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ABSTRACT

Wang, N., Yang, D. and Liu, F., 2012. Weak dispersion wave-field simulations: A
predictor-corrector algorithm for solving acoustic and elastic wave equations. Journal of Seismic
Exploration, 21: 125-152.

A new predictor-corrector algorithm (PCA) based on the implicit Runge-Kutta method is
proposed to solve the acoustic and elastic wave equations. We transform the wave equation into a
system of first-order partial differential equations (PDEs) with respect to time, convert the
transformed wave equation into a semi-discrete ordinary differential equation (ODE) system by using
the high-order interpolation method to approximate the spatial derivatives (Yang et al., 2003, 2007),
and finally use the proposed PCA which is a time discretization method to solve the semi-discrete
ODE system. We investigate the theoretical properties of the PCA such as its numerical
convergence, stability criteria, and numerical dispersion for solving 1-D and 2-D scalar wave
equations. The computational efficiency of the PCA in simulating acoustic wave fields is also
investigated, and is compared with that of the staggered-grid method and the fourth-order
Lax-Wendroff correction method (LWC). The effectiveness of the PCA is also demonstrated by its
well matched waveforms to the analytic solution for modeling both acoustic and elastic models.
Promising numerical simulation results indicate that the proposed PCA provides a useful method for
the large-scale wave-field simulations because it can effectively suppress numerical dispersions even
when coarse modeling grids are used or large velocity contrasts exist in geological models.

KEY WORDS: predictor-corrector algorithm, numerical dispersion, wave field simulation,
implicit Runge-Kutta method.

0963-0651/12/$5.00 © 2012 Geophysical Press Ltd.



126 WANG, YANG & LIU

INTRODUCTION

Many numerical methods for solving acoustic and elastic wave equations
have been developed and widely used in seismic modeling. The commonly used
methods include finite difference methods (e.g., Virieux, 1984, 1986; Dablain,
1986; Fornberg, 1990; Lele, 1992; Takeuchi and Geller, 2000; Moczo et al.,
2000; and many others), finite-element methods and adaptive finite-element
methods (e.g., Turner et al., 1956 ; Whiteman, 1975; Johnson, 1990; Eriksson
and Johnson, 1991, Yang et al., 2008), discontinuous Galerkin methods (e.g.,
Cockburn and Shu, 1989, 1998; Dumbser and Koser, 2006; Koser and
Dumbser, 2006), pseudo-spectral method (PSM) (e.g., Kosloff and Baysal,
1982) and spectral element methods (e.g., Komatitsch and Vilotte, 1998;
Komatitsch et al., 2000).

However, each method has its advantages and limitations. For example,
the finite-difference (FD) methods, like the high-order FD (e.g., eighth-order
method, Dablain, 1986) or compact FD methods, staggered-grid FD methods
usually require less memory and can be easily implemented (e.g., Virieux,
1984, 1986; Levander, 1988; Fornberg, 1990; Luo et al., 1990; Moczo et al.,
2000), but they often suffer from numerical dispersion when the computational
grids are not fine enough or the sampling rate per wavelength is low. The
finite-element method can be flexible in dealing with irregular computational
region, but it requires large memory and computational time to solve linear
algebraic equations. The pseudo-spectral method (PSM) only requires two grid
points per wavelength to adequately represent the wavefront without apparent
numerical dispersion (e.g., Kosloff and Baysal, 1982), but it still has numerical
dispersion along time direction (Yang et al., 2006). In addition, the PSM can
be time consuming due to the large number of Fourier transforms.

Effective suppression of the numerical dispersion is always attractive and
has been widely studied by many researchers (e.g., Alford et al., 1974; Sei and
Symes, 1994; Fei and Larner, 1995; Zhang et al., 1999; Yang et al., 2002). It
has been well understood that a higher order FD scheme experiences less
numerical dispersion for a given grid size and velocity model (Sei and Symes,
1994). However, the higher-order FD methods still have numerical dispersion
(Dablain, 1986; Wang et al., 2002). Another way to deal with the numerical
dispersion is to use the so-called flux-corrected transport (FCT) technique, but
it can not fully recover the numerical dispersion when coarse spatial grids are
used in the computation (Dablain, 1986, Fei and Larner, 1995; Zheng et al.,
2006; Yang et al., 2006). Recently, the nearly analytic discrete (NAD) method
and its optimal algorithms developed by Yang et al. (2003, 2006) are effective
to reduce the numerical dispersion in solving both the acoustic wave-equation
and the elastic wave-equation. More recently, different mixed methods
combining the explicit or implicit Runge-Kutta methods with the NAD algorithm
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have been developed (Yang et al., 2007, 2009). These methods use wave field
displacement, particle-velocity and their gradient fields simultaneously to
reconstruct wave displacement fields. As a result, they can keep more
wave-field information because particle-velocity and their gradient fields include
important wave-field information, further resulting in effectively suppressing the
numerical dispersion caused by discretizing the wave equations.

