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ABSTRACT

Wang, C., Gao, J., Zhao, W. and Yang, H.Q., 2011. A flexible wavefield simulation method for
layered viscoelastic media with dipping interfaces. Journal of Seismic Exploration, 20: 309-329.

Partial wavefield simulation is very useful in seismic interpretation and inversion. In this
work, we propose a flexible and fast method for simulating seismic wave propagation in dipping
layered viscoelastic media. This method can effectively calculate various partial wavefields, e.g.,
primary reflected P-waves or primary reflected S-waves, P-S or S-P converted waves, and the
multiples which we are interested in. Since the vector wave equations are independent of the
coordinate system, we alternately study wave propagation in global and local coordinate systems.
Firstly, for a single dipping interface, the reflection and transmission coefficients of plane waves and
the expressions of secondary waves are obtained by coordinate transformation. Then, the reflection
and transmission coefficients of multi-layered media with dipping interfaces are obtained by a
recursive approach. Lastly, a fast integral method is used to synthesize the wavefield for a point
source, and a novel integral path is chosen through comparison. Analysis shows that this method is
stable for all frequencies and slownesses. Numerical examples and a comparison with a finite
difference solution demonstrate that our method is effective.

KEY WORDS: partial wavefield, simulation, dipping interface, viscoelastic.

INTRODUCTION

The complete seismic wavefield is complex as various types of waves
interfere with each other. However, for some applications, we are only
interested in a partial wavefield. For instance, for amplitude variations with
offset (AVO) interpretation (Steven and Robert, 1989), we just need the primary
reflected waves, and for multiple prediction (Kroode, 2002), we are often only
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interested in the multiples of the objective layer. Another important application
of partial wavefield simulation is the identification of specific events on a
seismic record. These partial wavefields are usually blurred by other
components. It is difficult to extract a partial wavefield from the complete
wavefield. Therefore, simulating various partial wavefields may be of great
practical importance.

Many seismic modeling methods are based on the assumption of a
stratified structure of the earth. For example, the reflectivity method is efficient
for calculating the complete or partial wavefield of horizontal layered media
(Aki and Richards, 2002; Kennett, 1983; Miiller, 1985). The wavefield
extrapolation method (Berkhout, 1982; Bourbie, 1983) can be used to simulate
wave propagation in elastic media with dipping interfaces, but the horizontal
interface is required when the media is viscoelastic. Improved generalized
reflectivity method (Chen, 1990, 1996) and boundary element approach (Ge and
Chen, 2007) were proposed to simulate wave propagation in irregularly
stratified elastic models. However, the methods mentioned above are not
effective for simulating a partial wavefield while the media is both viscoelastic
and has dipping interfaces.

In recent decades, many other approaches have been developed for
complex media (Carcione and Hermann, 2002). The most used numerical
methods, such as the finite difference method (Stekl and Pratt, 1998), finite
element method (Martin and Michael, 2006; Becache et al., 2004), and spectral
element method, can calculate the complete wavefield of very complex models,
but they are expensive in terms of computer time and are not effective in
simulating the partial wavefields. The high-frequency asymptotic methods, such
as ray theory and Gaussian beam, are able to simulate various partial
wavefields, but they are only appropriate for handing wave propagation under
relatively high frequency.

Although the real media is complex, the layered model is still a preferable
approximation for many applications. Layered model is simple and therefore,
some fast and exact methods can be developed to simulate wave propagation.
Consequently, based on these forward- modeling methods, some seismic
attributes’ inversion algorithms, for example, interval velocity inversion or
interval Q inversion, can be proposed. In this paper, we propose a one-way
wave propagation method to simulate seismic wave propagation in multi-layered
viscoelastic media with dipping interfaces in the frequency wavenumber domain.

METHOD

The definitions of the main symbols that are used in this paper are listed
in Table 1.
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Table 1. Definitions of symbols used in this paper.

Symbol Definition
X0Z Global Cartesian coordinate system.
X067 Local Cartesian coordinate system.

The variables marked with superscript * belong to the local coordinate
system; otherwise, they belong to the global coordinate system.

pi» b G G The horizontal and vertical slownesses in the i-th layer.
[ &;, Y, % The downgoing P-waves and SV-waves in the i-th layer.

