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ABSTRACT

Naghibi, A. and Riahi, M.A., 2011. Utilizing modified Gustafson-Kessel algorithm to estimate log
data from seismic attributes. Journal of Seismic Exploration, 20: 347-356.

One of the most effective methods for analyzing seismic attributes is Fuzzy C-Means (FCM)
clustering. By extension of FCM, standard Gustafson-Kessel (G-K) algorithm is derived, which is
a powerful tool for clustering analysis. However, G-K algorithm suffers from some shortcomings
like singularity of the covariance matrix. By using different techniques for estimating covariance
matrix, we can improve the performance of G-K algorithm and lessen the impacts of such pitfalls.
Recently, standard G-K algorithm was used for estimation of log data from seismic attributes. In this
article we applied the same procedure but instead of standard G-K algorithm we utilized modified
G-K algorithm in which we employed two new formulas for further precise estimation of covariance
matrix. Because of drawbacks of standard G-K algorithm due to covariance matrix, increasing the
number of clusters is not possible in this estimation. Therefore, utilizing recent new techniques have
assisted to overcome the drawbacks and improve log data estimation.
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INTRODUCTION

Clustering is the process of assigning a set of data into clusters so that the
data in the same cluster are similar to some extent. Depending on the nature of
the data, choosing a distance measurement [distance between the data set (Z;)
and cluster prototype (V;)] is the critical step in most clustering procedures
because the similarity of two elements will depend on this component.
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In fuzzy clustering, unlike the hard clustering, data components can belong to
more than one cluster (Yang et al., 2006).

One of the most famous algorithms in fuzzy clustering is Fuzzy C-Means
algorithm. FCM algorithm is a branch of criterion function minimization based
on the Euclidean distance. Therefore this algorithm can be used to determine
data classes with the spherical shapes merely (Hsiang-Chuan et al., 2009). The
general form of FCM algorithm is

uMz

K
JZ,UV) = 2_) (u)"D% (1)

where Z € R™ is the data set, U is the partition matrix of the data Z and U =

[mil. py is the membership degree of data object Z; in cluster i and it must meet
the following conditions

Yw=1¥ j=12..n, )
i=1

Dy is the Euclidean distance between Z; and V;
Dij = " Zj -V " . 3)

The variable m is a weighting exponent, m > 1; it controls the fuzziness of
clustering and K is the number of clusters (Hsiang-Chuan et al., 2009).

STANDARD G-K ALGORITHM

Gustafson and Kessel introduced G-K algorithm in 1979, which is derived
from Fuzzy C-Means algorithm. To overcome the shortcoming due to Euclidean
distance and also to detect clusters of different geometrical shapes, the distance
measure in G-K algorithm is considered based on the Mahalanobis distance
(MD). Thus, against the FCM algorithm, this adaptive distance norm can be
used to detect data classes with non-spherical shapes (Hsiang-Chuan et al.,
2009). G-K algorithm objective function is defined as

K N
JZUVA) =Y Y (u)"D? . )

i=1 j=1
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In this method each cluster has its own norm-inducing matrix A;, which
yields the following distance

D%JTAT = (Zj - Vi)T Ai(Zj -V . ©)]
However, the objective function (J) cannot be minimized directly with
respect to A;. A; must be constrained somehow in order to obtain a feasible

solution. Constraining the determinant of A, is a common way for this purpose,
as follows

oi = Al 6)
where p; is the cluster volume of the i-th cluster (usually p; = 1).

Shape and orientation of the i-th cluster is determined by the matrix A,.
By using the Lagrange multiplier method, the following expression for A, is
obtained

det(F)""F7' , @)
where F, is the fuzzy cluster covariance matrix of the i-th cluster.

Standard G-K algorithm sequential stages can be listed as follows:
Step 1: Choosing the number of clusters K, m-value (usually m = 2), and
convergence error, ¢ > 0. Z should be given and randomly initialize the

partition matrix U? (Babuska et al., 2002).

Step 2: Finding the cluster prototype:

N N
VO =Y Yz Y ), 1Si<K . 8)
=1 j=1

Step 3: Generating the cluster covariance matrix:
N N
Bo= X @, = VO = VO LG, 1<Si <KL ©)
j=1 j=1
Step 4: Calculation of the distance:

D% = (Z; — VO)[odet(F)""F7'1(Z, — VO , 1<i<K, 1<j<N. (10)
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Step 5: Updating the partition matrix:

forl <j <N

ifDyj >0 for 1 <i=<K

uy = I/gI(DUAi /Dy @, (11)
otherwise

pd =0 if Dz > 0, and uf € [0,1]

K
with ) pd = 1, (12)

i=1

until | U® — UCY| < e.

