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ABSTRACT

Yuan, Y., Wang, Y., Liu, Y. and Chang, X., 2011. Curvelet domain adaptive least-squares
subtraction of internal multiples. Journal of Seismic Exploration, 20: 273-288.

The elimination of internal multiples has always been a challenge in seismic processing.
Compared to surface-related multiples, the amplitudes of internal multiples are more complicated
and have a wider range due to different geological interfaces, and these complexities make the
conventional prediction-subtraction algorithm not easy to be implemented. In this paper, a new
method has been proposed to reduce the negative influence of energy diversity in internal multiples
subtraction based on curvelet transform. First, we apply multi-resolution and multi-directional
analysis to the seismic record with internal multiples, to map seismic events with different spectral
and directional features into different curvelet domains. Then, internal multiples can be estimated
by minimizing the misfit between the curvelet coefficients of the real seismic data and components
of the predicted multiples under least-squares sense in curvelet sub-domains. A simple experimental
data with three crossed events and a synthetic seismic record with complex internal multiples are
used to validate the effectiveness of the proposed method. Results indicate that our approach is
effective in suppressing internal multiples, preserving geological signals and avoiding distortion of
primary events even when intersection or coincidence occurs.
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INTRODUCTION

The removal of multiples from seismic records forms an essential part in
both land-based and ocean-based seismic data processing. Multiple reflected
events can usually be divided into two classes based on where the downward
reflections in their ray-paths take place. Surface related multiples are events that
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have at least one downward reflection initiated at the surface. Internal multiples,
on the other hand, have all of their downward reflections initiated below the
surface.

Strong impedance contrast at internal reflectors such as top of salt and
coal bed, disconformities, etc. (Weglein et al., 1997; Verschuur and Berkhout,
2005; Jin et al., 2008; Liu et al., 2005), would lead to complicated sets of
internal multiples that can easily disturb primary reflections. Even though
surface reflected multiples usually exhibit stronger amplitudes than internal
multiples, it is much more complicated to eliminate internal multiples. First of
all, internal multiples might be related to several subsurface reflectors that are
underdetermined, thus the situation for internal multiples is more complex
compared to free-surface multiples which are effected by properties of surface.
Secondly, amplitudes of internal multiples are highly diversified from layer to
layer, while energies of free-surface multiples are relatively stable. The
amplitude diversity makes it hard to implement conventional subtraction operator
in the total seismic record. Finally, vertical and lateral variation of interfaces
will further add to the complexity of internal multiples subtraction.

Prediction-subtraction algorithm (Verschuur and Prein, 1999) for internal
multiples elimination includes prediction and adaptive subtraction procedures.
Methods for internal multiples prediction can be classified into two generic
categories: model-driven methods that make use of statistical assumptions and
a priori information about the subsurface velocity distribution, and data-driven
algorithm that is based on wave theoretical principles in which multiples are
estimated from the measured data itself as a predictive operator. An improved
inverse scattering series (ISS) approach that has been proposed to estimate
internal multiples, is both effective and velocity-independent (Weglein et al.,
1997; Jin et al., 2008).

The second implement of the prediction-subtraction method to remove
internal multiples is, however, much more crucial in noise elimination, and
many efforts have been made in the field subtraction algorithms. L,-norm
adaptive subtraction (Guitton and Verschuur, 2004; Li et al., 2010) and L,-norm
adaptive subtraction (Wiener, 1949; Verschuur et al., 1992; Verschuur and
Kelamis, 1997) have been commonly applied in temporal-spatial space. Wang
et al. (2009) introduced curvelet domain hybrid L,/L,-norm subtraction
algorithm to suppress surface interferometric predicting surface waves by
minimizing a curvelet domain hybrid L,- and L,-norm objective function. Liu
proposed multiple subtraction using statistically estimated inverse wavelets (Liu
et al., 2010). Herrmann and Verschuur (2004) applied a block-coordinate
relaxation method that seeks the sparsest set for weighted curvelet coefficients
of multiples in the process of subtraction. Fomel (2009) developed a
nonstationary regression algorithm of matched filtering for adaptive multiple
suppression. Li et al. (2010) used least-squares matching approach in time and
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space overlapping windows for surface-related multiple subtraction in 2D
seismic data, where the residual energy between original data and undesirable
noise is minimized.

