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ABSTRACT

Shiri, Y., Moradzadeh, A., Shiri, A. and Chehrazi, A., 2011. Application of adaptive neuro-fuzzy
inference system for prediction of porosity from seismic attributes; case study, Farour.A oil field,
Persian Gulf, Iran. Journal of Seismic Exploration, 20: 177-192.

Reservoir characterization using seismic attributes has a great impact on quantitative and
qualitative interpretation of subsurface property in petroleum industry. Among linear and nonlinear
predicting tools like Multi-Regression, polynomial curve fitting and Neural Networks, methods based
on Neuro-Fuzzy technique known as the Adaptive Neuro-Fuzzy Inference System (ANFIS) which
is a hybrid intelligent system recently has attracted the attention of researchers in many academic,
industrial, scientific and engineering areas. In this study, data set was 2D seismic and petrophysical
well log data in the Farour.A oil field. First of all, by applying seismic inversion, broad band
acoustic impedance as the most relevant seismic attribute to porosity was extracted from these data.
Then, optimum numbers of relevant seismic attributes were selected by using stepwise regression
and cross validation techniques. At the end, three types of neural network and ANFIS were applied
for porosity prediction from seismic attributes. Results were shown that predicting porosity from
seismic attributes by ANFIS was performed fast-converged and high accuracy against three types
of neural networks.
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INTRODUCTION

The geophysical developments of oil and gas fields rely on characterizing
several petrophysical properties throughout the sedimentary interval containing
the reservoir (Archie, 1950). So, laboratory measurements on core plugs,
interpretation of geophysical well logs and inversion of seismic attributes
provide valuable estimates of physical property in reservoirs. Integration of
these distinct methodologies is the best approach to determine uncertainties in
the predictions, with direct implications on risk mitigation in drilling operation
(Pennington, 2001).

Recently, the petroleum industry has witnessed significant advanced
research of the intelligent system for prediction, classification, history matching
and so forth between two sets of input and output data. Seismic data is a
measurement of subsurface petrophysical properties such as lithology, rock type,
porosity, water saturation, pore pressure, p-wave velocity and others. Several
researches have been done for prediction of these properties from seismic
attributes (Russell, 2004; Nikravesh, 2007; Ahmad, 2007; Solano, 2007,
Kadkhodaie, 2009, etc.).

Porosity is one of the most important petrophysical properties for
qualitative and quantitative interpretation and characterization of hydrocarbon
reservoirs. Prediction of porosity from seismic attributes recently has been done
by performing statistical approach, neural networks, fuzzy logic and committee
fuzzy inference system (CFIS) (Russell, 2004; Kadkhodaie, 2009).

In this paper, porosity was predicted from seismic attributes by
performing Adaptive Neuro-Fuzzy Inference System (ANFIS) as a hybrid
intelligent system which combines the human-like reasoning style of the fuzzy
system with learning structure of neural networks. Neuro-Fuzzy was proposed
by Jang and is a system by means of if-then rules represented in a neural
network structure. In this study its result was compared with three types of
neural networks.

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

The fuzzy set theory was invented by Zadeh (1965). Each fuzzy set is
represented by a membership function (MF). MFs are in several types such as
Gaussian, triangular, trapezoidal, sigmoid, S-shape, Z-shape, Pi (II)-shape,
bell-shape, etc. FIS is a popular computing framework based on fuzzy set
theory. Fuzzy if-then rules, fuzzy reasoning, and selection of if-then rules form
the key component of it and can efficiently model human expertise in a specific
application. There are several types of FIS, the most commonly used FISs are
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Mamdani type and Sugeno type. The main important difference among FISs is
the type of the output membership function.

Jang (1992, 1993) combined both fuzzy logic (FL) and neural network to
produce a powerful processing tool named NFSs which has both NN and FL
advantages and the most common one is ANFIS. It is' a fuzzy Sugeno model put
in the framework of adaptive system to facilitate learning and adaptation for a
constant or linear output. One of the ANFIS advantages is using of a hybrid
learning procedure for estimation of the premise and consequent parameters.
ANFIS structure with two inputs and one output is shown in Fig. 1. For the first
order Sugeno fuzzy model, a common rule set with two fuzzy if-then rules is
the following:

Rule 1: if x is A; and y is B, then f; = pjx + qiy + 1, ,

Rule 2: if x is Ay and y is B,, then f, = p,x + quy + 1, ,
Layer 1: every node i in this layer is an adaptive node with a node function, u
is a membership function and it is a function of premise parameters which
control the shape of membership function:

O1i = pax) , fori=1,2

or
Oy = ppia(y) , fori = 34. (1)

Layer 1 Layer 4
l Layer2 Layer3 l

A, l l 1{ { Laylers
X A, w f,
f
y B, w,f,
e
B, Xy

Fig. 1. ANFIS architecture for a two rules Sugeno type.
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Layer 2: every node in this layer is a fixed node labeled II, whose output is the
product of all the incoming signals:

Oy = Wi = ppa(pg(y) , fori=12. )

Layer 3: every node in this layer is a fixed node labeled N. The i-th node
calculates the ratio of the i-th rule’s firing strength to the sum of all rule’s firing
strength:

O5; =w = w/(w, + wy) , i=1.2. ?3)

Layer 4: every node i in this layer is an adaptive node function, {p;, q;, r;} is
the parameter set of this node. Parameters in this layer are referred to as
consequent parameters, in zero order Sugeno fuzzy model p; and q; are zero:

0, = wifi = wipx + qy + 1) . 4)

Layer 5: the single node in this layer is a fixed node labeled £, which computes
the overall output as the summation of all incoming signals:

overall output = Os; = Z wif, = E wf,/ Z w; . 5)

APPLICATION TO THE FAROUR.A OIL FIELD

This study was focused on the application of the ANFIS method and
comparison with ANNs on the Farour.A oil field (an Iranian offshore oil field
in the Persian Gulf). 7*8 post stack 2D seismic time sections with good quality
on the oil field and petrophysical data from three wells were available (Fig. 2).
Dolomitic limestone Asmari reservoir was interested in this study. Density and
porosity were available for all wells but in one of them, sonic log was missed
and determined by statistical methods and Check shot data was only available
for one well. 2D time section "5103 SE-NW" showing general quality of
seismic data across the Farour.A oil field is shown in Fig. 3.

Correlation of well logs to seismic data

As the first step in this study, seismic sections were interpreted and time
horizons were picked based on one available check shot in well FrB2. Check
shot was applied for initial time to depth conversion. Then, first correlation of
well log to seismic data for extracting wavelet and making synthetic seismogram
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was done on wells FrAl, FrA2 and FrB2. It is necessary to create synthetics
and extract the wavelets repeatedly for the placement of the well log data in
correct time. At the end, suitable time-depth relationships were obtained. A well
to seismic tie, at well FrA1l, is shown in Fig. 4, where the correlation between
synthetic seismogram (blue) and composite trace (red) in the vicinity of the well
is 0.68.

Selection of optimal seismic attributes

A reason for applying several statistical and intelligent approaches is
finding linear and nonlinear relationship between two sets of input and output
data and applying it on the relevant data set. Relationship between input (seismic
attributes) and output (porosity log) data were investigated by stepwise-
regression analysis with considering validation error as a criterion to stop adding
attributes to the input data set (Russell, 2004). According to Table 1, the first
two attributes, inverse of acoustic impedance and average frequency could be
optimum inputs related to the logarithm of porosity as the output in linear and
nonlinear mode. Individual relationship of seismic attributes and porosity that
are considered in this process are shown in cross plots of Fig. 5.
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Fig. 2. Map showing location of wells and 2D seismic sections in The Farour.A offshore oil field.
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Fig. 3. 2D time section "5103 SE-NW" showing general quality of seismic data across the Farour. A
oil field.
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Fig. 5. Cross plots showing relationships between seismic attributes and logarithm of porosity.
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Table 1. Multi-attribute list for predicting porosity.

Number of attributes Target Final attribute Training error  Validation error
1 Log(Porosity) 1/(Acoustic Impedance) 6.517 8.153
2 Log(Porosity) Average Frequency 5.554 7.056
3 Log(Porosity) Integrated Absolute Amplitude 5.292 38.402

Acoustic impedance is a product of sonic velocity and bulk density.
Accordingly, porosity is an inverse function of it. A broad band acoustic
impedance model on the oil field was extracted by seismic inversion, which
integrates high frequency of seismic data and missed low frequency of seismic
data by well log data.

Average frequency is a signature of the events and effects of the abnormal
attenuation due to the presence of the hydrocarbons (Taner, 1994).