M b i Yie ¥ia The upgoing P-waves and SV-waves. The first subscript indicates the layer
in which the wave is traveling and the second subscript indicates the interface
by which the wave is reflected. Remark: The second subscript is omitted for
the case of a single interface.

RS RS, TS, TS, The reflectionand transmission coefficients for the downgoing incident wave.
The first and second subscripts indicate the types of the incident and
secondary waves, respectively, and the third subscript indicates the i-th
interface. Remark: The third subscript is omitted for the case of a single
interface.

bsis T}’,s,i The transmission coefficients for the upgoing incident wave. Subscripts are
the same as above. Remark: The third subscript is omitted for the case of a
single interface.

Reflection and transmission at a dipping interface

In this study, we solve the problem for 2D P-SV wave propagation, but
a similar technique can be used in the SH case or the acoustic-wave case as
well. We start with the case of two homogeneous half-spaces separated by a
dipping interface. As shown in Fig. 1, 6 is the dipping angle of the interface,
and the densities of medium I and medium II, respectively, and o; and B, (i =
1,2) the P- and S-velocities, respectively. Because we are dealing with
viscoelastic media, all velocities should be complex and frequency-dependent.
Several models relate the complex velocities to the frequency and quality factor
Q (Toverud and Ursin, 2005). Here, the Kolsky-Futterman model is adopted:

i/c(w) = (l/c) + (M/mcQln|w/w| + jsgn(w)/2¢,Q, , ¢

where w is the angle frequency, ¢, and Q, are the reference velocity and quality
factor at reference frequency w,, respectively, j is an imaginary unit.
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Fig. 1. Two half-spaces with a dipping interface. For a downgoing incident P- wave, there are four
secondary waves.

Establishing two Cartesian coordinate systems (as shown in Fig. 1), a
global coordinate system XOZ with its x-axis at the horizontal direction and a
local coordinate system XOZ with its R-axis on the dipping interface and its
origin at (X,,Z,) is seen. The two coordinate systems are then related through the
following equations:

X = (x — xp)cosf + (z — zy)sinf ,
2)

—(x — Xp)sinf + (z — zy)cosh '

2

Through this paper, the variables marked with superscript * belong to the
local coordinate system XOZ, if otherwise they belong to the global coordinate
system XOZ.

In the local coordinate system, if there is an incident plane P-wave q?)l
traveling downwards in medium I, the secondary waves produced at the
interface are the reflected P-wave é; and SV-wave ¢ and the transmitted
P-wave ¢>2 and SV-wave {,. It is easy to write out their expressions:
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¢, = expljw(P + 4,2)] , 3.1
¢ = R, - expljw®@r — 4,2)] , (3.2)
Ui = R - explio®k — §2)] , (3.3)
¢, = T9 - expliwpx + 4,21 , (3.4
4, = Tj - expljer — 432)] , 3.5)

where the incident P-wave has a unit of the potential amplitude. Rgp, ﬁgs, Tgp
and Tj, are the reflection and transmission coefficients. The superscript d
indicates that the incident wave is a downgoing incident wave, the first and
second subscripts indicate the types of the incident wave and secondary wave,
respectively. All waves’ horizontal slownesses relative to XOZ are p, and
vertical slownesses are §;, §,, q{, 45, respectively. For viscoelastic media, one
must take some care to choose the signs of the complex vertical slownesses.
Krebes and Daley (2007) regarded that it is better to take the signs of the real
part and imaginary part as positive at all times.

In XOZ, the interface is parallel to the %-axis. For thig case, a pumber Aof
algorithms have been developed to calculate the coefficients RS, RS, T¢, and T5
for details, one can refer to Aki and Richards (2002), Kennett (1983) and
Miiller (1985) as they are not described here.

Our aim is to obtain the reflection and transmission coefficients in the
global coordinate system. As the vector wave equations are independent of the
coordinate system, they have the same forms in different two-dimensional
coordipz}tg systems. Therefore, all waves in XOZ should have the same forms
as in XOZ. Transforming eqs. (3.1) - (3.5) into XOZ by inserting eq. (2) into
egs. (3.1) - (3.5), after rearranging, we obtain the incident P-wave and
transmitted P-wave in the global coordinate system:

¢, = A, expljo{(pcosd — §;sind)x + (Psin + §,cosd)z}] , @)

¢, = A, expljw{(pcosd — §,sinf)x + (Psinf + G,cosf)z}] , 5)
where

A; = exp[—jow{(pcosd — §;sinf)x, + (Psind + §,cosf)zo}] , 6)

