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ABSTRACT

Ikelle, L.T., 2011. Review: Coordinate transformation of acoustic and Maxwell’s equations: The
making of anisotropic mass density and permittivity. Journal of Seismic Exploration, 20: 207-216.

It is a remarkable fact that Maxwell’s equations under any coordinate transformation can be
written in an identical mathematical form as the ones in Cartesian coordinates. However, in some
particular coordinate transformations, like the cylindrical coordinate transformations, the physical
properties become anisotropic, even if they are isotropic in the Cartesian coordinates. Even the
permittivity can be anisotropic. The remarkable invariance of Maxwell’s equations under coordinate
transformation extend to acoustic wave equations. In other words, the acoustic wave equations are
also invariant under any coordinate transformation. However, the mass density can become
anisotropic. We here review these fundamental results.

KEY WORDS: Maxwell equations, coordinate transformations, acoustic wave equation,
anisotropic mass density, cylindrical coordinates.

INTRODUCTION

Now that the controlled source electromagnetic (CSEM) acquisition
technique has taken hold as an oil and gas exploration and production tool, there
is a need to develop modeling and inversion methods for analysis CSEM data,
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and even to revamp classical petroleum seismology classes to include
electromagnetic methods. These developments will greatly benefit from the
significant progress made in the last four decades in seismic modeling and
inversion and in the centuries of electromagnetic-wave studies. One important
aspect of these developments is understanding the similarities of and differences
between Maxwell’s equations and elastic field equations are possible. In Ikelle
(2010) we describe examples of these equivalences in Cartesian coordinates. The
seismology studies are not limited to Cartesian coordinates. For example, in the
study of sonic logging and of earthquake sources, we often considered the wave
propagation in cylindrical coordinates and even spherical coordinates. We here
examine the similarities and differences between Maxwell’s equations and
acoustic field equations for other coordinate systems. Our formulation is quite
general and is valid for any transformation of Cartesian coordinate systems,
including transformation from Cartesian coordinates to curvilinear coordinates.

BASIC EQUATIONS OF COORDINATE TRANSFORMATIONS

In this section, we recall some basic formulae of coordinate
transformation. We consider two coordinate systems: an "old" system and a
"new" system. The position in an old coordinate system is specified by

X = [x,X,%3]7 . | (1)

The symbol T indicates a transpose. In our definitions of elastic and
electromagnetic wave equations, the subscript notation for vectors and tensors
as well as the Einstein summation convention (also known as a summation over
repeated indices) will be used. Lowercase Latin subscripts are employed for this
purpose (e.g., Vi, 7,,); they are to be assigned the values 1, 2, and 3. Boldface
symbols (e.g., v, 7) will be used to indicate vectors or tensors. The position in
the new coordinate system is specified by

x' = [x{,x5,%3]" 2)

with X" = x'(x), or more explicitly, x| = xi(x;). We will use the prime and tilde
symbols to indicate fields and physical properties in the new coordinate system
(e.8., Vi» The» 1™ Or V', 7', fiy). We assume that the transformation from the
old system to a new system [i.e., x = x(x'), or more explicitly, x; = x;(x))], is
uniquely defined.

Let us define the Jacobian matrix for the coordinate transformation from
the old coordinate system to the new one. We denote this Jacobian matrix as A,

and its elements are defined as follows:
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We assume that the Jacobian matrix is non-singular. The Jacobian matrix
of the reciprocal transform is denoted A’, and its elements are

Al = 9x/0x] = dln(cw)/dA;; . Q)
where

a = det(A) = €;(9x;/0x,)(0%,/0%))(3X3/0%Xy) = €3 A[A;A 5)
and where ¢, is the Levi-Civita symbol (e; = 1 if ijk is an even permutation,
e = — 1 if ijk is an odd permutation, and ¢, = 0 otherwise). We also have the
classical identities

a/9x; = (9x;/9x;)(3/9x]) , 6)

vi = (0xj/9x)v] = Ayv; , @)
where v; and v; are components of the vectors v and v’, respectively.

To add more concreteness to our definitions of Jacobian matrices, let us

consider the particular case of a transformation from Cartesian coordinates to
cylindrical coordinates. This transformation is defined as follows:

X; = rcosf
X, = rsinf , t))
X3 =17

where X,, X, and x; represent the old coordinate system and r, 6 and z represent
the new coordinate system. The Jacobian matrices A and A’ for this
transformation are

cosf sinf O cos§ —sinfd O
A = | —(sinf)/r (cosf)/r O | and A’ = | sinf rcosd O | . )
0 0 1 0 0 1

The determinants of these Jacobian matrices are

o = det(A) = 1/r and det(A’) = /oo =1 . (10)
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COORDINATE TRANSFORMATION IN ELECTROMAGNETISM

Let E and B be the electric field and magnetic field vectors, respectively.
We can define them as follows:

E, H,
E,o|E,| and H o | H, | . (11)
E, H,

Using these fields, we can write the Maxwell’s equations as follows [e.g., de
Hoop (1999)]:

— € [OH, (x,1,x)/0x)] + "(X)[OE (x,t,x)/d1)] = —J(x,t,x) , (12)

EnmplOE,(X,6,X)/0%,)] + pg™(O[OH (x,t,x)/00)] = —K (x,t,x) ,  (13)
where €§?(x) and u{"™(x) are the permittivity and permeability tensors,
respectively. These equations are quite general because we have considered that
the permittivity and permeability can be anisotropic by describing them as
second-rank tensors. The quantities J and K are the volume density of the
material electric current and the volume density of the material magnetic

current, respectively. In a vacuum domain, J and K are zero. The position of
these sources is specified by x,.

