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ABSTRACT

Pyun, S., Son, W. and Shin, C., 2011. Implementation of the Gauss-Newton method for
frequency-domain full waveform inversion using a logarithmic objective function. Journal of Seismic
Exploration, 20: 193-206.

The use of a logarithmic misfit function has proven to be advantageous for full waveform
inversion of field data in noisy environments. However, few efforts have been carried out to define
an efficient and effective updating procedure. In this paper, we utilize an approximated
Gauss-Newton method, which is called CGLS or Gauss-Newton-CG method, using a logarithmic
misfit for the frequency-domain full waveform inversion. The Gauss-Newton inversion via a
conjugate gradient algorithm is an efficient method because the Hessian matrix does not need to be
explicitly calculated. In this method, the logarithmic objective function is not applied even though
it is robust against noise and able to resolve strongly damped wavefields such as the Laplace-domain
wavefields. In this context, we use the logarithmic objective function to formulate the normal
equation for implementation in the Gauss-Newton inversion. This results in an unstable inverse
problem, which is mitigated by applying a heuristic filtering method to the gradient direction and
the Hessian matrix. A simple damping term was added to the approximated Hessian matrix to
stabilize the inversion. To verify our algorithm, we compare the proposed Gauss-Newton method
with the gradient method. The Marmousi model and the SEG/EAGE salt model were used for this
comparison. The gradient method produces distorted images in the deeper parts of the velocity
model, while our method gives improved results and shows noticeable improvement for recovering
the structure beneath the salt layer in the SEG/EAGE model.

KEY WORDS: Gauss-Newton method, conjugate gradient, waveform inversion, frequency-domain,
logarithmic wavefield.
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INTRODUCTION

The basic theory of the seismic full waveform inversion (FWI) was
established a long time ago. However, it has not been used until recently due
to computational limitations. After Tarantola (1984) suggested the efficient
gradient calculation algorithm based on the adjoint property of the wave
equation, the seismic full waveform inversion became a feasible approach. The
detailed history of FWI can be found in Virieux and Operto (2009). Although
Tarantola’s method is efficient since it does not calculate the Jacobian directly,
it has limits inherited from the gradient method. In order to properly scale the
gradient direction and to avoid a prohibitively large memory requirement and
computation size, an advanced method based on the conjugate gradient algorithm
was suggested by many researchers. This method is called the CGLS (conjugate
gradient least squares) method (Golub and Loan, 1996; Hu et al., 2009) or
Newton-CG method (Epanomeritakis et al., 2008). In this method, the Jacobian
matrix does not need to be explicitly calculated or saved in computer memory.
For the magnetotelluric problem, Mackie and Madden (1993) proposed the
linear conjugate gradient relaxation method for solving a least-squares inverse
problem. They used the linear conjugate gradient method to solve the normal
equation without forming the Hessian and Jacobian matrices. The same
conjugate gradient method for the magnetotelluric inversion problem was also
applied to the seismic full waveform inversion (Chen et al., 2007
Epanomeritakis et al., 2008, Hu et al., 2009). Through this approach, we can
implement the Gauss-Newton inversion scheme for the full waveform inversion.