A, = T¢exp[—jw{(Pcosd — G,sinf)x, + (Psind + G,cos0)z}] . )

The ratio of A, to A;, which are independent of the coordinate variable
(x,z), give out the P-wave transmission coefficient in the global coordinate
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system:
TS, = AJA, = ’i‘gpexp[jw((“]2 — §)(X,8inf — z,cosh)] . (8)

Accordingly, the transmitted P-wave for a normalized incident P-wave can
be written as:

¢, = Ty expljw{(Pcosd — §,sinf)x + (Psind + §,cosd)z}] . ©)

Similarly, the reflected P-wave and the reflected and transmitted SV-
waves can be written as:

Il

¢; = RS expljw{(pcosd + §;sinf)x — (—psind + gcosf)z}],  (10.1)

Yi = Riexpljw{(pcosd + §;sinf)x — (—psinf + §jcosf)z}] , (10.2)
P

¥, = Toexpljo{(cosd — §jsinf)x + (Psind + djcosh)z}] , (10.3)
RS = ﬁgpexpﬁwZQI(—xosine + z,cos0)] , (11.1)
RS = Rgsexp[jw((]{ + q)(—x%esind + zicosh)] , (11.2)
T = Téexpljw(@ — §)(Xosind ~ zycos6)] . (11.3)

For the case of an incident SV wave or the incident wave traveling
upwards in medium II, the reflection and transmission coefficients and the
expressions of all the secondary waves can be obtained with the same way as
above. Here, we only give out the expression of the transmitted P-wave, while
the incident wave is the P-wave that travels upwards in medium II:

¢; = Tpexpljo{@Pcosd + §,sinf)x — (—psind + §,cos)z}] , (12)
Ty = Thexplio@ — d)(xosind — zcosd)] , (13)
where, the superscript ‘u’ of T}, means that the incident wave is upgoing.

It must be noted that these reflection and transmission coefficients for a
dipping interface in XOZ are different from the conventional reflection and
transmission coefficients. The former are dependent on the position and dipping
angle of the interface, whereas the latter are independent of the position and
dipping angle of the interface. Furthermore, all the expressions of secondary
waves have very simple forms and their exponential terms only have a relation
to the parameters of the current media in which they are propagating. Therefore,
it is very convenient to extend the case of a single dipping interface to the case
of layered media with many different dipping interfaces.
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Partial wavefield simulation of layered media with dipping interfaces

For horizontal layered media, waves have the same horizontal slowness
in all the layers. However, the horizontal slowness will be changed if a wave
were to meet a dipping interface. Thus, we must extrapolate the wave, by each
of the layers, one after the other in dipping layered media. Though it is
complicated, it is advantageous for us to choose the type (reflected or
transmitted and P or S) of the wave in each layer. Therefore, we can simulate
various partial wavefields, respectively.

Below, we mainly illustrate the algorithm for simulating primary reflected
waves. Other wavefields can be treated in a similar way. Fig. 2 illustrates a
model with N dipping layers, the first and last layers are infinite half-spaces.
The dipping angle of interface i is 6, the density, P-wave velocity and SV-wave

velocity of medium i are p;, o, 8; i = 1,2,...,N). Receivers are set in the first
layer with z = 0.

Source Receiver

Fig. 2. Multi-layered model with dipping interfaces.
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Assume that the incident wave is a P-wave starting from the origin and
the horizontal and vertical slownesses are p, and q;:

¢, = expljo(p,x + qi2)] . 14

This incident wave is extrapolated one layer by one layer. The procedure
for each interface met by the wave is illustrated in Fig. 3. The main steps may
be described as follows:

1. For the downgoing wave, once an interface i is met, we establish a local
coordinate system XOZ with its -axis on the interface i and its origin at
the point (x; = 0,z), which is the crosspoint of the interface i and the
z-axis of the global coordinate system. Subsequently, the incident wave
¢, 1s transformed into the local coordinate system, getting &;.

