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ABSTRACT

Deng, X., Yang, D., Liu, T. and Yang, B., 2011. Study of least squares support vector regression
filtering technology with a new 2D Ricker wavelet kernel. Journal of Seismic Exploration, 20: 161-
176.

To suppress the random noise in seismic data, the least squares support vector regression
(LS-SVR) filtering technology with a new 2D Ricker wavelet kernel is proposed in this paper.
Firstly, we prove that the 2D Ricker wavelet kernel is an admissible support vector kernel. The
proposed 2D Ricker wavelet kernel takes into account the characteristics of seismic data in the
time-space domain. And the kernel parameters of the 2D Ricker wavelet kernel reflect the dominant
frequency of seismic data in time domain and the wavenumber of seismic data in space domain,
which will help the difficult problem of parameters selection for LS-SVR. Then by solving a
quadratic optimization problem with constrains, we can obtain the regression function so as to
compute the filtered output. The simulation experiments on synthetic records show that compared
with the LS-SVR using 1D Ricker wavelet kernel and the common f-x prediction filtering method,
the proposed method can suppress the random noise more efficiently, and enhance the continuity of
events greatly. An example on a real seismic data processing also proves the effectiveness of the
proposed method. So the LS-SVR with the 2D Ricker wavelet kernel can be used to attenuate the
random noise in seismic data.

KEY WORDS: 2D Ricker wavelet kernel, least squares support vector regression, seismic data,
random noise reduction.
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INTRODUCTION

For both the prestack and stacked seismic data, random noise reduction
is a very important part of seismic data processing. Many filtering methods have
been studied for the random noise suppression of seismic data. The f-x
prediction filtering (Canales, 1984; Sacchi and Kuehl, 2000) introduced to
extract linear features and suppress random noise for seismic data. However,
such an algorithm is not successful in processing seismic data with nonlinear
events. The median filter (Bednar, 1983; Duncan and Beresford, 1995; Liu et
al., 2009) is a nonlinear processing method, which can efficiently suppress the
spike-like noise. But it works less well for the white Gaussian noise. Local
singular value decomposition proposed by Bekara et al. (2007) is better than f-x
deconvolution and median filtering in removing background noise, but it
performs less well in enhancing weak events or events with conflicting dips. Lu
(2006) proposed an adaptive SVD filter to enhance the non-horizontal events by
detection of seismic image texture direction and then horizontal alignment of the
estimated dip through data rotation. In addition, some technologies such as
Karhunen-Loeve transform (Jones and Levy, 1987), forward-backward linear
prediction (Wang, 1999), complex-trace analysis (Karsli et al., 2006), and
empirical mode decomposition (Bekara and Baan, 2009) have also been
presented and given good results. The above different methods have different
principles, application conditions and limits.

SVM is a machine learning method based on the statistical learning theory
(Vapnik, 1995). It has been widely applied to the classification and regression.
SVM for regression is also named as support vector regression (SVR). Least
squares SVR (LS-SVR) (Sunkens and Vandewalle, 1999) is a simplified version
for the standard SVR. We have proposed the LS-SVR with 1D Ricker wavelet
kernel (marked with 1D SVR) for noise reduction (Deng et al., 2009). The
results show that the 1D SVR method works better than the adaptive Wiener
filtering and wavelet transform-based method. Based on the 1D SVR method,
we develop the LS-SVR with 2D Ricker kernel (marked with 2D SVR) in this
paper. Firstly, we create a 2D Ricker wavelet kernel according to the features
of seismic data in time-space domain. Then the theoretical frame of 2D SVR is
given. Finally, for testing the performance of the proposed method, we compare
the proposed method with the 1D SVR method and the commonly used f-x
prediction filtering by experiments on the synthetic and real seismic data.

