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ABSTRACT

Pestana, R., Chu, C. and Stoffa, P.L., 2011. High-order pseudo-analytical method for acoustic wave
modeling. Journal of Seismic Exploration, 20: 217-234.

For the time evolution of acoustic wavefields we present an alternative derivation of the
pseudo-analytical method, which enables us to generalize the method to high-order formulations.
Within the same derivation framework, we compare the second-order pseudo-analytical method, the
Fourier finite difference method, and the fourth-order Lax-Wendroff time integration method. We
demonstrate that the pseudo-analytical method can be regarded as a modified Lax-Wendroff method.
Different from the fourth-order time stepping method, both the second-order pseudo-analytical
method and the Fourier finite difference method use pseudo-Laplacians to compensate for time
stepping errors. The pseudo-Laplacians need to be solved in the wavenumber domain with constant
compensation velocities for computational simplicity and efficiency. Low-order pseudo-Laplacians
are more sensitive to the choice of compensation velocities than high-order ones. As a result, we
need to use the combination of several pseudo-Laplacians to achieve the required accuracy for
low-order pseudo-analytical methods. When using the pseudospectral method to evaluate all spatial
derivatives, the computation cost for the second-order pseudo-analytical method, the Fourier finite
difference method, and the fourth-order Lax-Wendroff time integration method is approximately the
same. Both the second-order pseudo-analytical method and the Fourier finite difference method have
less restrictive stability conditions than the fourth-order time stepping method. We demonstrate with
numerical examples that the second-order pseudo-analytical method, greatly improves the original
pseudo-analytical method and as a modified version of the Lax-Wendroff method, is well suited for
imaging seismic data in subsalt areas where reverse-time migration plays a crucial role.

KEY WORDS: acoustic wave equation, seismic modeling, pseudo-method, pseudo-analytical
method, pseudo-Lapliacan operator, Fourier finite-difference method,
Lax-Wendroff method, Fourier pseudo-method.
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INTRODUCTION

Seismic wave simulation remains an important branch of exploration
seismology, functioning as the backbone of many problems including seismic
modeling, imaging and full waveform inversion, to name a few. The approach
of directly seeking solutions to wave equations using numerical methods
becomes more and more appealing with the ever increasing computing power
that is now widely available. To solve time-domain wave equations on discrete
grids, both the spatial derivatives and the temporal derivative need to be
discretized. Many numerical methods have been applied to tackling spatial
derivative discretizations. Popular choices include the finite difference method,
the pseudospectral method, the finite element method, and their variants.
Though alternative options are available, the dominant method of choice for
temporal derivative discretizations has been the finite difference method,
especially, the second-order finite difference method. It has been recognized that
temporal discretizations can introduce noticeable numerical errors even if highly
accurate spatial operators are adopted. The conventional way of solving this
problem is to use high-order time stepping schemes, or use optimized methods
(Dablain, 1986; Crase, 1990; Ghrist et al., 2000; Chen, 2006, 2007; Zhang et
al., 2007; Soubaras and Zhang, 2008; Chu et al., 2009).

The methodology of most high-order time stepping schemes is not very
different from that of high-order spatial operators. In either case, the high
accuracy is achieved by using high-order polynomial or rational approximations
to the theoretical analytical expressions that usually have no closed forms (Chu,
2009). It is possible to directly compute the non-closed form analytical formulas
without having to expand them and taking different degrees of truncations. Two
of such methods have been proposed by Kole (2003) and Zhang and Zhang
(2009). Both of these methods have explicit formulations similar to the
conventional explicit time stepping schemes but they are unconditionally stable.
This indeed is very attractive but it unfortunately comes with a price. The
matrix exponential approach (Kole, 2003) requires algorithms to compute
exponentials of matrices. Memory and speed efficiency become an issue for
realistic size models. Similar to the matrix exponential method, the one-step
extrapolation method (Zhang and Zhang, 2009) also has a pseudo-differential
term to deal with, expressed as a square root function rather than exponential.
Pestana and Stoffa (2010) reintroduced the Rapid Expansion method of Kosloff
et al. (1989) and Tal-Ezer et al. (1987). Here the exponential of the
pseudo-differential operator is expanded in terms of orthogonal Chebyshev
polynomials. This method is particularly attractive when high accuracy results
are required and for large time steps.

