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ABSTRACT

Sun, B., Chauris, H. and Ma, J., 2011. 3D post-stack one-way migration using curvelets. Journal
of Seismic Exploration, 20: 257-271.

The classical one-way approximation extrapolates the wavefield from the surface. At each
depth level, time shifts are applied in the spatial and wavenumber domains. These shifts are function
of the local velocity model. In this paper, following the same strategy as the beamlet migration, we
formulate the split-step Fourier method in the curvelet domain. Curvelets are fairly local in the
spatial and wavenumber domains, justifying the use of local velocity values in the one-way strategy.
In practice, the wavefield is decomposed into 2D curvelets at each extrapolation depth and for fixed
frequencies. The derivation is validated through an application on 3D zero-offset migration in a
heterogeneous model. This work should be understood as an important step towards a better
understanding of the wave propagation in a multi-scale and multi-directional perspective.
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INTRODUCTION

Seismic imaging consists of retrieving the earth’s properties from seismic
measurements at the surface. In this paper, we focus on the one-way
approximation, where the wavefield is extrapolated in a recursive manner from
the surface. Only forward propagation and forward scattering aspects are taken
into account, neglecting back-propagation effects. Different methods have been
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Fig. 1. Top: examples of unmigrated (left) and migrated (right) seismic data. Bottom: zooms of the
top figures, underlying the local continuity of seismic events.

developed, depending on the complexity of the velocity model used to simulate
the wavefield propagation. We refer to Ferguson (2005) for a complete review.
The simplest approach, the classical phase-shift method, extrapolates the
wavefield in the wavenumber domain without angle limitations, but is restricted
to homogeneous velocity models (Gazdag, 1981). The split-step Fourier method
or phase-screen method are designed for weak heterogeneous velocity models
(Gazdag and Sguazzero, 1984; Liu and Zhang, 2006; Margrave and Ferguson,
1999). The Generalized-Screen algorithm is valid for strong heterogeneous
models (Le Rousseau and de Hoop, 2001). These different approaches rely on
both the spatial and wavenumber domains. For classical implementations, the
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seismic wavefield has a global extension in ore of the two domains: a
point-source wavefield is global in the wavenumber domain, whereas a plane
wave decomposition is global in the space domain. Due to the large extend of
the data, a local approximation of the velocity model to handle heterogeneous
models, leads to severe approximations, mainly to angle limitations. For that
reason, many authors have proposed alternative decomposition schemes of the
wavefield to preserve a local aspect of the data in both the spatial and
wavenumber domains.

Seismic data sections generally exhibit local continuity over at least a few
traces, both in the unmigrated and migrated domains (Fig. 1). The
decomposition of a seismic gather into a sum of local plane waves is thus
attractive. We review some existing possibilities characterized by a local
extension of the basis functions.

Steinberg (1993) and Steinberg and Birman (1995) developed phase-space
propagators based on windowed Fourier transforms (WFTs). Wu and Jin (1997)
extended the approach: in their case, the distortion of the wavefield is
determined by the local properties of the velocity model. The approach however
can be prohibitive in the case of a large number of extrapolation steps due to
many applications of the WFTs. Following the same strategy, the beamlet
approach proposes two decomposition schemes coupled to the wave propagation:
the Gabor-Daubechies frame (GDF) (Wu and Chen, 2001) and the Local Cosine
Basis (LCB) (Wu et al., 2008). Beamlets are localized in the spatial and
wavenumber domains. The strategy for propagating a wavefield is to locally
split the velocity model into two parts: (1) the background velocity model
containing the large-scale structure of the model, and (2) the remaining local
perturbation. At each propagation step, the wavefield is decomposed in the
beamlet domain. Firstly, beamlets are distorted due to a non-homogeneous
background model. For smooth models, the high frequency approximation (ray
theory) is applicable (Cerveny, 2001), and Wu et al. (2008) indicated how each
beamlet is distorted. Secondly, the rough heterogeneities also affect beamlets.
An explicit expression is given under the split-step Fourier approximation,
indicating how energy is scattered (Chen et al., 2006).