An incorrect matching subtraction will lead to residual multiple energies
in the result or may lead to distortion of the primaries. However, internal
multiple subtraction is still a challenging and significant problem required to be
solved. In this paper, we propose a new and effective method for internal
multiple subtraction in curvelet domain. Due to curvelet transform’s superior
characteristics of multi-scale, multi-direction and localization, primaries and
multiples could have minimum overlap in each curvelet sub-domain, which
represents a sub temporal-spatial seismic record with specific spectral band and
directional range of the total seismic data, and in which conventional adaptive
least-squares matched filtering algorithm could be applied separately. Given a
first estimate for internal multiples, we first make proper scale-angular analysis
of the original data with multiples to separate internal multiples and primary
reflections into different curvelet series. Then the predicted multiple records are
decomposed in the same style for the convenience of matched filtering. Finally,
we try to adaptively subtract multiple reflections by minimizing the difference
between the curvelet components of estimated multiples with the true
coefficients of the multiples under the least-squares criterion.

There are mainly two advantages of such a separation-matching approach.
One is to reduce the distortion of primaries and the leakage of multiple reflected
energies in the process of suppressing multiples since primary events and
multiples have minimum overlap with appropriate analysis. This primaries-
multiples separation property is a key trait that guarantees the stability of
adaptive matched filtering and that enables effective removal of the multiples
components. Another advantage lies in the efficiency of such method: the
least-squares algorithm is implemented in the whole curvelet coefficients space
with specific scale and dip parameter, and sliding windowing along time and
space axis (Dragoset, 1999; Wildrow and Sterns, 1985; Jin et al., 2008; Lin et
al., 2004) can be avoided.

CURVELET TRANSFORM

Curvelet transform is a localized directional decomposition process in the
harmonic scale and represents the wave-front of seismic events more precisely
with the needle-shaped basis elements, which have super directional sensitivity
ability and smooth contours capturing efficiency than wavelet transform does.
In this paper, we apply the second generation discrete curvelet transform, which
is implemented in four steps: 1) computing 2D fast Fourier transform for the
seismic record; 2) creating the wedge window by product of the scale and angle
windows; 3) wrapping the product around the center point of the wedge;
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4) applying the 2D inverse fast Fourier transform to the wrapped data. Fig. 1(a)
shows the way of dyadic scale and angular partition of the frequency-
wavenumber plane, and Fig. 1(b) presents the way of visualization of curvelet
coefficients for the convenience of making analogy, in which the x-axis indexes
direction and the y-axis indicates scale.

We first define a series of functions: ¢(j,/,k), where j indexes scale
(increase from coarsest to finest), / represents angle or direction, and k =
(k;,k,) is the t-x location parameter. These functions, known as curvelets, are
used to decompose the original data into a series of local components defined
by different scales and dips. Assume f[t,x] is the seismic record in the t-x
domain, then the Curvelet transform can be defined as the inner product of the
data f[t,x] and the curvelet functions (Candés and Donoho, 2004; Candés and
Donoho, 2006),
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where ¢;;, is the conjugate transpose of curvelet function ¢(j,/,k).
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Fig. 1. The second generation discrete curvelet transform.(a) is multi-scale and multi-directional
partitioning of the f-k plane. (b) is visualization of the corresponding curvelet coefficients (according
to the conjugate symmetric property, only half of the curvelet coefficients are displayed). The
horizontal axis indicates angles from —90° ~ 90° and the vertical axis represents scale. The blue
wedge in scale 3 and angle index 2 smoothly localizes the Fourier transform, confined by upper and
lower spectral limits, and by left and right directional ranges. The red arrow points to the direction
of the wedge.