The pseudo-analytical method attempts to solve the problem in a different
way (Chu,2009; Etgen and Brandsberg-Dahl, 2009). Rather than seeking
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accurate approximations to the analytical expressions, the pseudo-analytical
method employs modified spatial derivatives to compensate for the errors caused
by the second-order time stepping scheme. The modified spatial derivatives form
a pseudo-differential operator that requires special treatment, similar to the
matrix exponential method and the one-step extrapolation method. To compute
this pseudo-differential operator efficiently, the pseudo-analytical method
simplifies it by assuming a constant velocity medium which results in a formula
that can be easily calculated in the wavenumber domain. It then relies on the
combination of several such pseudo-differential operators each for a different
constant velocity to accommodate actual velocity variations. Obviously, the
pseudo-analytical method becomes expensive for complex models with high
velocity contrasts since we will need to compute more pseudo-Laplacians. The
Fourier finite difference method (Song et al., 2010), though proposed in a
different theoretical framework, takes a very similar form as the
pseudo-analytical method. The Fourier finite difference method divides the
wavefield computation into two steps. The first step is to compute the
pseudo-Laplacian in the same way that the pseudo-analytical method does. The
second step is to apply a finite difference operator to the output wavefield from
the first step. This two-step approach partially alleviates the problem of being
sensitive to velocity variations. When using the second-order operator to conduct
the finite difference computations, as was proposed by Song et al. (2010), the
Fourier finite difference method only slightly increases the computation cost.

In this paper, we give an alternative derivation for the pseudo-analytical
method which leads to high-order pseudo-analytical methods. We first derive the
pseudo-analytical method with Taylor series expansions and show that
high-order pseudo-Laplacians are far less sensitive to the compensation velocity
than low-order ones. We then compare the second-order pseudo-analytical
method with the Fourier finite difference method and the fourth-order
Lax-Wendroff time integration method. All these three methods involve two
computational steps. We show that the basic idea behind the second-order
pseudo-analytical method and the Fourier finite difference method is the same
and that the pseudo-analytical method can be regarded as a modified
Lax-Wendroff method.

HIGH-ORDER PSEUDO-ANALYTICAL METHOD

Consider the constant-density acoustic wave equation

(1/v*)(9%P/dt?) = (0?P/0x?) + (3%P/dy?) + (02P/9z?) , 1)
where P = P(x,y,z,t) represents pressure and is a function of position and time

and v is the P-wave velocity. Assume v is constant for the moment. Performing
a spatial 3D Fourier transform gives
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3?P/ot2 = —vi(k2 + k2 + k)P = —v2|k|?P , @)

where P = P(k,,k,k,,t) stands for the 3D spatial Fourier transform of P(x,y,z,t)
and k,, ky, k, are wavenumbers. The analytical solution, if we know the initial
values P, and dP,/dt at t = O (Etgen, 1989), is

P = cos(v|k|t)P, + [sin(v|k|t)/v|Kk|](dP,/at) . A3)
If a three-level time stepping scheme is adopted, eq. (3) can be simplified to
P! + P! = 2cos(vAt|k|)P" @

where P* = P(nAt). The pseudo-analytical method proposed by Etgen and
Brandsberg-Dahl (2009) is now derived from (4) by adding —2P" to both sides

P+l — 2P" + P! = 2[cos(vAt|k|) — 1]P" ©)
and rewriting it into the following form
(P — 2P" + P 1)/A2 = v2{2[cos(VAt|Kk|) — 1]/(VAB2P" ©)

If we approximate the second order time derivative in (2) by a 2-nd order
finite-difference scheme and compare it with (6), we have the pseudo-Laplacian
operator which is defined as

F(k) = 2[cos(VAt|k|) — 1]/V2AE = — |K|* + (VA/12)|k|* — ~ . (7)

The Taylor expansion of the operator cancels the dependence of the
velocity in the first term and this will increase the interpolation accuracy for
small times steps. F(k) is only exactly the Fourier transform of the Laplacian
operator — |Kk|? in the limit as the time step size approaches zero.

