 = Uisyjoreer + Ui — Uisijiii-)
+ 0.085 = Uit jo1xe1 — U joiker + Ui+1,j+1,k+1 - Ui—l,j+1,k+1) . @

It can be computed in a similar way for the other two components V, and V, of
the gradient vector V.

As discussed previously, the raw gradient vectors cannot be smoothed
directly unless directions are converted into orientations. Therefore, we need
first to define a reference direction. We choose the downward vector
corresponding to zero dip as the reference direction, which is equivalent to
horizontal seismic reflectors (Fig. 1). Then every vector is compared with the
reference vector, and if the angle between them is greater than 7/2, the vector
is inverted by multiplying each component by —1. The regularized vectors
pointing to the downward half space can now be candidates for the smoothing
operation.

WEIGHTED VECTOR DIRECTIONAL FILTER

Vector filters are very popular in the color image processing community
(Lukac et al., 2005), e.g., Vector Median Filter (VMF), Basic Vector
Directional Filter (BVDF). The BVDF refers to the directional information of
input vectors and is essentially the directional median filter. Thus, the BVDF
is suitable for smoothing the inverted gradient vector field, especially in the
vicinity of discontinuities where the BVDF can reduce confused variations and
keep geological boundaries less smeared (see later synthetic data examples).
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horizontal reflector

Fig. 1. Gradient vector inversion according to the reference direction Vy.

However, when noisy data and complex geological environments are
encountered, the vectors in an analyzing window could be all contaminated.
Thus, the BVDF may produce spatially less consistent results because the BVDF
seeks one of the input vectors as its output which may be also contaminated.
Herein, we propose a weighted average vector filter, i.e., the WVDF, to smooth
the inverted gradient vector field.

Consider a cubic window W of size N, X N, X N, in the 3D data cube
(a square window of size N, X N, or N, X N, in the 2D case) containing the
target point at its center. The input gradlent vectors inside the window W are
denoted as V (Vi,Vi VJZ) where j = 1,2,-- N, where N = N, X N; X N,
(N =N, X NZ or N, >< N, in the 2D case). The general form of the WVDF

proposed here is given as a weighted average of the input vectors inside the
window W:

V =

-Mz
IMZ

—
il

wV, =Y [u/ Z wlV, (5)

where y; is the weighting coefficient of the vector \7j and w; is the normalized
version of y;, and V is the output of the WVDF at the target point.
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According to (5), the proposed output is a weighted average of all the
vectors inside the filtering window. The weighting coefficients are transforms
of the summation of distances between the considered vector and all input
vectors inside the filtering window. To smooth seismic dip and azimuth, it is
desirable to perform smoothing on all vectors which are from the same most
centrally located set. Thus, the adaptive weights should represent the confidence
that the vectors under consideration come from the same set. It is, therefore,
reasonable to make the weights in (5) proportional to the difference in terms of
a distance measure between a given vector and its neighbors inside the filtering
window. The design objective is: "Assign the maximum weight to the vector
which is the most centered inside the analyzing window". Thus, the vector with
the maximum weight will be the one which has the minimum distance from all
the other vectors. In this way, atypical vectors arising from noise or differently
oriented reflectors secondarily covered by the current filtering window will be
assigned smaller weights and will contribute less to the final output.

In our WVDF method, we propose to use the vector angle criterion as
distance measure. This criterion considers the angle between two vectors as their
distance:

a(V,V) = cos ' [VIV/(|V,| |V,D] . (6)

And the aggregated distance associated with the vector \_/j inside the filtering
window W is defined as follows:

N
A= 1) eV, V)IN . )
i=1

The distance A, falls in [0,7] and depicts the deviation of the vector \_/j from all
other vectors in the filtering window. This criterion was first introduced by
Trahanias and Venetsanopoulos (1993) to measure distances among RGB color
vectors for image processing purposes. In our WVDF method, it is used to
measure the angle distances between inverted gradient vectors.