The objective of this work is to understand if beamlets could be replaced
by curvelets, using the same local perturbation strategy to distort the wavefield
in heterogeneous models. Curvelets were recently introduced in the field of
applied harmonic analysis (Candes et al., 2006), with a number of applications
(Herrmann et al., 2008; Ma and Plonka, 2010). This work is motivated by the
following properties of curvelets: (1) curvelets are optimal to sparsely represent
smooth images with smooth discontinuities; (2) they provide a multi-scale and
multi-directional decomposition of the wavefield; (3) curvelets are known to
offer a sparse propagation scheme under the high frequency approximation, at
least for short-time propagation steps (Candés and Donoho, 2004; Candés and
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Demanet, 2005). Both beamlets and curvelets are localized in the space and
wavenumber domains. However, curvelets appear to be more elongated than
beamlets. More details on the differences between beamlets and curvelets are
given in the next section.

Previous publications show attempts to solve the wave equation in the
curvelet domain, see for instance Douma and de Hoop (2007); Chauris and
Nguyen (2008). They mainly concentrate on the high frequency approximation.
In that case, the distortion of a curvelet can be represented by another curvelet,
but only for short-time propagation. A more general approach has been
proposed by Sun et al. (2009), where the authors derived a simple equation
expressing the effect of the Laplacian operator onto a given curvelet. However,
these developments are currently limited to homogeneous velocity models. Here,
the objective is to derive how curvelets propagate in heterogeneous models
under the local perturbation approximation (one-way strategy), to possibly deal
with strong velocity contrasts.

The outline of the paper is the following: we first briefly introduce the
curvelet construction and indicate the main differences between curvelets and
beamlets. We then review the classical split-step Fourier method, and combine
it with curvelets. Finally, we demonstrate the applicability on 3D post-stack data
before concluding.

CURVELETS

We refer to Candes and Donoho (2004); Candés et al. (2006); Ma and
Plonka (2010) for a formal description of curvelets. We only point out here the
main properties. A curvelet in 2D is similar to the representation of a local
plane wave. Each element can be deduced from a reference curvelet, either by
a shift, a rotation or a dilation (Fig. 2).

The curvelet family forms a tight frame: each function p(x) can be
expressed as a combination of basis curvelet functions ¢,(x) [eq. (1)], where x
= (x,y) denotes the spatial coordinates (Candés et al., 2006). The index p =
(,L,k) corresponds to the curvelet scale, direction and position. Like for an
orthonormal basis, the reconstruction scheme is obtained by

PX) = Y, c0,(0) = Y, <P, >0,(X) . (1)

The c, value is the curvelet coefficient obtained by the scalar product
<p,p,>. In practice, the scalar product is obtained in the wavenumber domain
(Chauris and Nguyen, 2008)
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where k is the wavenumber associated with x. The function ¢, expresses the
curvelet in the 2D wavenumber domain. By construction, it is localized around
the central direction of the curvelet (Fig. 3, top). More directions, according to
the parabolic scaling, are needed to properly sample the wavenumber domain
(Candes et al., 2006). The function S i is the rotation by 6, radians, indicating
the main direction of the curvelet

cosf,  sing,
Sy = ( ) . 3)
—sinf,  cos#,

Position x (m)
1000 1500

Fig. 2. Reference curvelet (top level) and associated curvelets after shift (top right), rotation (bottom
left) and scaling (bottom right).
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The filter U; is constructed as a combination of two functions W(r) and
V(6) defining the radial and angular aspects (Candes et al., 2006; Ma and
Plonka, 2010). These window functions are both smooth with W(r) supported
onr € [1/2,2] and V(0) supported on [—1,1]. In the polar coordinates (r,6), the
function U; is expressed by

Uj(r,0) = 279*WQRnvR¥e/2T) . “4)

The curvelets are both fairly localized in the spatial and wavenumber
domains (Fig. 3). The Gabor-Daubechies Frame and Local Cosine Bases
beamlets have expressions that differ from the curvelet formula (Chen et al.,
2006; Wu et al., 2008). For the Gabor-Daubechies frame beamlet,

b,(x) = g(x — xJe' ¥ | ®)

where g is a Gaussian function. The coordinate k;, controls the central
frequency content and the direction of the beamlet. More details can be found
in Chen et al. (2006). Compared to curvelets, beamlets appear to be less
elongated (Fig. 3). This is potentially a disadvantage for the wave propagation
as with the one-way approximation, the velocity model is locally approximated
around a central position. It is thus important to know if curvelets can correctly
be propagated in a given velocity model.