Thus the pseudo-analytical method introduced by Etgen and Brandsberg-Dahl
(2009) is given by:

P+l — 2P + P! = (vAt)’)F(K)P" . ®)

Vo in eq. (7) is the compensation velocity, which is a constant for each
pseudo-Laplacian. Because the pseudo-Laplacian F(k) only slowly varies with
vy, We may use the combination of several pseudo-Laplacians to better
accommodate velocity variations.

Classical finite-difference schemes are derived in terms of a Taylor series.
In this way, replacing the second derivative in time in eq. (2) by its Taylor
series representation, we can rewrite (2) as:
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P+l — 2P + Pl = —v2A2|Kk|2P" + O(vAt|k|)P" , ©)
where the term O(vAt|k|) involves the others derivatives of P in time.

Substituting (4) into eq. (9), it follows that

O(VAt|Kk|) = 2[cos(vAt|k|) — 1 + v*At*|Kk|%/2] . (10)

With the value of O(vAt|k|) evaluated in eq. (10), we can now derive
from eq. (9) a second-order pseudo-analytical method that is given by

Pl — 2P" 4+ Pl = —(vAt|k|)?P" + (VAL'F,(K)P" , (11)
where

Fy(k) = 2[cos(voAt|k|) — 1 + 1 (voAt|Kk|)/(voAt)* , (12)
is the second-order pseudo-Laplacian.

For clarification, we now call F(k) given in eq. (7) the zero-th order
pseudo-Laplacian and the original pseudo-analytical method given in (8) the
zero-th order pseudo-analytical method. The first half on the right hand side of
eq. (11) is just the normal pseudospectral method, with the second-order finite
difference method applied to the temporal derivative. The second half on the
right hand side of eq. (11) acts like a correction term, which makes (11) very
similar to the fourth-order Lax-Wendroff scheme. In fact, eq. (11) can be
regarded as an improved version of the fourth-order Lax-Wendroff time stepping
method, as we will prove in a later section. This alternative interpretation of the
pseudo-analytical method leads to a simple way of generalizing it to high-order
formulations.

The corresponding time domain equation for (11) is
Pt — 2P + Pl = (VADPVPP" + (VAL'IFFT{F,(k)P"} , (13)

where IFFT stands for spatial inverse Fourier transform and V? = (32/9x2) +
(0%/0y?) + (8%/9z?).

Following the same procedures, we can derive the fourth-order
pseudo-analytical method for eq. (1) straightforwardly

Pl — 2P 4 Pl = —(vAR? k[P + (1/12)(vAD* | K| ‘P

+ (VAt°F,(K)P" , (14)



222 PESTANA, CHU & STOFFA

where
Fy(k) = 2[cos(VoAt|Kk|) — 1 + Y(voAt|Kk]|)?
— (128)(voAt | K| )M/ (voAD)E (15)

is the fourth-order pseudo-Laplacian. Other high-order formulas can be readily
derived in a similar way.

Like the zero-th order pseudo-analytical method, the high-order
pseudo-analytical method works for heterogeneous media because the high-order
pseudo-Laplacians only vary slowly with the compensation velocity, v, [Figs.
1(c) to 1(f)]. Notice that all the pseudo-Laplacians have similar shape in the
wavenumber domain. Better than the original pseudo-Laplacian [Figs. 1(a) and
1(b)], however, the high-order pseudo-Laplacians are far less sensitive to
velocity variations. As can be observed in Fig. 1: F(k) remains approximately
constant only for the low wavenumbers; F,(k) covers a wider nearly-constant
range than F(k); F,(k) only noticeably varies for very high wavenumbers. In
general, the magnitude of the pseudo-Laplacians is inversely proportional to the
order. As a result, we may choose to use a single compensation velocity to
compute the pseudo-Laplacians without having to do interpolations or smoothing
for high-order pseudo-analytical methods. Therefore, high-order pseudo-
analytical methods are not only more accurate but also potentially more

efficient.
COMPARISON WITH THE FOURIER FINITE DIFFERENCE METHOD

The Fourier finite difference method can be derived from (5) but it tackles
the problem in a slightly different way. Rather than writing eq. (5) in the form
of eq. (6), the Fourier finite difference method introduces the compensation
velocity v, as follows (Song et al., 2010)

Pl — 2P" + P"! = 2[cos(VAD) |K| — 1]