The weighting transform is essentially a membership function with respect
to the specific window element. In accordance to our design objective it is
reasonable to select an appropriate weighting transform so that the vector with
the minimum aggregated angular distance is assigned the maximum weight and
vice versa. Thus, an S-shaped monotonically decreasing function can be taken
as the membership function. In our WVDF method, the weight y; associated
with the vector V; takes the following form:

I’Lj — Rx—l(,ﬂ. _ Aj))\/[R)\—l(,’r _ Aj))\ + (1 . R))\—I(Aj))\] , (8)
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where R € (0,1) is the inflection point of the S-shaped function, and the
parameter A = 1 controls its sharpness. In Fig. 2, we illustrate the weighting
transform functions corresponding to different R and A. As can be seen, the
weight p; is approaching 1 as A; = 0, and goes to 0 when A; - 7. In other
words, the weighting transform actually works as a classifier in our WVDF
method. According to the aggregated angular distance A;, the vectors in the
filtering window are classified into the most centrally located part and the other
part (Fig. 3). The vectors belonging to the most centrally located subset are
assigned with large weights and contribute mainly to the filtering result while
the other vectors with small weights have little effect on the dip estimation.
Herein, the parameter R acts as the threshold and the parameter \ controls the
transition between these two parts, where a large \ leads to a sharp transition
of the transform function and a small one results in a slow degradation. The two
parameters should be chosen in accordance with the data quality. Small R and
large A should be chosen for the data with high signal-to-noise-ratio (SNR) to
well discriminate the most centrally located subset while for noisy data a little
large R and small A should be used to include more vector elements to guarantee
sufficient smoothing performance.

04

0.2

Fig. 2. S-shaped weighting transform functions for the WVDF method.
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(a) (b)
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Fig. 3. Schematic showing the filtering performance of the WVDF in the vicinity of a fault. (a)
Synthetic model with a fault overlaid red arrows indicating gradients, (b) a zoomed part of (a) in the
fault region overlaid a green box indicating an analyzing window centered about the target point C.
The blue part denotes large weights and the transparent part denotes very small weights taken by
vectors therein.

Comparing with the multiwindow analysis technique used in the dip scan
methods (Marfurt, 2006), our WVDF method derives its output from the most
centrally located subset chosen adaptively in the analyzing window rather than
selects the reflector dip from some predefined subwindow. This is very
important for the detection of small discontinuities and subtle features.
However, the computational complexity of the WVDF method to process the 3D
vector field should be considered. Since the aggregated angular distances have
to be computed for all vectors inside the filtering window, the computation
burden is mainly dominated by the inner products of vectors. Without loss of
generality, let the filtering window be cubic, i.e., N, = N, = N, = M. Then,
for each filtering window, the total number of vector inner products having to
be computed is

ng, = MMM — 1)/2 ~ OM®) | )

We see that n,;, is proportional to M® and is a relatively large number. This
computation can be reduced because the filtering windows of two adjacent target
points have large overlap. M*(M — 1) inner products are the same and only M?
are different. So the number of inner products having to be done now becomes

N, = M*M — DM? + M*(M? — 1)/2 ~ OM®) . (10)
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Moreover, some simplifications can also be adopted to reduce the
computational cost. In this paper, we take the following predigestion: firstly, the
vectors in each cuboid filtering window are simply averaged along the z-axis to
get a vector field within a square window of size N, X N, and then the WVDF
is performed within this 2D window to obtain the final filtering result for the
target point. Since seismic data are composed by a stack of layers, the vectors
along the z-direction are always oriented closely in the analyzing window. Thus,
our predigestion is feasible and acceptable and has little influence on the
characterization of lateral discontinuities and subtle features.