Let us now show that eqs. (12) and (13) are invariant under coordinate
transformation. We will start by rewriting (12) in the new coordinate system by
using the definition in (7) for vectors; i.e.,

—€(0/9%)[(0x5/Ix H(X',t,x)] + e (0)[(0x4/9%)E (X', t,x,)/8t]

= —Ji(x’t,xs) . (14)

After expanding the first term on the lefthand side of (14), we arrive at

- eijk(azxg/axjaxk)H{,(x’,t,xs) - eijk(axg/axk)(axé/axj)H{,(x’ ,6,X)/0X,

+ €f"(X)[(0x¢/0x)E{(x',t,x,)/dt] = —Jixtx) . 15)

Notice that the first term on the lefthand side of (15) is zero. By multiplying the
remaining expression by dx;/9x;, we arrive at



COORDINATE TRANSFORMATION 211
— €5 (0X,/0%;)(0%,,/ 09X, )(OX/0%)IH (X', 1, X,)/ 9%
+ [(9x1/0x)efP(x)(0x /0% )| OB {(X,t,X,)/0t
= —(@xL/Ix)I(x,1,X) . (16)

By using the definition of the determinant of the Jacobian matrix given in (5),
we can verify that

€iik(0X,/9X)(0Xy /X, )(X/OX;) = oty (17)
By substituting (17) into (16), we arrive at the same form of eq. (12); that is,

eopal OH (X, t,X)/0%; + €§V(x")[EH(X’,t,X,)/0t]

= —J(xtx) (18)
where

) = (1/a)[(3x;/0x)ef"(x)(9x4/9x,)]
and
Jix'tx) = (Ua)@x/ax)T(x,t.x) . (19)

Thus, we see that we can interpret Ampere’s law in arbitrary coordinates as the
usual equation in Euclidean coordinates, as long as we use the new permittivity
tensor and the new source term in (19).

By using identical derivations, one can also show that equation (13) can
be written in the transformed coordinates as follows:

€ OEL(X',0,X)/0x)] + A§*O(x)OH(x',t,x)/0)] = —Ki(x',t,x) , (20)

where

APO() = (1a)[(0x)/0%, ) (X)(@xL/0%,)]
and
KU .tx) = (1/a)(@x/0x K (x,LX,) . @

The results in (18) and (20) are simply remarkable. Variants of these
equations have appeared often in the literature, such as a book on the geometry
of electromagnetism by Post (1962). These equations say that we can use the
same set of Maxwell’s equations for the numerical simulation of electro-
magnetism data, for example, irrespective of the coordinate system. We simply
have to redefine the permittivity and permeability in accordance with (19) and
(21). To add more concreteness to this observation, let us consider Maxwell’s
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equations for a homogeneous isotropic medium defined by €, and pu, in the
Cartesian coordinate system (old system). We can use the same Maxwell’s
equations in a cylindrical coordinate system (new system) as long as we replace
the homogeneous isotropic medium by a heterogeneous anisotropic medium
defined by the following diagonal tensors:

r 00
) =¢ |0 1/r 0,

0 0 r

r 0 O
B8 = wy {0 1/r 0 |. (22)
0 00

Xj, X3, and x; are labeled by r, 6 and z, respectively. We arrive at this
description of the heterogeneous anisotropic medium by substituting the elements
of the Jacobian matrix in (9) into (19) and (21).

Maxwell’s equations can be written in an alternative form involving the
electric potential (also called scalar potential) and the magnetic potential (also
called vector potential). For example, the governing Maxwell’s equation for the
scalar potential can be written as follows:

(6/6xi)[nij(x)()V(x,t,xs)/axj] = {(x,txy) , (23)

where 7;(x) represents the elements of the conductivity tensor, V(x,t,x,) is the
potential, and {(x,t,x,) is the source term. Post (1962) pointed out that this
equation is also invariant with respect to coordinate transformation. We are here
interested by the invariance of (23) because the invariance of the acoustic wave
equation that we will consider later can be deduced from that of (23). So it is
important here to show that (23) is indeed invariant with respect to the
coordinate transformation, as our notations are here quite different from those
of Post (1962), and our formulation is much simpler than that of Post (1962);
we do not invoke the notions of pseudo tensors, tensor density, contraction,
alternation, etc., in our formulation, whereas Post (1962) does.