WAVE PROPAGATION IN THE CURVELET DOMAIN

Once curvelets have been defined, we first review the split-step Fourier
method and show how the wave equation is formulated in the curvelet domain
under the one-way approximation.

The split-step Fourier method

Knowing the total wavefield p at a given depth z,, the objective is to
predict the wavefield at the next depth level z,,, = z, + 6z for small depth
increments. We refer to Stoffa et al. (1990) for more details. The wavefield p
is a solution of the seismic wave equation, here the scalar constant density
equation expressed in the frequency domain

Ap(X,z,w) + wru?(x,z)p = 0 , (6)

where as before (x,z) = (x,y,z) denotes the spatial coordinate, w the angular
frequency and u the slowness field. For simplicity, we did not indicate the
source term. The variable z is isolated as a particular coordinate for vertical
propagation. Later, the wavefield is thus decomposed in the 2D curvelet domain
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(x,y) for fixed depth z and frequency w. The slowness field is split into two
parts, u, being a smooth part, and éu a slowness perturbation: u(x,z) = uy(z) +
éu(x,z). The split-step Fourier method is summarized in the next equation

PX.Zys@) = €A 1/QmY] | [ pkz, Bl krdk . (1)

where p is the 2D Fourier transform over x of p. The square root operator is
approximated using the local perturbation theory. It consists of first applying a
phase shift in the wavenumber domain, with B(k) = +/(w*u§ — |k|?). The
slowness u, does not depend on the spatial position. After a 2D inverse Fourier
transform, a second phase shift is applied with A(x) = wdu(x), to take into
account the local velocity perturbation. In practice, the one-way approximation
has angle limitations (Stoffa et al., 1990; Ferguson, 2005). The formulation in
the curvelet domain consists of decomposing p into a combination of curvelets.
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Fig. 3. Curvelet (top) and beamlet (bottom) in the space (left) and wavenumber (right) domains.
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Transposition in the curvelet domain

A similar approach is conducted in Wu et al. (2008) for the beamlet case.
The wavefields are decomposed into curvelets in the space domain.

P(X,Z0,0) = Y, C,(Zp)0,(X) (8)

DX, Zys ;@) = Y, CZas @)@, (X) )

I

The objective is to derive ¢,(z,,,,w) from c,(z,,w). The coefficients are
function of the reference depth z, and the angular frequency w. Under the
split-step Fourier approximation, a single distorted curvelet is expressed as

lp#(X) — eiA(x)éz[l/(z,n.)Z] s s &y(k)eiB(k)ézei<k,x>dk . (10)

The function ¥, is no longer a strict curvelet. We first decompose the
integral on the right into a sum of curvelets ¢,(x) with associated weights Pﬁ.,
equal to

P, = | axi/ertiem | | o, aemwrei<indi (11)

[Werle,® § | 6,006,(-ke"®rdk . (12)

The modified curvelet is decomposed as

V0 = Y Poo® (13)
A

where P,, = L,PS P}, with
PL=§ | ememeremdx . (14)
The final expression is obtained by

\(Zni@) = ), Pooc, (15)

The operator P, , indicates how curvelets are distorted under the one-way
approximation. The two key coefficients P}, and P}, are respectively computed
in the wavenumber domain and in the spatial domain, with the appropriate phase
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shift corrections. The local perturbation theory is better justified in the case of
curvelets thanks to the local aspect of curvelets in the spatial and wavenumber
domains.