SYNTHETIC DATA EXAMPLES

The synthetic data is a 2D section composed by a stack of layers with
sinusoidal variation amplitude and broken by a fault [Fig. 4(a)]. The synthetic
model is defined by:

u(x,z) = sin[27xf(—x-sinf + z-cosb)] , an

Fig. 4. (a) Original data, (b) noisy data with SNR = 11 dB. Estimated dips by (c) the AMF, (d) the
BVDF, and (e) the WVDF methods.
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where f is the frequency of the reflection events, and 6 corresponds to the dip
angle. The left part of our synthesized data is for dip angle § = 0° while the
right part has § = 15°. The data are then corrupted with additive Gaussian
white noise at different SNR levels of 8dB, 11dB, and 14dB. Fig. 4(b) shows
the noisy profile for 11 dB SNR.

We applied the WVDF to smooth the inverted gradient vector field of the
noisy synthetic data and assigned parameters R = 0.1 and N\ = 4 for the
weighting transform function (the solid line in Fig. 2). Besides, the simple AMF
and the BVDF methods are presented here for comparison. Every filter is using
a square filtering window of size 9 X 9. The dip estimation results are given
both in terms of visual quality and Root-Mean-Square-Error (RMSE), which
allows quantifying the similarity between each estimated result and the real dip
angle. In order to do detailed comparisons, the original profile is segmented into
two regions: faults and non-faults. The segmentation is achieved by simply
setting 4 points, which is the distance from the target point to the border in the
filtering window, on each side of the discontinuity as fault regions and the other
part as non-fault regions. Then, for each estimated result, the RMSE has been
computed in these two different zones in order to show the behavior of the
methods particularly in the fault regions. The resulting RMSE values are
provided in Table 1 and the estimated dips from the noisy profile (SNR =
11dB) are also shown in Figs. 4(c)-(e).

The RMSE results show that both the WVDF and BVDF methods have
better performance than the AMF method in fault regions whereas both the
WVDF and AMF methods are superior to the BVDF method in non-fault
regions. This can also be seen from Figs. 4(c)-(e). The AMF method produces
false dip estimates in the fault regions whereas the dip edges located by the

Table 1. RMSE values for different dip estimations of noisy synthetic data in both fault and non-fault
regions (50 trials).

Original SNR values Methods RMSE (°)

(dB) Fault Region Non-Fault Region Whole Profile
AMF 11.90 3.02 3.57

8.0 BVDF 8.36 3.90 4.08
WVDF 8.11 3.19 3.42
AMF 13.00 2.02 2.93

11.0 BVDF 7.30 2.72 2.92
WVDF 7.17 2.06 2.35
AMF 13.24 1.42 2.60

14.0 BVDF 6.07 1.88 2.11

WVDF 5.99 1.26 1.59
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WVDF and BVDF methods are more accurate (Figs. 5(b)-(d)). On the other
hand, both the WVDF and AMF methods produce spatially more consistent dips
than the BVDF method in non-fault regions. To the end, considering the
smoothing performance and edge preserving ability, our WVDF method takes
advantage over both the AMF and BVDF methods.

REAL DATA EXAMPLES

The methodology presented here was applied to a 3D seismic data from
the Daqing oil field in China. The data set has a time sampling frequency of 1
kHz, and inline and crossline spacing of 20.0 m. A fault network with several
stratigraphic features, such as a major channel and some weak ones, is present
in this data. Fig. 6(a) shows the vertical slice along line AA’ through the
seismic data. The WVDF and AMF methods with a cubic analyzing window of
size 9 X 9 X 9 are used to estimate reflector orientations and the same
parameters R = 0.1 and A = 4 as in the synthetic examples are for the
weighting transform function of the WVDF. Besides, the instantaneous dips and
the smoothed dips of maximum similarity computed by the commercial software
SMT (http://www.seismicmicro.com) are also presented. Figs. 6(b)-(e) depict
the estimated dips. The instantaneous phase dips are aliased for steep reflector
dips while the smoothed dips of maximum similarity suffer from strip artifacts
and are trapped in the vicinities of faults. Both the estimated dips of the AMF

(d)

(a) - (b)

Dip angle ()

20 -10 0 10 20 30

Fig. 5. Zooms of the marked black rectangles in Figs. 4(b)-(e), respectively.
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and WVDF methods share a comparatively consistent spatial appearance.
However, compared with the AMF method, the proposed WVDF method honors
the abrupt changes in dip along the faults. Some typical places are indicated by
arrows in Figs. 6(d)-(e). For a further comparison between the WVDF and
AMF methods, we calculated the volumetric curvatures directly from the
estimated seismic dips and azimuths (al-Dossary and Marfurt, 2006). Figs.
7(d)-(e) show the time slices of the most negative curvature attributes at 0.785s.