6 | xoz | 4 b, cas |8
E— 1 |— : -, XOZ, |,
2 X072, Koz

¢:I ¢Jra

— .. [—
X C}ZI I
A | - ’

.:.I'+ r ¢;| i+ ¢f+ JF
2 4¢_l .f”'_' P XOZ e
k> : : : :
> xoz | |

¢;--"'—| ¢; [ ﬁﬁill N - s ¢|"—|.."n'—|
|
interface

Fig. 3. Schematic illustration of the recursive procedure for the transmitted and reflected waves. The
hollow arrow means coordinate transformation, the subscript i of Xf)zi indicates that the &-axis of
this local coordinate system is on the i-th interface, the first subscripts of all waves indicate the layer
in which layer they are traveling and the second subscript of the reflected waves indicate the
interface from which they are reflected.
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2. The conventional reflection and transmission coefficients (Rpp i T5, ) and
the secondary waves (9{;, &;,,) are computed in the local coordinate
system (the first subscript of @/ ; indicates the layer in which the wave is
traveling and the second subscrlpt indicates the interface by which the
upgoing wave is reflected).

3. Following, the secondary waves (&} ;, &;,,) are transformed back into the
. global coordinate system Getting the reflection and transmission

coefficients (RS, ;, TS, ¢, and the secondary waves (¢}, ¢;,y).

4. The reflected wave ¢; ; will be extrapolated upwards to the surface. Only
the transmitted wave is chosen on each interface in this process.

5. The transmitted wave ¢;,, will be extrapolated downwards. When another
interface is met, return to step 1.

By this way, the primary downgoing wave in the nth layer can be written as:
HTgp expliwx + 42)] , (0 = 2,3,...,N) (15)

where Tj,; is the downgoing transmission coefficients of the i-th interface,
which follows from eq. (8) by replacing the parameters Tpp,B by Tpp .0, and x,,
Zo, Q1> @ bY Xi, 2, Gy G

Tgp. = TSp expljw(@iy, — §)(x;sinf; — zcosh))] . (16)

The horizontal and vertical slownesses for the downgoing wave can be
obtained by the following recursive formula:

pi = picosh_, — §sind;_; ,

¢ = psind;_, + Geosh;, ,

17
p=0p-1, G=+?-p), (=23,.N)
Pi-1 = pi—c0sb,_; + q;_;sinf,_; .

We can also obtain the primary reflected wave that comes from the n-th
interface:

n—1
¢{ n _HT;pl Rgpn Hpop,i'exp[jw(plX - qlz)] s (18)
=1
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where T, ; is the upgoing transmission coefficient of the i-th interface and RS, |
the reflection coefficient of the n-th interface; they follow from eq. (13) and eq.
(10.1), respectively. The horizontal and vertical slownesses for the upgoing

wave can be obtained by the following recursive formula:
Pi-y = Pi-jcosb_; + §;_;sind;_;

Qi1 = —Pi—ysinf;_; + §;_,cosf,_; ,
(19)
P =P » G- =i —pi) , (=N-1,.,1

f)i = piCOSOi,I - qiSiIlai_l .

In eq. (18), replacing RY, | with RY , and T3, ; with T% ;, we can obtain the
P-S converted wave. In fact, we can decide which of the secondary waves
(reflected or transmitted and P or S) should be chosen at each interface. Similar
to the ray code (Cerveny, 2001), these choices can be indicated by using a chain
of characters; e.g., the P-S converted wave coming from the second interface
can be coded as (+P, +P, —S, —S), and the first multiples of the first layer
can be coded as (+P, —P, +P, —P). Here, the + and — indicate the
downgoing wave and upgoing wave, respectively; the P and S indicate the
P-wave and S-wave, respectively. Choosing corresponding reflection and
transmission coefficients in eq. (18) according to the code, we can get various
partial wavefields.

Stability analysis

Here, we consider only the P-P transmission coefficient as an example.

According to eq. (16), the i-th transmission coefficient in eq. (15) can be written
as (take x; = 0):

Ty = Thiexpluzcost(@ — Gl - (20)
Because the imaginary part of §;,, is positive and zcos#f, is positive real, the
exp(—jwz,cos,q;.,) in eq. (20) is exponentially increasing as w is increasing. If
we compute the value of TS, ; according to eq. (20) instantly, it will overflow
for large w. However, in the (i+1)-th transmission coefficient:

Tgp,i+1 = Tgp,i+1eXP[ini+100391+1(<A1'i'+1 - Qi+2)] > (21)
there is an exponent term exp(jwz,cosd;,,G7,;). The product of

exp(—jwz;cosf,g;,,) and exp(jwz;,cosb;, 47,y is exp(jwz; 086,474,
jwzicosf,g;, ). The real part of the power of this exponent will be negative, so
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this exponent is exponentially decreasing as w is increasing. This is consistent
with the attenuation characteristics of wave propagations in viscoelastic media.