INTERNAL MULTIPLES 277

Not only curvelet transform has optimal non-linear approximate rates, but
also all curvelet functions can constitute compact frames, and the data is
reconstructed with a moderate redundancy. The reconstruction formula is:

flt,x] = E <fa‘Pj,1,k>‘Pj,1,k = E E E CG9l’k)§9j,l,k[t’x] . )]
i1k

Jibk

From the equation we can see that curvelet transform represents a seismic
data as a weighted sum of a series of curvelet functions with different scales,
directions and positions, and the weights are commonly referred to as the
curvelet components of the record, which represent the contribution of each
point in seismic record in the time-spatial domain to individual wedge window
in the frequency-wavenumber domain.

Next we mainly discuss the sparsity behavior of curvelet transform.
Curvelets satisfies the parabolic scale relation which determines that curvelet
transform has the capacity to represent data with edges on piece-wise smooth
curves (f € C? with a finite number of jumps to be precise) in an optimal
sparse way. In approximate theory, assume 2D signal f[t,x] can be transformed
into a series of curvelet coefficients, and f,[t,x] is the m-term approximate
(constructed data with the first m curvelet coefficients). If the 2D signal f[t,x]
is piece-wise smooth along the edges and the non-linear approximation rate
satisfies:

”f_fmlllzﬁocrn—2 ’ m — .
In the case of wavelet transform, however, the reconstruction error is:
If = fullZ: cm™ , m— oo,

In the case of Fourier transform, in sharp contrast, the non-linear approximation
rate follows:

If = fallts e m™ . m— o

Consequently, compared to wavelet and Fourier transform, curvelet transform
has near optimal non-linear approximate rates. Fig. 2 gives non-linear
approximate of wavelet and curvelet, respectively, which shows that curvelet
transform can approximate piece-wise smooth curves (seismic events in this
case) better than wavelet transform, a fact that indicates curvelet transform
would play a vital role in seismic data processing, especially in noise
attenuation.
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Fig. 2. Comparison of non-linear approximation rates of a seismic hyperbolic event by wavelets (a)
and curvelets (b).

ADAPTIVE LEAST-SQUARES MATCHING IN CURVELET SUB-DOMAIN

Any linear problems in seismic processing and imaging can be seen as a
special case of the following generic problems: how to obtain s from real
seismic record d in the presence of noise m. In our case, m represents internal
multiples.

d=s+m . 3)

Conventional matching approach fits the predicted multiples th through a
correction operator G to the true multiples present in the total data d, which
consists of the sum of primaries s and multiples m.

m = G . 4)

As the true multiples are unknown, the least-squares method minimizes
the energy mismatch between the total data and the predicted multiples:

min = |d — Gm|2 . G)
G
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There are two main assumptions underlying the least-squares matching
method: orthogonality and max energy conditions (Levinson, 1947; Jin et al.,
2008). In the case of multiple subtraction, the multiples and primaries are
assumed to be orthogonal and have no overlap in the total record, and the
energy of multiples cannot be too weak for the security of sufficient matching.
Unfortunately, this matching approach fails with real data because the
underlying assumptions are seriously violated. To address the issues, minimizing
data misfit between the predicted multiples and true seismic record under
L,-norm is implemented in sliding windows along time and space axes (Jin et
al., 2008; Lin et al., 2004). Even though the windowed least-squares matching
method has improved the attenuation of surface-related multiples, this approach
continues to suffer from distortions of primaries and sub-subtraction of multiple
energy in terms of internal multiples, especially in the case of large amplitude
difference. We now turn our attention to adaptive least-squares internal multiple
subtraction in curvelet domain.