Artificial Neural Networks (ANNs)

The goal of ANN researches is developing the mathematical model of the
biological events in order to imitate the capability of the biological neural
structures in purpose of designing an intelligent information processing system.
The first mathematical model was introduced by Warren McCulloch and Walter
Pitts (McCulloch, 1943). An adaptive NN is a network structure consisting of
a number of nodes connected through directional links, all or part of the nodes
is adaptive, which means the output of these nodes depends on modifiable
parameters belonging to these nods.

Table 2. Results of different ANNs methods for prediction of porosity.

Method RMSE Correlation Coefficient
RBFN 7.28 0.60
MLFN 6.53 0.68

PNN 6.11 0.74
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Multi-layer Feed Forward Neural Network (MLFN)

Multi-layer feed forward neural network, or MLEN, is the classic neural
network and referred to as the multi-layer perceptron (MLP). Supervised
learning using the perceptron model was first presented by Rosenblatt (1958).
It has the capability of solving nonlinear problems but its disadvantage is the
final answer which is dependent on the initial guess of the weights. Fig. 6 shows
a structure of a multi-layer perceptron with M inputs and K perceptrons. In the
MLP, the first layer is referred to the input layer, the second layer is referred
to the hidden layer and the third layer is referred to the output layer. Between
input and output layers, one or more hidden layers are possible, but it is
common to use one layer with optimum numbers of nodes. Any function with
a tinite collection of points and any function that is continuous and bounded can
be solved with three layers. The three layers model can handle many functions
that do not have these criteria (Masters, 1993). The input to the MLFEN is a
vector of M attributes xf =[xy, X5, ..o Xygl, where j = 1, ... N, is the
number of seismic samples. The output of the weighting and summation in the
first layer can be written as:

v =Y wibx, = WU k= 1.2, K. (©)

2
X, ; .z 5 )
(1)
fo Px
W
5%

Fig. 6. A multi-laver perceptron with M inputs, K perceptrons. and a single output.
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The input to the single perceptron in layer 3 can be written as:

k

) — (2)5, (1) — (DT, (1) .o

it = Zwkizkj =wz'  , j=12,..N. (7
k=0

where z{}' is a nonlinear function that imposes to the output of layer 1, one of
the most commonly used in MLEN is the logistic function (3) in which the
output is constrained between —1 and +1.

f(x) = logist(x) = 1/[1 + exp(—x)] . (8)

Final output for MLFN with two layer perceptron which is shown in Fig.
6 can be written as:

'Jz) = fil}[w(l)Ttﬂ)(W(l)TXjﬂ ) (9)
Weights of the network are computed via error back propagation

algorithm in which errors are back propagated through the network and used to
improve the fitness between the actual output and the training value.

Radial Basis Function Neural Network (RBEFN)

The radial basis function neural network, or RBFN, was originally
developed as a method for performing exact interpolation of a set of data points
i multi-dimensional space (Powell, 1987). It was derived from using
regularization theory and Gaussian basis function, and it is a feed-forward
network where the Gaussian bell curve is the basis function, and it was applied
by Ronen (1994) for the first time.

Consider ; values as the training samples and s, values as the attributes
vector, in general form the problem can be formulated as:

N N *
s) = Y wels, —s| = Lwe, . = 12N (10)
i=1 i=1

where the function ¢ |s; — ;| is a set on N radial basis function depends on the
attribute distance. A radial basis function is a function which its response
decreases monotonically with distance away from a central point (Orr. 1996).
It has been found that the most efficient function is the Gaussian basis function.
So, (5) can be written as:
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ws) = Y wiey = 3, wexpl—|s; — s;|¥0? . i=12...,N (D
j=1 j=1

where w,, j = 1,....N, are the desired weights. Eq. (6) in matrix form can be
written as:

t=POw | (12)
Solution of (7) is given by:
w = [0 + N "t , (13)

where, A is the pre-whitening factor and I is the identity matrix. Once the
welghts have been computed then they can be applied to application data set by:

N

y(x,) = Z wiexpl =[x, — s;|%0?] (14)

i=1

The key parameter in the RBEN method is the sigma (o) value. No
efficient method for optimizing of ¢ as a function of each attribute has been
obtained for the RBFN method (Russell, 2004) so parabolic search method
(Press, 1992) was used to find the optimum value of 0. The RBFN for
prediction of porosity by pre-whitening 10 was performed and optimum value
of 0 = 0.668 was calculated by parabolic search method.