Therefore, to avoid overflow, we record the powers of the exponent of
eq. (16) instead of solely computing the value of the exponent term for each
coefficient. Then all the recorded powers are summed up before calculating the
exponent. Continuing like this, our method will be stable for all frequencies.

Integral path for point source

As a Weyl integral, the spherical wave can be represented by a
superposition of plane waves (Aki, 2002). Thus, the wavefield excitated by a
point source can be expressed as a superposition of the plane waves, which have
been discussed in the above sections.

P = (1/27) S A(p){expljup”x + juq"z)l/—2jq}dp , (22)
T

where A(p) is referred as the reflection or transmission function, I' is the
integral path. p, q are the horizontal and vertical slownesses of the plane wave
at source, and p”, q" are the horizontal and vertical slownesses at the receivers.

We must keep in mind that the horizontal slowness is variational in dipping
layered media.

Many integral paths can be chosen from the complex slowness plane. For
elastic media, the path of I' in Fig. 4(a) is usually used (Chapman, 1978; Fuchs
and Miiller, 1971), and the path of I'" in Fig. 4(a) was used by Frazer and
Gettrust (1984). These paths are slightly deviated from the real axis to avoid the
poles. For viscoelastic media, because the poles lie in the first and third
quadrants, the real axis can be chosen as the integral path. However, there will
appear some undesired waves in the synthetic seismogram, as shown in Fig.
5(a). We then calculate eq. (22) along the path I'; shown in Fig. 4(b) in the light
of Frazer, and the synthetic seismograni is ideal, as shown in Fig. 5(b).
However, the segment AB of I';, which is dominant for the integral eq. (22),
is on the real axis. It means that the wave will not attenuate while it propagates
along the horizontal direction. This is in conflict with the viscoelasticity of
viscoelastic media. Therefore, the path I, shown in Fig. 4(b) is chosen finally.
The dipping angle for segment AB of T', is decided by the quality factor Q (AB
will be slightly below the poles). Fig. 5(c) shows the comparison for the peak
amplitude of the envelope of the synthetic seismograms with integral paths T,
and T';. We can see that the synthetic seismogram with I', has smaller peak at
far offsets.
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Fig. 4. Contours of integral path. 1/c; and 1/B3; are the slownesses of P-wave and S-wave,
respectively. Before T' turns into the first quadrant, Re(I') should be slightly greater than
max(real(1/3)).

Fast integral method

Eq. (22) is an oscillatory integral. For the standard trapezoidal method,
the integration step size is in inverse proportion to max(wx,wz). Therefore, the
step size must be very small when w is large. In order to save computation time,
the generalization of Filon’s method (GFM) introduced by Frazer and Gettrust
(1984) is adopted to evaluate this integral. We rewrite eq. (22) as:

P = (127) | fplexplsg@]dp | (23)
T

where
f(p) = —A{p)27-2jq ,

S = jw'max(x,z) ,

g(p) = (p"x — q"z)/max(x,z) .
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Fig. 5. Synthetic seismograms with the integral path along the real axis (a) and the contour T', (b).

(c) The comparison for the peak amplitude of envelope of the synthetic seismograms with integral
paths I'; and T',.
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Accordingly, the rule of GFM is:

b (8p/sdg)lo(tes) —o(f)d(fe*)/sd(g)] dg =0

| f(p)explse()ldp = . (24
a (6p/2)[f(a)esg(“)+f(b)esg(b))] og=0

where b—a is the integration step size, for any function h, d(h) means
h(b)—h(a). For GFM, the step size is in inverse proportion to v/max(wx,wz).

NUMERICAL EXAMPLES

First, a synthetic seismogram of acoustic media is generated to test the
capability of our method. The test model, as shown in Fig. 6(a), has a dipping
layer between two half-spaces. The dipping angles of the two interfaces are 4
and 8 degrees, respectively. The parameters are relative to the reference
frequency of 1 Hz. Fig. 6(b) shows the comparison of the synthetic reflected
seismograms with the finite difference method and our method. We can see that
both the amplitudes and arrival times are in good agreement. To indicate the
wavefield characteristic caused by different Q, seismogram for Q; = 1000 is
also calculated with our method and a careful comparison of individual traces
with an offset of 100 m are shown in Fig. 7. For Q, = 30, the reflected wave
from the upper interface has a larger amplitude than the case of Q, = 1000, and
the wave from the second interface has a smaller amplitude, advanced
travel-time and smaller dominant frequency than Q, = 1000. These phenomena
are consistent with the theory.