However, there has been no attempt to exploit the logarithmic objective
function (Shin and Min, 2006) to implement the Gauss-Newton or quasi-Newton
method in the published literature. This is partly because the logarithmic
objective function leads to a complicated and unstable sensitivity matrix. As a
result, it is not possible to apply advanced regularization techniques to the
logarithmic objective function, despite the various applications of the logarithmic
misfit. The logarithmic objective function has been shown to be robust to noise
and was successfully applied to field data (Shin and Min, 2006). Furthermore,
the logarithmic objective function is needed to resolve the strongly damped
wavefields in the Laplace-domain or the Laplace-Fourier-domain waveform
inversion (Shin and Cha, 2008, 2009; Shin et al., 2010). Thus, we need to
develop a more sophisticated optimization method for the logarithmic objective
function. In this paper, we focus on the implementation of the Gauss-Newton
method for the full waveform inversion using a logarithmic wavefield. Although
more recent techniques such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) and
L-BFGS (Nocedal, 1980) have already been developed and applied to the FWI
(Sambridge et al., 1991; Brossier et al., 2009), we limit our scope to the
Gauss-Newton method to concentrate on the successful implementation of the
logarithmic objective function. Since the logarithmic objective function has an
instability problem, the logarithmic wavefield should be heuristically
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manipulated for both the gradient direction and the approximated Hessian. We
introduce the empirical filtering technique and regularization method for the
stable inversion. We verify our algorithm through the inversion examples of the
Marmousi model and the SEG/EAGE salt model. We also compare the inversion
results using the proposed method with those using the gradient method to show
the advantages of our algorithm.

THE GAUSS-NEWTON METHOD USING THE LOGARITHMIC
OBJECTIVE FUNCTION

In the frequency-domain waveform inversion, the logarithmic objective
function can be defined as

E = e'e" | (1)
where
e = [In(d,/u;) In(dyw,) ... In(d/u)]" , )

and d is the observed wavefield, u is the modeled wavefield, the subscript
denotes the receiver index, r is the last receiver index, and the superscript *
denotes the complex conjugate. In order to obtain the parameter vector to
minimize the objective function in eq. (1), we choose the Gauss-Newton method
to solve the linearized minimization problem iteratively.

Expanding the modeled wavefields u to the first order term of a Taylor’s
series gives

— T *
E = [e, — JApl'[e, — JAp]" , 3)
where
(100 1 Lo ]
(A 1 dpy u ap,
IR N L
1y Oy ty Opy 1y Op
J= | P @)
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L o;m ", ap, ", 3y, |
—_— T
Ap = [Ap, Ap, ... Ap,] . ®)

e, is the logarithmic residual wavefield vector using an initial velocity model,
p is the model parameter vector and m is the number of model parameters.
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J is the Jacobian matrix, representing the sensitivity of wavefields with respect
to the model parameters, and Ap is the perturbation to the parameter vector.
Based on the least-squares principle, we differentiate the objective function in
eq. (3) with respect to each element of Ap and let it be zero. Then, we arrive
at

J I Ap = Je; . (6)
We can obtain the perturbation vector of model parameters by solving the
least-squares problem in eq. (6). Since the full waveform inversion is a

nonlinear inverse problem, eq. (6) is recalculated and solved for each iteration
and the model parameter is iteratively updated.

IMPLEMENTATION OF THE GAUSS-NEWTON-CG METHOD

In order to show how the Gauss-Newton inversion using the logarithmic
objective function can be formulated as CGLS, we first rewrite eq. (6) as

— — — *
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1 dp, w Opy uy ap,, . apy w Opy w ap,, Apl
1 Oy | Ouy ] Oy | Oy | Oy ) Oy A
1y 9y 1, Opy uy p,, ity Oy ny Oy ty Op,, p 2
| e, | On, | O, | O, | O, y o, Apm
L# O . apy u Op, | Lw, O u, 9y u. 0p,, |
~ - -
1 Oy | O 1o T lni
Oy . Opy u ap, "
T U N BT ) P S
o oy 1y Opy uy ap,, 1 (7)
| Ou, 1 O, .l-l')ll, lni
L om u, 9 w, | L "y

Then, we decompose the Jacobian matrix in eq. (7), finding
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Rearranging eq. (8) results in
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In order to obtain the Jacobian matrix in eq. (9), we define the wave

equation modeling as a set of linear algebraic equations (Marfurt, 1984; Pratt
et al., 1998):