Fig. 6. (a) Vertical slice along line AA’ through the seismic data from Daging oil field. The
apparent dips calculated using (b) the instantaneous dip estimation, (c) smoothed dip of maximum
similarity over a nine-trace X nine-trace window along local dips, (d) the AMF, and (e) the WVDF
methods.
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A clearly higher resolution curvature attribute is obtained through the dip and
azimuth estimated by our WVDF method and it depicts lateral discontinuities
and stratigraphic features more clearly and accurately than the one from the
AMF method. Compared with that in Fig. 7(d), the faults in the central left part
can be identified more easily from Fig. 7(e) and a fine channel from southeast
to northwest in the upper central part also emerges in Fig. 7(e).

i |
o R

3

Fig. 7. (a) Time slice at 0.785 s through the original seismic volume. Corresponding slice through
apparent dip volumes, calculated using (b) the AMF, and (c) the WVDF methods. Corresponding
slice through the most negative curvature attributes volumes with short-wavelength (o = 1.25),
calculated from volumetric estimations of dip and azimuth by (d) the AMF, and (¢) the WVDF
methods.
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DISCUSSIONS

The computation of the gradients by low order finite difference such as
simple central difference may cause inaccuracy with no consideration about the
frequency and orientation contents of structures. Wang et al. (2008b)
investigated this problem through their so-called "Enhanced isotropic gradient
operators" which is also adopted in this paper. The enhanced gradient operators
are derived by first parameterizing corresponding numerical operators, followed
by applying them to plane waves to determine the parameters for the operators
by matching analytical gradients with numerical gradients. The numerical
accuracy against frequency and orientation is minimized by the properly selected
parameters. Besides using seismic amplitude data, the raw dips can also be
computed from the instantaneous phase. In this case, the gradients should be
obtained from analytical traces using a Hilbert transform rather than directly
applying the finite-difference method on the instantaneous phase.

The size and aspect ratio of the analyzing window in the WVDF method
are depending upon the exploration objectives. Typically, N,, N, and N, range
from 3 to 21 can be used to extract meaningful geological features. Generally
large analyzing windows lead to spatially more consistent dip and azimuth and
are suitable for extracting large-scale features. On the contrary, small analyzing
windows are used to obtain high-resolution dip and azimuth for subtle feature
detection. If some edge preserving filter is carefully applied to the data
previously, small analyzing windows are particularly preferred to integrate
information to obtain high-resolution results with less consideration about the
noise suppression. In this paper, in order to show the performance of the
WVDF method simultaneously for noise suppression and detail feature
preservation, we choose a moderate size for the analyzing window, which means
9 x 9 for the 2D synthetic model and 9 X 9 X 9 for the 3D real data set.

CONCLUSIONS

In this paper, we propose an adaptively weighting vector filter, i.e., the
WVDF, for smoothing seismic dip and azimuth calculated by a finite difference
method. The WVDF involves both a directional filtering scheme based on
aggregated angle distances and the magnitude component of each one of the
gradient vectors. Applications on synthetic data show that the WVDF method
takes advantage of smoothing performance of the AMF method in non-fault
regions and edge-preserving ability of the BVDF method in the vicinities of
faults. The real data example demonstrates the excellent behavior of our WVDF
method for seismic reflector orientation estimation. With robust estimates of
seismic dip and azimuth by our WVDF method, more refined curvature
attributes are obtained for seismic interpretation.
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