Probabilistic Neural Network (PNN)

The probabilistic neural network is a neural network implementation of
the Parzen window, and was initially proposed by Specht (1990). The PNN is
such a fast and efficient method that can be used as a tool for predicting
continuous or discrete data and for mapping input data to their outputs. A vector
of x; as the input to the PNN, the output Oy(x,) is calculated with a linear
combination of n data points in training data set by the following equation:

Ox(x) = { Y, Ouexpl—DPOI/{ Y. expl—D(x.x)1} (15)

1=1 i—1

where D(x.x;) is the distance between the input point x and each of the training
points, and it is calculated as follows:
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k

Dix,x) = Y [(x, — x)/ol" (16)
=1

where K is the number of input data and p, is the distance scale factor for each
of the input attributes and the only parameter of the PNN which needs to be
optimized. In comparison with the other types of neural network, such as
MLFN that requires many parameters to be optimized, PNN is simple, fast and
efficient. The optimal value of p; is obtained when the validation error is
minimum, in which a training sample was left out and then predicted from the
other samples, after that the mean square error was computed, by repeating this
procedure for all the training samples and averaging the errors, the validation
error would be obtained (Russel, 2004).

For optimizing distance scale factor p,, its range was taken between 0.10
and 3.00. The numbers of p; value to try was set to 25. The optimized values
of p, for porosity prediction were obtained as follows:

Inverse of Inversion result: 0.124: average frequency: 0.258: Global p;:
0.342.

Design of ANFIS

For the prediction of porosity at interested zone, ANFIS with linear and
constant Sugeno models with 4 and 9 rules and different membership functions
were constructed. Training of the network was done by using the hybrid
learning algorithm and optimal irritation selected based on validation error. The
learning algorithms of ANFIS consist of the following two parts: (a) the learning
of the premise parameters by back-propagation and (b) the learning of the
consequence parameters by least-squares estimation (Jang, 1993). At the end,
these networks were trained with all input data set and their results for the test
data set are shown in Table 3.

RESULTS AND DISCUSSION

Results of this study are shown in Tables 2 and 3 and Fig. 7. Between
ANNs, PNN has had the best correlation and less error in the test data set and
between ANFIS investigations, zero order Sugeno type with four rules and Pi
(IT)-shape membership function was the best one, comparison of the ANNs and
ANFIS showed ANFIS has had a better result than ANNs. Better prediction of
porosity from seismic attributes by PNN between ANNs approved Kadkhodaie
(2009) result and reject Russell (2004) result which considers RBEN as the best
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one, and ANFIS like CFIS (Kadkhodaie, 2009) was the best against ANNs.
Predicted porosity for Asmari formation near two wells on 2D seismic section
"5103 SE-NW" by ANNs and ANFIS is shown in Fig. 7.

Table 3. Results of ANFIS with different architecture for prediction of porosity.

ANFIS Architecture RMSE Correlation
Coefficient
Sugeno Membership Function Number of
type Rules
Zero Order Gaussian 4 5.975 0.750
Zero Order Gaussian Combination 4 5.965 0.751
Zero Order Pi (IT)-shape 4 5.683 0.765
Zero Order Generalized bell- 4 5.961 0.751
shaped
Zero Order Gaussian 9 10.065 0.426
Zero Order Gaussian Combination 9 755722.702 -0.156
Zero Order Pi (IT)-shape 9 946971.858 -0.046
Zero Order Generalized bell- 9 15.698 0.359
shaped
First Order Gaussian 4 6.170 0.742
First Order Gaussian Combination 4 6.274 0.735
First Order Pi (IT)-shape 4 6.515 0.707
First Order Generalized bell- 4 6.354 0.721
shaped
First Order Gaussian 9 167.500 0.522
First Order Gaussian Combination 9 896522877.852 0.486
First Order Pi (IT)-shape 9 293484311 0.123

First Order Generalized bell- 9 1747.265 0.500
shaped
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Fig. 7. Predicted porosity for Asmari reservoir across the Farour.A oil field by using RBFN(a),
MLFN(b), PNN(c), ANFIS(d).
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CONCLUSION AND FUTURE WORK

ANFIS was used for formulating porosity from seismic attributes. Based
on this research ANFIS was more accurate, reliable and fast for prediction of
porosity from seismic attributes against ANNs. It can decrease cost and
exploration risk by an accurate prediction in hydrocarbon exploration programs.
As future work, it is better to perform ANNs, ANFIS and CFIS on more oil
fields and adjust parameters that influence them.
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