SVR WITH 2D RICKER WAVELET KERNEL
2D Ricker wavelet kernel

The Ricker wavelet is often used as the seismic wavelet in the seismic
simulation computations. According to the expression of Ricker wavelet function
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in the time domain y(t) = (1 — 2#x2f2t2)e ™™ (f is the dominant frequency), we
have proposed the Ricker wavelet kernel

K(t19t2) = (1 — 2722 " tl—‘tQ || z)e_ﬂ’m"(l*‘z”2 , (1)

(f is the kernel parameter) and we have proved that it is an admissible support
vector kernel (Deng et al., 2009). Because t = d/v and f = vk (v is wave
speed, d is offset, and k is the wavenumber), we have

y(©) = [1 — 27 f)e ™™
= [1 — 27*(vk)*(d/v)*]e mWHam”
= [1 — 27°k*d*]e ™% | )
So in space domain, we get
y(d) = [1 — 27°k*d*le"™¢ (k is the wavenumber). (3)
Now we make the function in the space domain
K(d;,dy) = [1 — 227%|d, — d, | 2le- ¥ la-al* 4)
(k is the kernel parameter)
Obviously, eq. (4) has the same expressional forms as eq. (1), so this
function in the space domain is also an admissible support vector kernel. The
following proposition (Cristianini and Shawe-Taylor, 2000) allows us to create

more complicated kernels from simple kernels.

Proposition 1. Let K, and K, be kernels over X X X, X &€ R". Then the
function K(x,z) = K,(x,z)K,(x,z) is kernel.

In accordance with proposition 1, from the kernels (1) and (4), we create
the following 2D Ricker wavelet kernel

K(x,z) = {[1 — 27t — tp)*le "Fe-w" }
X {[1 — 27%¥d, — d,)Y]e "K@-ar } )

where the 2D input vector x = (t,d) and the kernel parameter vector p = (f,k).
This 2D Ricker wavelet kernel embodies the features of the seismic wave in the
time-space domain. Furthermore, the kernel parameter vector reflects the
physical meaning of the seismic wave in the frequency domain and the
wavenumber domain, which will avoid the blind selection of kernel parameters



164 DENG, YANG, LIU & YANG

such as the exhaustive search method. The appropriate parameter selection has
been a vexed question ever since the SVM was proposed in 1995 (Cherkassky
and Ma, 2004).

LS-SVR with 2D Ricker wavelet kernel

Given a seismic data set of [ points {x;,y;}!_, with input data x; = (t;,d;)
€ R? and output y; € R, a regression function for LS-SVR is given by

f(x) = wex) +b , (6)
where the nonlinear mapping ¢(x) maps the input space to a so-called feature
space, w*¢(x) is the inner product between the weight vector w and ¢(x), and

b € R is the bias term. The optimization problem of the LS-SVR (Suykens and
Vandewalle, 1999) is defined as follows

I
min{% [o]? + (v/2) Y €2} ™

i=1

S.Ly, = we®x) + b e, i= 1l

where v is a regularization parameter. The Lagrangian function of the above
problem is

!
Lw.eb,a) = %lw]? + /2) ), e
i=1

!
~ Y afoe®) +b+e -yl , ®)

i=1

with Lagrange multipliers o;. € R (i = 1,2,-+,). Using the optimality conditions
of problem (7) and solving the corresponding system of linear equations, we
obtain

b=1"ANy1"A"'1 |, o =AYy — 1b) , )
where A = @ + v7'I, @ is a kernel matrix in which the element Q; =

e(x)e(x) (,j = 1,2,...,0, 1 is a unit matrix, y = [y,,Y5...,y]", and o =
[y, 00,...,00]". Then the regression function can be expressed as
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!
f(X) = w(®) + b = ), ap(x)e(x) + b . (10)

i=1

Note that we can replace the inner product in the above formula by a
kernel function that satisfies Mercer’s condition (Mercer, 1909), i.e., K(x;,x;)
= ¢(x;)'¢(x;). In such a case, the nonlinear regression function becomes

{
fx) = Y, o K(x,X) + b . (11)
i=1

Then for all the inputs x; = (t,d) (i = 1,2,...,]), we compute the regression
outputs f(x;) (i = 1,2,...,J) using the regression function, namely the denoised
results.