METHODOLOGY

In early 1970’s, seismic attributes were introduced and now they are
critical tools in seismic interpretation purposes. Seismic attributes are elicited
from seismic data. They are the constituents of geological and geophysical
information and can be used for lithological and petrophysical prediction of
reservoir properties. The authenticity of the interpretive use of seismic attributes
depends on the discrimination of a set of them. Logical combinations of seismic
attributes can be used to determine different lithologies and reservoir properties
from seismic data (Taner, 2001).

Nowadays, in addition to these extensive applications of seismic attributes,
log data estimation is considered as another important one. This can be achieved
through analyzing seismic attributes by clustering methods. Recently, FCM and
G-K (standard) algorithms applied this purpose; their results are shown in Figs.
1 and 2. G-K algorithm has shown a better performance than FCM; this claim
is supported by comparing Figs. 1 and 2.

As mentioned before, because of standard G-K algorithm’s drawback due
to covariance matrix, increasing the number of clusters is not possible in this
estimation. To overcome this problem and to improve the estimation of log data,
we used the modified G-K algorithm. Two new techniques are introduced for
computing covariance matrix in modified G-K, which make it possible to
increase the number of clusters.
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Fig. 1. Estimation of log data from seismic attributes using FCM algorithm (Eftekharifar and Riahi,
2009).
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Fig. 2. Estimation of log data from seismic attributes using standard G-K algorithm (Eftekharifar
and Riahi, 2009).
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MODIFIED G-K ALGORITHM

When the number of data samples is small or when the data within a
cluster is linearly correlated, the covariance matrix becomes singular. In such
a case, the following formula cannot be adapted

det(F)""F7' , (13)

and cannot be inverted to compute the norm-inducing matrix (step 4) either. By
constraining the ratio between the maximal and minimal eigen values which
should be smaller than some predefined threshold and then reconstructing
covariance matrix using the following formula, we can avoid singularity
problem,

F=¥XV¥!, (14)

where X is a diagonal matrix containing the limited eigen values and ¥ is a
matrix whose columns are the corresponding eigen vectors. In fact, the shape
and orientation of the clusters are set out with the eigen values and eigen vectors
(Babuska et al., 2002).

Another technique which we used to improve the performance of
covariance matrix was adding a scaled identity matrix to the covariance matrix.
When the number of data points in a cluster becomes too low, the computed
covariance matrix is not a valid estimate of the underlying data distribution.
This technique avoids overfitting the problem and is based on the following
formula

Fi = (1 — O)F, + 8det(F)'"I (4

where 6 € [0,1] is a tuning parameter and F; is the covariance matrix of the
whole data set. Depending on the value of §, the clusters are forced to have a
more or less equal shape. When 6 is 1, all the covariance matrices are equal
(det(Fy)"™I) and have the same size which of course limits the possibility of the
algorithm to properly identify clusters (Babushka et al., 2002).

The number of clusters does not control the value of F because it
depends on the entire data set. Also the volumes of F; decrease with increasing
number of clusters. This indicates that the clusters become rounder by
increasing number of clusters (Babushka et al., 2002).

With respect to the clarified formulas, step 3 in G-K algorithm
computing, becomes as follows:

Step 3: Generating covariance matrix
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N N
F =), (WOE — VOZ - VOU Y, ™), 1 <i<K. (16)
j=1

j=1

Adding a scaled identity matrix

F, = (1 — 8)F, + &det(Fy)' . a7
Extracting eigen values \; and eigen vectors ¢; from F;.

Assigning A ,,x = max; \; and setting:

Nj = Nima/B  Vj for which \; /N > B, (18)
Reconstructing F;

F = le;..... @il diag (Nyg,...., N[y ... d’in]_l . (19

The result of modeling using modified G-K algorithm is shown in Fig. 3,
where the modeled log (blue) and the real log(red) are compared, like Figs. 1
and 2. The correlation between real log values and modeled log values indicates
that clustering by modified G-K algorithm yields better result than FCM and
standard G-K algorithms, as the correlation coefficient for FCM and standard
G-K are 36% and 54% respectively, but this magnitude for the modified G-K
is 98%.

CONCLUSIONS

Nowadays estimation of log data is considered as one important
application of seismic attributes. Log properties can be estimated throughout the
3D seismic cube using a number of complex seismic attributes and limited log
data. In this paper, we tried to improve this application. Recently, this
estimation was performed using standard G-K algorithm. Thus, we used
modified G-K algorithm to enhance the performance of standard G-K and also
to yield better results than standard G-K.

Two new techniques in covariance matrix computing, are used in modified
G-K by which the singularity of covariance matrix and overfitting problems are
eliminated almost completely. Due to these problems, an increasing number of
clusters is not feasible in estimating log data using standard G-K. This purpose
is accessible when we use modified G-K. Increasing the number of clusters
would result in yielding better outputs as correlation coefficient is greatly
increased. Correlation coefficient for standard G-K was about 54 % whereas this
value was 98% for modified G-K.
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Fig. 3. Estimation of log data using modified G-K algorithm.
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