APPLICATIONS

We test the methodology on a simple impulse response and on a more
complex velocity model. In the two cases, the 3D zero-offset data set is
generated with a Finite Difference scheme formulated in the time domain
(Noble, 1992), using the exploding reflector technique (Lowenthal et al., 1976).
We migrate the data in the curvelet domain, under the one-way approximation.
It simply consists of summing the wavefield at each spatial location over all
frequencies in eq. (9).

The first data set is the impulse response of a homogeneous velocity
model at 2 km/s containing a single diffraction point. The model is discretized
on a grid of 128 X 128 X 128, using Ax = Ay = Az = 10 m. After
migration, the curvelet result nicely compares with the split-step Fourier result
(Fig. 4). The curvelet image does not suffer from artifacts due to truncations in
the Fourier transform. Furthermore, the curvelet migration takes advantage of
the local aspect of the data in the spatial and wavenumber domains.
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Fig. 4. Impulse responses obtained with the split-step Fourier method (left) and with the curvelet
method (right).
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Fig. 5. 3D velocity model used to generate the zero-offset 3D data. The velocity values range from
2 km/s in black to 2.5 km/s in white.

The second data set is built from a modified version of the 3D Overthrust
velocity model (Aminzadeh et al., 1997). The velocity values range from 2 km/s
to 2.5 km/s (Fig. 5) and is discretized on a grid of 300 X 200 X 128 with Ax
= Ay = Az = 12 m. The maximum frequency is set to 30 Hz, with a time
increment of 2.5 ms (Fig. 6, top). The Finite Difference scheme is of order 4
in time and 8 in space, with 5.5 points per wavelengths to limit the numerical
dispersion. After migration, the energy is focused at the position of the
interfaces. This demonstrates the ability for curvelets to correctly obtain the
migration result under the one-way approximation. The same conclusion holds
for the extracted sections for y = 1.2 km (Figs. 7 and 8). However, events with
a too small extend are not clearly visible after migration (e.g., on the bottom
right for z around 1.3 km and x around 3 km) due to the limited maximum
frequency of the input data.
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Fig. 6. 3D zero-offset unmigrated input data (top) and associated curvelet migration result (bottom).
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Fig. 7. 2D section for y = 1.2 km, extracted from the velocity model used to generate the
zero-offset 3D data. The velocity values range from 2 km/s in black to 2.5 km/s in white.

As mentioned in the introduction section on curvelet, beamlets are less
elongated than curvelets. This is potentially an advantage for beamlets, as the
split-step Fourier method requires to shift the data in the spatial and
wavenumber domains. Despite more elongated shapes, the curvelets are able to
focus energy after migration. This offers a large number of possible
applications. For each scale and each initial direction, a migrated cube can be
computed. The final result can also be decomposed function of the local dip

inherent to curvelets. This is for example a way to correct for illumination (Cao
and Wu, 2009).

Beamlets however have a significant advantage over curvelets, as they
form an orthogonal basis: the scalar product between two different beamlets is
equal to zero. This is not the case for curvelets. The curvelet transform is
redundant, with a redundancy ratio between 5 to 10, depending on the
implementation (Chauris and Nguyen, 2008). More importantly, eqs. (12) and
(14) cannot be easily evaluated. It is however possible to restrict the summations
over curvelets having a common support. Further investigations should still be
conducted to obtain an efficient implementation.
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Fig. 8. 2D sections for y = 1.2 km, extracted from the zero-offset unmigrated input data (top) and

from the associated curvelet migration result (bottom).
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CONCLUSIONS

We have shown how seismic wave propagation and seismic migration can
be simulated in the curvelet domain under the one-way approximation. The
strategy is similar to the beamlet propagation technique. Compared to the
classical split-step Fourier method, the curvelet approach offers the advantage
to locally decompose the input data in the spatial and wavenumber domain,
justifying the use of the local velocity values. This work should be further
evaluated on more models with stronger velocity contrasts. Once an efficient
scheme for evaluating the scalar product between two curvelets is obtained, it
offers many opportunities to perceive the wave propagation in complex models
in a multi-scale and multi-directional approach.
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