Next, let us consider a viscoelastic-layered model with five interfaces.
This model, shown in Fig. 8, is a simplified version of the left part of the
Marmousi-2 model. There is a low-velocity layer in this model and the contrast
of parameters is strong. The dipping angles for five interfaces are —5.12,
—3.52, 0,0 and —9.92 degrees, respectively. A Ricker wavelet with a dominant
frequency of 30 Hz is used as source and set at the origin (0, 0). The receivers
are first set in the well with offset of 1 km and depth range of 0.5 - 2 km. Fig.
9(a) shows the x-component of the synthetic VSP seismogram, which includes
the direct waves, primary reflected P-waves and converted S-waves. For
comparison, Fig. 9(b) shows the x-component of the synthetic seismogram by
the finite difference method. We can see that two seismograms have the same
travel time and polarity for all waves. The primary reflected P-waves are too
weak to be distinguished from other waves in Fig. 9. Therefore, some partial
wavefields are solely generated by our method. Fig. 10(a), (b) and (c) show the
x-component of direct waves, primary reflected P-waves and converted S-waves,
respectively.
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Fig. 6. (a) Acoustic media with a dipping layer between two half-spaces. (b) Comparison of the
synthetic seismograms calculated by our method (solid lines) and by finite difference method (dashed
lines).
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Fig. 7. (a) Traces for offset 100 m with Q; = 1000 (dashed) and Q, = 30 (solid). (b) The amplitude
spectrums of the reflected waves form the second interface for Q, = 1000 (dashed) and Q, = 30
(solid).

Source 1.0km

a;=2.6 B;=1.2 p;=2.2 Q=Q,=100
0.8km—
10:=3.2 B»=1.6 p»=2.3 Q,=0Q,=200

Borehole

Fig. 8. Viscoelastic layered model with five interfaces.
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Fig. 9. The synthetic VSP seismograms with our method (a) and finite difference method (b).
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Fig. 10. The x-component of some partial VSP wavefields are generated respectively with our
method: (a) the direct waves, (b) primary reflected P-waves.
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Fig. 10. The x-component of some partial VSP wavefields are generated respectively with our
method: (c) the converted P-S waves.

Subsequently, the receivers are set at the surface. Fig. 11 shows the
x-component of the primary P-S reflections. The P-S head wave is generated
automatically. In this example, the integral interval of horizontal slowness is ,
[—1/oy 2/ayy], integral step is 0.002 s/m, bandwidth of frequency is 0 ~ 100 Hz
and frequency interval is 0.45 Hz. The runtime of our method is about 100 s.
For the rotated staggered-grid finite difference method with perfectly matched
layer-absorbing boundary conditions, if we take the spacing interval as 4 m
(625 %500 grid) and time interval as 0.5 ms, the runtime is about 800 s. Both
computations were made using an Intel Pentium D 2.8 GHz processor with 2GB
RAM. Thus, our method is more efficient than the finite difference method,
especially for the media with thick layers and strong contrast.

CONCLUSIONS

A one-way method is proposed to simulate the wave propagation in
layered viscoelastic media with dipping interfaces. The dipping angle of each
interface can be arbitrary as long as the interfaces do not cross each other.
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Synthetic seismograms show that the new method is quite accurate and can
model the changes in amplitude and phase caused by Q. Our method is more
efficient in computation time and more suited for the media with thick layer and
strong contrast when compared with the finite difference method. Another
advantage of our method is its flexibility. It can separately simulate various
partial wavefields; for example, the primary reflected P-waves or primary
reflected S-waves, the P-S or S-P converted waves, and the multiples that are
of interest to us. The components of the partial wave field that we hope to
model can be coded as a chain of characters that are similar to the ray code.
Then, at each interface, a secondary wave (reflected or transmitted and P or S)
can be chosen according to this code. Our method has potential applications in
seismic interpretation or inversion of seismic attributes.
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Fig. 11. The synthetic P-S primary reflections with our method. The head wave is also generated.
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