X {[cos(vAD) |k| — 1]/[cos(V,At)|k| — 1]}P" . (16)

With the following equation, which is derived based on the first-order
Taylor series expansion at

[cos(vAt) k| — 1]/[cos(v,At) |k| — 1]
=~ (VIV) — [VA(V? — VAI12VAAL K2 17)

eq. (16) now becomes
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Fig. 1. Pseudo-Laplacian for v, = 1500 m/s. (b) Pseudo-Laplacian for v, = 3000 m/s. (c)
Second-order pseudo-Laplacian for v, = 1500 m/s. (d) Second-order pseudo-Laplacian for v, =
3000 m/s. (e) Fourth-order pseudo-Laplacian for v, = 1500 m/s (f) Fourth-order pseudo-Laplacian
for v, = 3000 m/s.
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Prtl — 2P 4 Pl = {(vAD? — [VA(v2 — v3)/12]At* |k |} [Fk)P"] . (18)

Similar to the pseudo-analytical method, the pseudo-Laplacian F(k) needs
to be computed in the wavenumber domain. The other wavenumber term on the
right hand side of (18) can be computed either in the space domain using finite
differences or in the wavenumber domain using the pseudospectral method. This
becomes more obvious after we write eq. (18) in its corresponding time domain
form

P+l — 2P + P! = (VADQY, + [VA(V: — VDA/12]1VAQY, . (19)
e = IFFT{F&k)P"} . (20)

Song et al. (2010) proposed to use the second-order finite difference scheme to
evaluate V* and called it the FFD method. Obviously, the operator V2 can also

be computed using the pseudospectral method. We call this approach the FPS
method.

Both the Fourier finite difference method and the second-order
pseudo-analytical method contain a wavenumber term with a constant
compensation velocity v,. The difference between these two methods is that the
Fourier finite difference method chooses to evaluate the wavenumber term first
and then conduct spatial differentiations, while the second-order pseudo-
analytical method conducts the spatial differentiations first followed by the
wavenumber domain computations. High-order Fourier finite difference methods
can be straightforwardly derived using higher-order terms in the Taylor series.
For instance, the second-order Taylor series expansion around |k|? = 0 can be
found as

[cos(vAt) |k| — 1]/[cos(veAt) k| — 1]
~ (VD) — [VA(V2 — v)/12v3] AL k|
+ {[2v*(v* = v§) — 5vAVi(v* — v))]/360vZIAt k|* . (21)

The corresponding Fourier finite difference formula therefore is

l_)n+1 — 21_)n + 1_)n—1
= {(vAty? — [V}(V* — v3)/12]At* |k |2} [F(k)P"]

+ {[2v3(v* — v — SV — VDI360A| K[ [FR)P] .  (22)
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COMPARISON WITH THE LAX-WENDORFF METHOD

We now show that the high-order pseudo-analytical method is simply a
variant of the Lax-Wendroff scheme. Consider the second-order pseudo-
analytical method, eq. (11) for example. If we approximate the cosine function
in the second-order pseudo-Laplacian with the fourth-order Taylor series, we
derive

iSn+1 _ 21_)n + 1_)n—1
= —(vAt|Kk|)’P" — (1/12)(vAt)® |k |2 [— (vAL?|Kk|P"] , (23)

which is the fourth-order Lax-Wendroff time stepping scheme. In the time
domain, eq. (23) reads

Prtl — 2P 4+ Pl = Q4 (1/12)(vADVIQY | 24)
Q" = (VAL?V?P" . @)

Similarly, we may derive the sixth-order Lax-Wendroff scheme by expanding
the cosine function in (15) with the sixth-order Taylor series.

The above derivation provides new insights into the pseudo-analytical
method. With this derivation, we may now interpret the pseudo-analytical
method as a modified Lax-Wendroff scheme. The Lax-Wendroff method
achieves high accuracy by using high order truncations to the cosine function.
The pseudo-analytical method achieves the same goal of obtaining high accuracy
by keeping the remainder terms and evaluating these remainder terms
approximately in the wavenumber domain. The truncation approach of the
Lax-Wendroff scheme results in explicit differential operators that can be easily
discretized by all commonly used numerical methods. On the contrary, the
pseudo-analytical method is restricted to the wavenumber domain because the
remainder terms are pseudo-differential operators that are more convenient to
be solved numerically in that domain for homogeneous media. Another
implication of the above derivations is that other types of polynomials might be
used instead of the Taylor series expansions to derive the pseudo-analytical
method that might lead to better accuracy and/or efficiency.