(10)

where §; is the complex impedance matrix using an initial velocity model, f is
the source vector, and the subscript n is the total number of the grid points of
the model. If we differentiate both sides of eq. (10) with respect to p, we have
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e ul
o 1%l 2l ¢ = an
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Since we can assume that the right hand side of eq. (11) is a type of
source vector, we define the right hand side vector of eq. (11) as a virtual
source v,. By doing the same process for the other parameters from p, to p,,, we
define the Jacobian matrix as

B y oy |
o o, P, -1
ity iy iy
o W | —
= S, \AA v, 1. (12)
oy, O,y M,
L o (22 P

Using eq. (12), we can recalculate the Jacobian matrix as
J = AS;'V (13)

where A is the r X n matrix to limit the elements within the receiver points as
follows:

1 0 0
A=l b 000 (14)
00 1 0 0

The matrix V consists of the virtual source vectors
V=[V, v, V,"]- (15)

Substituting eq. (13) into eq. (9) results in

(AS;'V)TU(AS;'V)*Ap = (AS;'V)Te, (16)
where
I'—I 0 0
U 0 "21"2. e 0 , (17)
0 0 .

and
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r v T

(18)
(i)
Since the impedance matrix S; is symmetric, eq. (16) is expressed as
VIS;'ATUA(S; ' V)*Ap = V'S 'Ae, . (19)
Eq. (19) can be rewritten as
VIS, U,(Sy ' V)*Ap = VTSjle, (20)
where the matrix U, has a size of n X n and is expressed as
Uu o0
U, = 21
0 o

The vector e, has n elements and is expressed as

er
e, = : (22)
0

We can rewrite eq. (20) in the following simple form
HAp = g , (23)

where H = V'S;'U,(S;'V)* and g = V'S;le,. The perturbation Ap can be
obtained by solving eq. (23) using the conjugate gradient method (Golub and
Loan, 1996).

MODIFICATION OF THE GRADIENT DIRECTION AND THE JACOBIAN

When we construct the normal equation shown in eq. (20), we encounter
a troublesome task stemming from division operations. As shown in egs. (17)
and (18), both the Jacobian and the gradient direction should be divided by the
initial wavefield, causing the solution of the normal equation to blow up. This
instability originates from the logarithmic objective function. However, there has
been no overt discussion about this problem since Shin and Min (2006)
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suggested the logarithmic objective function. In this paper, we use a heuristic
method to avoid the instability by setting a threshold and setting elements of the
gradient direction and Jacobian matrix with amplitudes less than this threshold
to zero. Based on trial and error, we chose a threshold of 1.e-32. In the case of
the Jacobian, we removed the division operation from the initial wavefield
instead of setting the element to zero. Although this heuristic manipulation can
lead to an inaccurate solution, the inaccuracy is negligible and it makes the
solution more stable.

DETERMINATION OF THE DAMPING FACTOR

In general, a damping factor or regularization term is added to the
Hessian matrix because the matrix is ill-posed. To determine this damping
factor, we need to know the magnitudes of the diagonal elements of the Hessian
matrix. However, we do not calculate the Hessian matrix explicitly when we use
the conjugate gradient method. Therefore, we need another approach to
determine the proper damping factor. If we have the Hessian matrix, an
arbitrary element of the matrix can be calculated as

H; = bTHb, , 24)

where b; is a unit vector whose i-th element is unity and other elements are
zero. Using eq. (20), we can calculate the i-th diagonal element of the Hessian
matrix as follows:

H; = bIVISIULS; V)*b, . (25)

After calculating a diagonal element of the Hessian matrix using eq. (25),
we can determine the magnitude of the damping factor A and add the damping
factor to the Hessian matrix implicitly as follows

(H + \DAp = HAp + Mp . (26)

Since the Hessian matrix does not change during the CG iterations for a
single inversion step, we only need to compute the damping factor just once per
iteration of the inversion.