SIMULATION EXPERIMENTS

To investigate the denoising performance of the proposed 2D SVR, we
test the method on synthetic seismic records, and compare it with the 1D SVR
and the f-x prediction filtering. Based on the parameters listed in Table 1, we
synthesize a noise-free record with 100 traces. The geophone interval is 10 m.
The record simulates a model with a faulted layer and a thin layer as
corresponding events. Fig. la draws the synthetic record every three traces.
Then random noise with different types and levels are added on the original
record, including the white Gaussian noise added on traces from 1 to 35, the
spike-like noise added on traces from 36 to 70, and the uniformly distributed
noise added on traces from 71 to 100. The above three different denoising
methods are used to suppress the random noise. Note that a windowing
algorithm is used in all three methods. The selected parameters are as follows:

Table 1. Parameters used to generate the synthetic record.

Event ty (8) A (V) v (m/s) f (Hz)
1 0.5 1 1000 32
2 1 0.9 1500 30
3 1.04 0.85 1540 28

4 1.4 0.8 2500 22
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for the 1D SVR, the window length is 200 samples (overlapping 10-samples
border), v = 1 and f = 30; for the 2D SVR, the window size is 200 samples
by 10 traces (overlapping 10-by-1 border), ¥ = 1, f = 30, and k = 0.05; for
the f-x prediction filtering, we only process the frequencies fallen in [0, 100] Hz
and the amplitudes for other frequencies components are set as zero, and the
window size is 200 samples by 10 traces (overlapping 10-by-1 border) and the
bilateral prediction filter length is 7. Here for the 1D and 2D SVR methods, we
use the SVR with implicit bias term (Deng et al., 2010).

Table 2 lists the mean square errors (MSE) between the noise-free record
and the denoised record and the average signal-to-noise ratios (SNR) of the
whole record before and after denoisng. From Table 2, the proposed method
can always obtain the lowest MSE and the highest SNR when the SNR of noisy
records gradually declines.

Table 2. Comparisons for MSE and SNR obtained by using different denoising methods.

SNR  before 1D SVR 2D SVR f~x prediction

denoising (dB)  \jgE(v?) SNR(dB) MSE(V?) SNR(dB) MSE(V?) SNR(dB)
6.43 0.0033 1828  0.0021 1956 0010  10.59
4.66 0.0044 1622 00030 1749 0011  10.42
2.53 0.0061 1461 00042 1592  0.015 8.58
0.73 0.0087  11.88  0.0055 1390 0016 824

The following gives a set of experimental results. Fig. 1b shows the noisy
record with SNR 2.53 dB. The strong random noise masks much useful
information such as events and the position of the fault layer, especially for the
traces from 1 to 35, where the white Gaussian noise is so strong that the events
are completely invisible. Figs. 1c-e show the results denoised by using the 1D
SVR, 2D SVR and f-x prediction filtering, respectively. In Figs. 1c and 1d, the
random noise is greatly suppressed, and more completely in Fig. 1d than Fig.
lc. Obviously, though most of the random noise in Fig. le is also suppressed,
some useful seismic wavelets are badly attenuated, such as traces 1, 22, 40 and
100.
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Fig. 1. Anexample for random noise reduction on a synthetic record. Figures are drawn every three
traces. (a) Noise-free synthetic record; (b) Noisy record.
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Fig. 1. An example for random noise reduction on a synthetic record. Figures are drawn every three
traces. (c) Result obtained by using 1D SVR; (d) Result obtained by using 2D SVR.
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Fig. 1. An example for random noise reduction on a synthetic record. Figures are drawn every three
traces. (€) Result obtained by using f-x prediction filtering.

For a further comparison, Figs. 2a and 2b draw the values of all the
MSEs and SNRs trace by trace, respectively. From Fig. 2a, the curve for the
MSEs of all traces obtained by using the 2D SVR is in the lowest position, that
is to say, the denoised signals of all traces furthest approximates to the desired
signals. From Fig. 2b, we can see that the curve for the SNRs of all traces
obtained by using the 2D SVR is in the highest position. It is noted that for the
traces from 71 to 100, the MSEs and SNRs obtained by using the f-x prediction
filtering is much worse than the other two methods, which indicates that the
widely used f-x prediction filtering is not suitable for the reduction of the
uniformly distributed noise. That is the reason why in Table 2 the SNRs and
MSEs of the whole records obtained by using the f-x prediction filtering are
very bad.