Let us start the proof of the invariance of (23) by rewriting in the new
coordinates as follows:

(9:/0x:)(3/3,)[(83/0x)ny(x)AV" (x',t,x)/9x}] = {(X,t,X) . 24)
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Using the elements of the Jacobian matrix of the reciprocal transform (3)
and the results of the coordinate of second-rank tensors in (19), the conductivity
tensor can be written as follows:

N(X) = a(9%;/9%,)(3%;/IX)INpe(X") (25)
where 7,,(x") represents the elements of the conductivity tensor in the new

coordinates. By substituting (25) in (24), we obtain an expression of Maxwell’s
potential equation in the new coordinate system; i.e.,

(3./9%)(8/3.)[(@x, 10X o (X )AV' (x',LX)/OX]] = {(X,tX,) . (26)

After taking the derivative of the terms in the square brackets and using the fact
that

(0/9x)[a(dx;/9x,)] = 0 , 27)
we arrive at the following equation:

Na(X)02V'(X',1,X,)/0X,0%y] + [01,,(x")/0x ][0V’ (X',t,X,)/0%{]

= (Va)fx,t,x) (28)
which can be reorganized as follows:

(0/0x)[nsp(x"NAV'(x',t,x.)/0%;] = ¢'(x',t,xy) , (29)

where

Nap(X") = (1/e)[(3x,/9%)n;;(x)(3xy/0x))]
and (30)
FxLLx) = (Vo) ix,tx,) .

Eq. (29) confirms that the Maxwell’s potential equations are also invariant with
respect to the coordinate system changes.

COORDINATE TRANSFORMATION IN ACOUSTICS

In a domain occupied by water or any other nonviscous fluid, the
wavefield can be characterized by the acoustic pressure, denoted here by p =
p(x,t,X,); and the particle velocity is denoted by v, = v.(x,t,x,), for a shot point
located at x, and for a generic point x. For each shot point x,, we can predict
the pressure and the particle velocity at any point x by solving a system of two
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first-order differential equations. These equations are (i) the equation of wave
motion,

Ip(x,t,X.)/0X, + o (X)v,(x,t,x.)/t = 0 , (31)
and (ii) the constitutive equation,

v, (x,t,x.)/0x, + k(X)0p(x,t,X,)/dt = q(x,t,X,) , (32)
in which p,, = p,(x) represents the elements of the fluid-volume density tensor
and k = k(x) is the fluid compressibility (the reciprocal of the bulk modulus).
The source term q = q(x,t,X,) is the fluid-volume source density of the injection
rate. By taking the derivative of (31) with respect to x, and then substituting the

equation of the wave motion (31) into the constitutive eq. (32), we obtain the
following second-order differential equation:

(9/9x)[04(X)Ip(x,t,x)/0x,] = x(x)0%p(X,t,X.)/3t> + dq(x,t,x)/0t , (33)

where 0, = 0,(X) is the specific volume (the reciprocal of the density tensor),
ie.,

Pxalar = akr . (34)
By comparing (23) and (33) we can notice the following equivalence between

the Maxwell’s potential equation and the acoustic wave equation (Cummer and
Schurig, 2007; Diatta et al., 2010):

[V.n.¢] & [p,0,«(3°p/0t?) + (3q/dt)] . (35)
In other words, because the Maxwell’s potential equation is invariant with
coordinate systems, the acoustic wave equation is also invariant with coordinate
systems. Hence, using the procedure described above for mapping x and x’ for

the Maxwell’s potential equation, we can also map x and x' for acoustic media,
as follows:

(0/0xpog(x")ap’ (x',t,x,)/0x{]

= k'(x")0%p'(x',t,x)/0t + dq'(x',t,x,)/0t , (36)
where

0(X") = (L/a)[(0x,/0%)0(x)(0%y/0%)] , «'(x") = (L/e)k(x) ,

p'x',t,x) = p(x,t,x) , and q'(x’,t,x) = (1/a)q(x,t,x,) . 37
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We can see that the acoustic wave equation in transformed coordinates has
the same form as in Cartesian space. However, the definitions of the specific
volume and bulk modulus are different, as shown in eq. (37). Notice that the
specific volume in acoustics has the same form as the permittivity and the
permeability for the same transformation in electromagnetics.

Consider an acoustic medium characterized by compressibily «(x) and an
isotropic specific volume oy(x) [i.e., 0;;(x) = 0,(x)d;)]. We can use the Jacobian
matrix in (9) and the determinant in (10) to show that eq. (36) for cylindrical
coordinates becomes

(1/r)(a/0r)[roy(r,0,2z)dp’(r,0,z,t,x,)/0r]
+ (1/r2)(8/30)[0y(r,0,z)dp'(r,0,2,t,x,)/30]
+ (0/0z)[0y(r,0,2)dp'(r,0,2,t,X,)/0z]
= &(r,0,2)[0%p’(r,0,z,t,x,)/0t?] + aq(r,0,z,t,x,)/dt . (38)
This formula is consistent with the classic formula of the acoustic wave equation
given in the literature [e.g., Aki and Richards (1981), Bath and Berkhout
(1984), and Skudrzyk (1984).
CONCLUSIONS
In this review, I have discussed the invariance of Maxwell’s equations and
elastodynamic equations under coordinate transformations. Proof was presented

that the mathematical forms of Maxwell’s equations and acoustic wave equations
are invariant with coordinates transformations.
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