NUMERICAL EXAMPLES

We tested our algorithm using the Marmousi model and the SEG/EAGE
salt model. In both cases, we use a finite-element modeling technique in the
frequency domain to generate a synthetic data set. First, we selected 50
frequencies, ranging from 0.3 to 15 Hz, to perform the frequency-domain full
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Fig. 1. The Marmousi velocity model.
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Fig. 2. Inverted velocity model using data based on the Marmousi velocity model obtained at (a) the
500-th iteration of the gradient method and (b) the 300-th iteration of the Gauss-Newton method.
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waveform inversion for the Marmousi model (Fig. 1). We used a 576 X 188
model grid and a grid spacing of 16 m. We calculated synthetic data for 115
shots recorded by 576 receivers at the surface. The initial velocity model for the
full waveform inversion linearly increases from 1.5 km/s to 5.5 km/s. To test
our algorithm, we compared the inversion results of the proposed Gauss-Newton
method with those of the gradient method. Figs. 2(a) and 2(b) show the inverted
velocity models obtained with the gradient method at the 500-th iteration and
with the Gauss-Newton method at the 300-th iteration, respectively. From Fig.
2(a), we confirm that the gradient method generates a distorted image in the
lower left corner of the model and below 2 km depth. However, the
Gauss-Newton method produced well-defined velocity structures [Fig. 2(b)].
Fig. 3 shows the history of the phase RMS error throughout the Marmousi
model inversion. The Gauss-Newton method shows faster convergence than the
gradient method and the two methods give similar results.

3.5

= = Gradient method
— Gauss-Newton method | |

3.0

I 3 M
wn o ]

The RMS error of phase
o
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_____
____________

0 100 200 300 400 500
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Fig. 3. The RMS error of phase for the Marmousi model inversion.
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Fig. 4. A-A’ cross section of the SEG/EAGE salt model.

The second test was carried out on using the A-A’ cross section of the
SEG/EAGE salt model (Fig. 4). We selected 60 frequencies from 0.2 to 12 Hz
to generate a synthetic data set. We used a 779 x 209 model mesh with a grid
spacing of 20 m and calculated data for 155 shot gathers and 779 receivers at
the surface. The initial velocity model linearly increases from 1.679 km/s to
4.45 km/s. Figs. 5(a) and 5(b) show the inverted velocity models obtained by
the gradient method at the 2000-th iteration and by the Gauss-Newton method
at the 300-th iteration, respectively. From Figs. 5(a) and 5(b), we can observe
that the gradient method fails to recover the sub-salt velocity, while the Gauss-
Newton method more accurately recovers the velocity structures below the salt
layer. Fig. 6 shows the RMS error of phase for the SEG/EAGE salt model
inversion. Unlike the first example, the Gauss-Newton method shows significant
improvement in convergence speed when compared with the gradient method.
This result implies that the proposed Gauss-Newton method is efficient and
robust when inverted for a high-contrast velocity model.

CONCLUSIONS

In this paper, we test the approximated Gauss-Newton method using the
linear CG method for the logarithmic objective function. While the gradient
method needs a reasonable weighting scheme and a line search algorithm for
determining step length, the Gauss-Newton method gives realistic velocity
perturbations without additional manipulation. Although numerical instability
must be treated properly when using the logarithmic objective function,
instability can be easily manipulated with a heuristic filtering method.
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Fig. 5. Inverted velocity model for data based on the SEG/EAGE model obtained at (a) the 2000-th
iteration of the gradient method and (b) the 300-th iteration of the Gauss-Newton method.

In order to stabilize the inverse problem, we introduce an additional
regularization term into the objective function. A simple damping method was
implemented at the cost of half of a CG iteration. Numerical examples show that
the proposed Gauss-Newton method successfully deals with logarithmic
wavefields and accelerates the convergence for a high-contrast salt structure
velocity model. The Gauss-Newton method using logarithmic wavefields is able
to recover a low velocity structure beneath the salt dome, while the gradient
method could not. This implies that the proposed method can illuminate regions
below salt layers and properly deal with amplitude recovery.
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Fig. 6. The RMS error of phase for the SEG/EAGE salt model inversion.
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