Consequently, from the above the proposed method works better than the
other two methods. And the proposed denoising method is effective on
conditions that the seismic data is corrupted by the white Gaussian noise, the
spike-like noise or uniformly distributed noise.
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Fig. 2. Comparisons on MSE and SNR obtained by using differeat denoising methods. (a) MSE; (b)
SNR.
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EXAMPLE WITH REAL SEISMIC DATA

To test the effectiveness of the proposed 2D SVR in real seismic data
processing, we apply it to a field seismic record and compare with the 1D SVR
and the f-x prediction filtering. Fig. 3a shows one of three dimensional common
shot records with 168 traces, record length 6 s, time sampling interval 1 ms,
survey line interval 160 m and geophone interval 40 m. There is much random
noise in the raw record such as the ranges N;-N,. The presence of the boring
noise seriously masks the reflection events and makes the whole record obscure
and disordered.

Figs. 3b-d show the results obtained by using the 1D SVR, 2D SVR and
f-x prediction filtering, respectively. For the 1D SVR, the window length is 800
samples (overlapping 20-samples border), the regularization parameter = is set
as 10, and the kernel parameters are set as 30. For the 2D SVR, the window
size is 800 samples by 10 traces (overlapping 20-by-1 border), y = 10, f = 30,
and k = 0.0025. For the f-x prediction filtering, we only process the
frequencies fallen in [0, 100} Hz and the amplitudes for other frequencies
components are set as zero, and the window size is 800 samples by 10 traces
(overlapping 20-by-1 border) and the bilateral prediction filter length is 7. Here
for the 1D and 2D SVR methods, we use the SVR with implicit bias term (Deng
et al., 2010).

From Fig. 3c, the whole record becomes very neat and tidy, and some
events such as those in the ranges E,-E, become clear and visible, especially
events in ranges E; and E, which are almost invisible in the original record. But
the results obtained by using the other two methods are not as good as our
method. For example, the continuity of events in Fig. 3b is not as good as that
in Fig. 3c, and the signals are attenuated seriously in Fig. 3d. For a detailed
comparison, Fig. 4 shows the zooms of range E, in Fig. 3. In Fig. 4a, the noise
deforms the seismic wavelets and destroys the continuity of events. After
denoising by three methods, the qualities of the waveforms and the SNR are
greatly improved. Compared with Fig. 4b, the result obtained by using the
proposed method (Fig. 4c) has better continuity, especially in the three ranges
marked by rectangles. Compared with Fig. 4d, the enhanced signals in Fig. 4c
are stronger. So in the real seismic data processing, the proposed method works
better than the 1D SVR method and the common f-x prediction filtering.
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Fig. 3. An example for random noise reduction on a real record. (a) Raw record; (b) Result obtained

by using 1D SVR.
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CONCLUSIONS

According to the characteristics of the seismic data in the time-space
domain, we propose a new 2D Ricker wavelet kernel. For the 2D Ricker
wavelet kernel, the selection of the two kernel parameters is relating to the
dominant frequency of seismic data in time domain and the wavenumber of
seismic data in space domain. By experiments on the synthetic and real seismic
records, we compare the SVR based on the 2D Ricker wavelet kernel with the
SVR based on 1D Ricker wavelet kernel and the common f-x prediction
filtering. The results show that the proposed method can suppress the random
noise more efficiently, and enhance the continuity of events greatly. So the SVR
with the 2D Ricker wavelet kernel is an efficient method for reducing the
random noise in seismic data. And in the future, after considering sufficiently
the properties of 3D seismic data, it is possible to propose a 3D SVR by
constructing a 3D kernel function so as to make further improvement on the
quality of 3D seismic data.
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