STABILITY CRITERION

We now consider the problem of establishing a criteria for stability. To
make the numerical computation stable the time interval has to be small enough
to satisfy the stability condition.
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First we consider the pseudo-analytical method, eq. (8). Canceling pr-!
leaves a quadratic equation for P:

P2 — 2P + 1 = (VAt*)F(K)P . (26)

This equation has two solutions for P. For stability, both must satisfy |l3| <1
Rewrite eq. (26) for P:

P2 — 2[1 + BEVA’EKIP +1 =0 . 27

The roots of P2 — 2aP + 1 = 0 are P = a + /(a2 — 1). Everything
depends on the square root giving an imaginary number. For a2 = [1 +
(VAY’F(K)]> < 1 :ifa2 < 1 then P = a + i/(1 — a2 has |P|2 = a% +
(1-a?) = 1.

The condition “2(vAt)’F(k) < 0 does produce a2 < 1 and this method
will be stable.

Thus,
Y2 (VAY’F(K) = v2[cos(veAt|k|) — 1]/V3 < 0 . (28)

To satisfy the equation above implies that |cos(¢)|] < 1 where ¢ =
VoAty/(k2+k2+k2). For the maximum frequency present in the data we have:

¢ = VoAt/(k2 + k2 + k2) = 27Atf < 27wAtf,,, . 29)
The maximum At we can use that still ensures accuracy for this method
is a time sampling based on the maximum frequency present in the data. In this

way, f.. = 1/(2At), which corresponds to ¢ = .

Considering a 2D case, taking the highest spatial frequencies k, = 7/Ax
and k, = 7/Az and for Ax = Az, from eq. (29) we obtain

a = (Atvy/AX) < 272 . 30)

Using the same procedure, we can extend this approach to the higher
order pseudo-analytical methods. For the second-order pseudo-analytical
method, eq. (11), we have that

[—(vAt|k|)? + (VAY)*Fk)] < 0 @31

which will produce a2 < 1.
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Now, if we rewrite the operator F,(k) as

Fyk) = [F,(k) + [k|1/(voAt)? ,
and substitute into (31), we have that

[(vAt|k|)*21{[(v*/v}) — 1] + v*Fk)V3|Kk|)*} < O . 32)
We take the following approximation for F(k), i.e, F(k) = —|k|*> +
(v3At?/12) | k|* and considering again just the 2D case, with k, = w/Ax and k,
= 7/Az and for Ax = Az, we have that

At < /6 Ax/TV . (33)

Thus the time-stepping for the second order pseudo-analytical, using only
the second order approximation for F(k), has to satisfy (33) to be stable.

For the FPS method, given by eq. (18), using the same procedure, it will
be also stable if,

B{(vAD? — [VAv2 — v3)/12]At|k|2}F(k) < O . (34)

If we consider that F(k) < O this implies that (vAt|k|) has to be less then 1.
Thus, we have that

At < \2 AX/2v, . (35)

But the first term on the left of 34 has to be

VA1 — [V3(v? — v3)/12]A2 k|2 > O . (36)
Then,

[((v — v)/12]A2K|% < 1, 37)
and

At < 6 AX/T(V2 — VD) . (38)

We considered here the same 2D case as before, but the FPS had to satisfy
simultaneously egs. (35) and (38) to be stable. However, in the case where v =
Vo, the FPS method reduces to the first order pseudo-analytical method and both
satisfy the same stability condition which is given by eq. (30).
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NUMERICAL EXAMPLES AND DISCUSSION