From the definition of curvelets, we can conclude that curvelet transform
is both a sparse representation (discussed in the previous section), and a local,
multi-resolution, multi-directional analysis process (as is displayed in Fig. 3).
Considering multiples and primaries have locally different time-spatial, spectral
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Fig. 3. Four curvelets in time-space domain (a) and frequency-wavenumber space(b), which indicates
that curvelets are multi-scale, multi-directional (confined in the wedge of the f-k domain and the
direction of curvelets in the t-x space is perpendicular to the principal direction of the f-k wedge),
and localized both in space- and frequency-domain.
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and dip/directional behaviors, they can be mapped into different areas in the
curvelet domain, thus multiple reflected energy and primary events can be
separated to have minimum overlap and applying least-squares matching
operation in each curvelet sub-domain would reduce the negative effect on
primaries after appropriate scale-angular decomposition. Due to sparsity
property of curvelets, internal multiples with different characteristics of
directions and frequencies are distributed or concentrated in different curvelet
domains with few coefficients, the energy diversity can be properly solved by
performing curvelet transformation. Thus the underlying assumptions of the
least-squares criterion can be well met in the curvelet domain, and spatial and
temporal sliding windowing can be avoided.

The introduction of a least-squares sense in the curvelet domain is also
theoretically sound. Curvelet transform can be regarded as a weighted sum of
curvelet basic functions with different scales, dips and positions, and the weights
are curvelet coefficients which represents the contribution of each point f[t,x]
in the t-x domain to a specific wedge in the f-k domain. The curvelets are
spatially localized. Thus through curvelet transform, real seismic data is
decomposed into a series of sub records with different behaviors of spectral
bands and directional ranges, which are also regarded as data in the time-space
domain. Therefore, the conventional least-squares matching idea that is
conducted in t-x records can be equally feasible in the curvelet domain.

By posing the least-squares matching subtraction process in the curvelet
domain, we first represent total seismic data with internal multiples in terms of
curvelet coefficients. This would allow us to separate internal multiples and
primaries into different curvelet sets. Since the curvelet transform is linear,
curvelet coefficients of the total data is the sum of corresponding coefficients
of the primaries and the multiples.

d =s +m , (6)

where d,s.,m, are curvelet coefficients of the total data, primaries and multiples
respectively.

The predicted multiples are decomposed by curvelets in the same
scale-angular analysis way as the total seismic data for the sake of matching
implementation. Thus,

-

m = C'm, , @)

in which 1, is the curvelet coefficients of the predicated internal multiples m
and CT is the adjoint operator of curvelet transform C, which is equal to the
pseudo-inverse operator of C.
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The least-squares misfit minimization algorithm in each curvelet
sub-domain can be expressed as follows,

min = |d, — G|} . 8)
G

The optimization of the above objective function can be solved by
conjugate-gradient (CG): Fletcher and Reeves (1964), Levinson algorithm
(Levinson, 1947; Robinson and Treitel, 1980), or Newton methods assuming
that the first derivative of the objective function is continuous. By implementing
the least-squares criterion in all sub-domains of curvelets, we find an optimal
shaping filter G or curvelet coefficients m, in each curvelet domain that could
minimize the mismatching energy between curvelet coefficients of the predicted
multiples and the primaries in that space, and use all of these filtered
coefficients m, to reconstruct the multiple data via the curvelet adjoint operator
m = C™m,.

NUMERICAL RESULTS

In this section, we discuss the effectiveness of the curvelet-based approach
in internal multiples subtraction. First, we take a simple model [in Fig. 4(a)] to
remove the coherent event with negative dip which intersects two other events.
The initial estimation model is created through shifting the event by half
wavelength and halving its amplitudes. By applying least-squares matching to
the data, the other two events could be seriously corrupted at intersections
because of the non-orthogonality of the signals and the undesired noise. After
operating curvelet transformation, however, the three events with different dips
are mapped into different curvelet domains according to the multi-directional
property of curvelets. Then we analyze and locate the curvelet domains where
the event we want to suppress is distributed before operating the L,-norm
matching algorithm. The results after adaptive matching [Fig. 4(c)] and
subtraction [Fig. 4(b)] show that the undesired event is properly filtered and
amplitudes of the other two signals are well preserved with only slight
interruption when intersection occurs.

Fig. 6(a) gives another synthetic shot gather that we have used to examine
the effectiveness of our adaptive subtraction algorithm in internal multiples
elimination. The synthetic seismic record is generated using an elastic
finite-difference forwarding method with a complicated velocity model shown
in Fig. 5(a), which consists of both velocity reverse layers and lateral variations
in two interfaces. The generation of free-surface multiples can be avoided in the
process of forward modeling if an absorbing boundary is used at the surface.
The synthetic seismic data contains five primaries corresponding to five
reflectors in the velocity model and a series of internal multiple events with
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Fig. 4. A simple model with three crossed events to test the effectiveness of our proposed
curvelet-based prediction-subtraction algorithm. (a) Model with three crossed events. The event with
negative dip is designed to eliminate. (b) Data after L,-norm matching in curvelet domain. (c) The
estimated event after L,-norm matching in curvelet domain.
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Fig. 5. Velocity model.

conflicting dips and serious amplitude differences (Fig. 6a), making the L,-norm
operator unsuitable for internal multiples subtraction. The initial internal
multiple model [as is seen in Fig. 6(b)] is estimated making use of the inverse
scattering series algorithm, which is presented in detail by Weglein et al.
(1997). Due to the convolution operation in the process of predication, the
involved amplitudes are summed up. Thus, the amplitudes of internal multiples
are much larger than those of the true multiples, which might lead to leakage
of primaries since part of the energy of the internal multiples is matched with
the primaries in the process of least-squares filtering. Because of the curvelet’s
sparsity property (as is discussed in the section on Curvelet Transforms) and
parameterization by position, scale and dip (as is displayed in Fig. 3), primaries
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Fig. 6. Internal multiples attenuation results. (a) The synthetic seismic record with internal multiples;
(b) the predicted internal multiples.
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Fig. 6. Internal multiples attenuation results. (c) The seismic record after internal multiples
subtraction and (d) the internal multiples after matching.
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Fig. 7. Results of internal multiples attenuation in common offset gather (a) is common offset record
contaminated with internal multiples; (b) is seismic record after internal multiples subtraction
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and multiples could be preliminarily separated after performing curvelet
transformation. And problems with L,-norm performance: the non-orthogonality
of primaries and multiples, and energy diversity of internal multiple model could
be alleviated by multi-resolution and multi-directional curvelet analysis. From
the filtered internal multiples [Fig. 6(d)] and the result of seismic data after
adaptive subtraction of multiples [Fig. 6(c)], we can conclude that by
implementing least-squares subtraction algorithm in curvelet sub-domain,
internal multiples can be appropriately suppressed while the energies of primary
events being effectively protected.

In the following, we remove the internal multiples mentioned above in the
common offset domain based on curvelets. Fig. 7(a) shows the seismic record
with internal multiples for the common offset gather. The estimated primaries
after adaptive subtraction in curvelet sub-domains clearly indicate that the
proposed approach is sound in preserving amplitudes of geologically implicate
events and suppressing internal multiples.

CONCLUSIONS

In this paper, we have developed a new and effective method to suppress
internal multiples in the curvelet domain. The curvelet transform is an
extraordinary time-frequency analysis process that is both multi-resolution,
directional selective, and localized in spatial and spectral space. Our method
uses the predicated multiples to suppress the curvelet components related to
internal multiple energy in the real seismic data. There are two basic steps in
our curvelet-based adaptive matching approach: primaries and multiples are first
multi-scale and multi-direction analyzed, and then adaptively matched. The
success of such algorithm depends largely on the transform style, which is
assumed to map multiples and primaries into different curvelet areas. From the
simple model and synthetic seismic record, it can be concluded that the adaptive
least-squares matching methods of internal multiple suppression in curvelet
sub-domains can perform very well in internal subtraction and signal protection.
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