First we use a two-layer model to show a series of numerical examples
and compare the results for the methods considered. The model has an upper
layer with v = 1500 m/s and a lower model with v = 4500 m/s. The grid
spacing on this model is 15 m for both the horizontal and vertical directions. In
the numerical examples, we use a Ricker source wavelet with a maximum
frequency equal to 50 Hz located in the upper layer. Each image shows a
wavefield snapshot at t = 1.0 s. Fig. 2 shows computation using the
pseudo-analytical method for time-step values of At = 0.001 s, 0.0015 s, and
0.0025 s using the compensation velocity of v, = 1500 m/s on the left and v,
= 4500 m/s on the right. Based on the stability study, which considered a
homogeneous medium, we found that the pseudo-analytical method, relation
(30), requires At < +/2 Ax/2v, in order to be stable. Taking the maximum
velocity in the medium, i.e, vy = 4500 m/s, and for Ax = Az = 15 m, we find
that the time step has to be less than 0.0023 s. For this example, we find that
for time steps of At = 0.001 s and At = 0.0015 s, and taking the compensation
velocity equal to the minimum velocity results in data that are free of oscillatory
noise. The results for At = 0.001 s are also free of noise for both maximum
and minimum velocity compensation. However, for At = 0.0015 s and At =
0.0025 s, the results display oscillatory artifacts when the compensation velocity
is equal to the maximum velocity. Thus, we confirm that the influence of v,
used in the pseudo-Laplacian operator is very small, but only for small time
steps, which we can see by comparing the results of Figs. 2(a) and 2(b) and
Figs. 2(c) and 2(d).

In Fig. 3 we show the results for time steps At = 0.0025 s for the
second-order pseudo-analytical method and FPS, using the compensation
velocity v, = 1500 m/s on the left and v, = 4500 m/s on the right, and the
fourth-order Lax-Wendroff. We used the FPS method instead of FFD method
to eliminate any errors that could be associated with the finite-difference
operator. The results with the second order pseudo-analytical and Lax-Wendroff
methods, Figs. 3(a), 3(b) and 3(e), respectively, are free of oscillatory artifacts.
These results are nearly identical. For the FPS method, using the same time
step, we see oscillatory artifacts when the reference velocity is 4500 m/s
compared with the FPS result for vy = 1500 m/s. This shows that the FPS
method is comparable to the second-order pseudo-analytical method but is more
sensitive to the compensation velocity. The second-order pseudo-analytical
method requires At < /6 Ax/wv. Considering v = 4500 m/s, we find At <
0.0026 s, and the results for the second-order pseudo-analytical method are free
of oscillatory noise independent of the compensation velocity as shown in Figs.
3(a) and 3(b). These results are much better then the ones obtained with the
pseudo-analytical method [Figs. 2(d) and 2(e)] and they are free of numerical
noise. Thus, these results show that the second order pseudo-analytical and the
FPS (for the correct compensation velocity) and Lax-Wendroff methods are free
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3000 4
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Fig. 2. Wavefield snapshot at time 1.0 s for a two-layer model: The upper layer velocity is 1500
m/s and bottom layer velocity is 4500 m/s. Pseudo-analytical method for: (a) v, = 1500 m/s and
(b) vo = 4500 m/s with time step of At = 0.001 s. (c) v, = 1500 m/s and (d) v, = 4500 m/s, with
At = 0.0015 s; and (e) v, = 4500 m/s, with At = 0.0025 s.
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Fig. 3. Wavefield snapshot at time t = 1.0 s for two-layer model and time step of 0.0025 s, and
taking o = 0.75: Second order pseudo-analytical method with (a) v, = 1500 m/s and (b) v, = 4500
m/s; FPS method with (c) v, = 1500 m/s and (d) v, = 4500 m/s; (¢) Fourth-order Lax-Wedroff

method.
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of these artifacts, even for larger time steps, and they provide efficient and
accurate approximations for the Laplacian operator.

Fig. 4 shows results for the FPS method for a model with a vertical fault.
The upper layer has a velocity of 1500 m/s and the lower layer’s velocity is
4500 m/s. The velocity model is shown in the background of the Fig. 4(a). The
source is located at (3000 m, 3000 m) and the grid spacing on this model is 15
m for both the horizontal and vertical directions. Taking the compensation
velocity equal to the maximum velocity in the media, we have that o < 0.7,
which implies that At < 0.0023 s. As we can see in all these figures, for At =
0.0025 s and with the compensation velocities varying from 1500 to 4500 m/s,
the numerical dispersion is still quite small.

Distance (m) Distance (m)
3000 3000

(a)

Destance (m)
3000 4

Fig. 4. Wavefield snapshot at time 1.0 s for a vertical fault mode for time step of At = 0.0025 s.
FPS method with compensation velocity of: (a) v, = 1500 m/s; (b) v, = 2500 m/s; (c) v, = 3500
m/s; (d) v, = 4500 m/s. Taking the compensation velocity equal to maximum velocity in the model
(4500 m/s), and Ax = Az = 15 m, we obtain that At < 0.0023 s.
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The result obtained with the compensation velocity equal to 3500 m/s
[Fig. 4(c)], is free of oscillatory noise. [In this case, we note that for stability
At < 0.0034 s, using At < /6Ax/7+/(v* — v3)]. However, for v, = 4500 m/s,
the maximum time step is now very close the maximum time step allowed.
Thus, the dispersion shows up again as we can see in Fig. 4(d).

Using now At = 0.003 s, the FPS method became unstable for v, = 1500
m/s and v, = 2500 m/s (Figs. 5(a) and 5(b), respectively). But for a
compensation velocity of 3500 m/s [Fig. 5(c)] there is no dispersion and for v,
= 4500 m/s [Fig. 5(d)], we again have oscillatory artifacts, because we have
to have o < 0.7 or At < 0.0023 to obtain stable results.

Distance (m}
3000

1000 2000 4000 5000

Depth (m)

(a) (b)

Distance (m) Distance (m)
3000 4 3000 4

2000

Depth (m)

(c) (d)

Fig. 5. Wavefield snapshot at time 1.0 s for a vertical fault mode for time step of At = 0.003 s.
FPS method with compensation velocity of: (a) v, = 1500 m/s; (b) v, = 2500 m/s; (c) v, = 3500
m/s; (d) vp = 4500 m/s. Taking the maximum velocity in the model equal to 4500 m/s, and
compensation velocity equal to v, = 3500 m/s, we obtain that At < 0.0035 s.
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CONCLUSIONS

We have generalized the pseudo-analytical method to high-order
formulations by introducing a new derivation. With this alternative derivation,
the pseudo-analytical method can be interpreted as a modified Lax-Wendroff
time stepping scheme: the latter method uses a truncated Taylor series while the
former keeps the remainder term and approximates it in the wavenumber domain
with constant velocities. The remainder term, by definition, is the
pseudo-Laplacian operator. The sensitivity to the compensation velocity v, of the
pseudo-Laplacians is inversely proportional to the order of accuracy. As a
consequence, high-order pseudo-analytical methods are more accurate and
therefore potentially more efficient than low-order ones for models with high
velocity contrasts.

We have shown that both the second-order pseudo-analytical method and
the Fourier finite difference method adopt the idea of pseudo-Laplacians to
compensate for time stepping errors. Both methods contain one wavenumber
domain term and one space domain term which leads to a two-step
implementation. The wavenumber domain term of the Fourier finite difference
method is a zero-th order pseudo-Laplacian. Consequently, it suffers from the
same problem of being sensitive to the compensation velocity as the zero-th
order pseudo-analytical method. In addition, the accuracy of the Fourier finite
difference method is also dependent on the order of the finite difference operator
employed. Thus, we used the pseudospectral method to evaluate the space
domain term to improve the accuracy and therefore remove the effects of this
finite difference approximation from our examples.

The computation cost of the second-order pseudo-analytical method, the
Fourier finite difference method, and the fourth-order Lax-Wendroff time
integration method is approximately same, when using the pseudospectral
method to evaluate all spatial derivatives (the FFD method becomes the FPS
method in this case). Both the second-order pseudo-analytical method, FFD and
FPS method, however, have less restrictive stability conditions than the
Lax-Wendroff fourth-order time stepping method. Compared with the
second-order pseudo-analytical method, the stability and hence accuracy of the
FPS is more dependent of the compensation velocity and care must be taken in
its selection.

It is also possible to use other polynomials instead of a Taylor series to
derive other variants of the pseudo-analytical method and Fourier
finite-difference methods which may lead to higher accuracy and efficiency. But
for the three methods studied here, we conclude that the second-order
pseudo-analytical method is the best choice for high-accuracy numerical wave
simulations in rapidly varying velocity media.
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