Stability is one of the key factors for a numerical scheme, which is
governed by the Courant number. Implicit methods are usually unconditionally
stable. However, they need to solve many systems of large-scale linear algebraic
equations, which can be computationally expensive and require large memory
storage. A predictor-corrector method combined with an implicit scheme can
inherit a good stability advantage without solving the large system of equations
at each time step.

In this paper, we propose an explicit predictor-corrector algorithm (PCA)
based on the implicit Runge-Kutta method (e.g., Hairer et al., 1993), which can
effectively suppress the numerical dispersion. We first transform the wave
equation into a system of first-order ordinary differential equations with respect
to time t by using the NAD operators to approximate the spatial derivatives
(Yang et al., 2003, 2007), and then use the PCA to solve the semi-discrete
acoustic and elastic wave equations. Both theoretical analysis and numerical
modeling for acoustic and elastic models show that the PCA can effectively
suppress the numerical dispersion even when coarse grids are used, which
indicates that it is computationally efficient and can be used in large scale
wave-field simulations.

WAVE EQUATIONS

In a heterogeneous elastic medium, the linear elastic wave equation system
can be written as

p(0xu/ot?) = V-g + f (1a)
g =Ce , (1b)
e = %[Vu + (Vu)'] , (Ic)

where eq. (1a) is the equation of motion, eq. (1b) is the constitutive equation,
and eq. (1c) is the strain-displacement equation. The parameter p is the medium
density, u = (u;,u,,u;)" is the displacement vector, ¢ and ¢ are respectively the
Cauchy stress tensor and the infinitesimal strain tensor, C is the fourth-order
stiffness tensor, and f = (f,f,,f;)T is the external force.
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By substituting egs. (1b) and (Ic) into eq. (la), we can get the
displacement equation as follows,

p(0%u/ot2)= Du + f |, ()

where D is the second-order partial differential operator. For the 2D isotropic
elastic medium, we have

3
Gi‘j = )\5i’j Z Sk,k + 2”81’-‘ ’ l,j E {1,2,3}

k=1

where \ and p are Lamé constants, then the corresponding matrix D in eq. (2)
is

B 62 62 2 W
(l+2#)§+ﬂ—6;2— 0 (/1+;t)axaz
o* 0
0 0
”(aﬁ oz’ )
2
A 0
L ( +u)6xaz

In the following, we transform eq. (2) into a system of ordinary
differential equations (Yang et al., 2007, 2009). Define w = du/dt = (du,/dt,
du,/dt, du,/dt)", then eq. (2) can be written as

du/ot = w ,
©))
ow/ot = (1/p)D-u + (1/p)f .
Eq. (3) can be written in a compact vector form as
ov/ot = L-v + g , 4

where

0 I 0
L = , 8= and v = (u,w)" .
(1/p)D 0 (1/p)f
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The PCA uses wave field displacement, particle-velocity and their
gradient fields to approximate the high-order spatial derivatives (Yang et al.,
2003, 2007). Define vectors ¥ = (v,v,,v,)", f = (g,0,0)" and L = diag(L,L,L)
in which v, = dv/dx and v, = dv/dz, from eq. (4) we get the following first
order ODE system

oviot = Lv+ T . )

PREDICTOR-CORRECTOR ALGORITHM

To solve the wave equation (5), we approximate the spatial derivatives
included in its right-hand side by the NAD operator (Kondoh et al., 1994; Yang
et al., 2003; Yang et al., 2007), and get a system of semi-discrete ordinary
differential equations. Then we solve the semi-discrete ODE system by a
predictor-corrector algorithm (PCA) based on the implicit Runge-Kutta method.
The NAD operator uses not only the values of the displacement u and particle
velocity w at the mesh point (i,j) and its neighboring grid points, but also the
values of their gradient fields to approximate the high-order spatial derivatives
in eq. (5). The detailed computational formulae are listed in Appendix A.

To solve the semi-discrete ODE system (5), we use the diagonal implicit
Runge-Kutta method (e.g., Hairer et al., 1993)

Vi = + AV2) k) + k) (6)

K}, = L, + rAk?) + £ ¢, + rAo) 7

kY, = L[¥; + (1 — 20Atk?; + ratk?] + Eilt, + (1 — DA, (8)
where r = (1/2) — (1/3/6).

To obtain the value of ¥"*' which is the value of at the (n+1)-th time step
in eq. (6), we need to compute k}; and l?‘i“j from eqs. (7) and (8), which are
respectively the approximations to the slopes of the unknown function ¥ at time
t, + rAtand t, + (1 — r)At. However, direct computation of k?; and li‘i‘,j needs
to solve two systems of linear algebraic equations at each time step, which can
be computationally intensive. In the following section, we propose a
predictor-corrector method to improve the efficiency in computing k}; and R’-},j.
This method is similar to the strong stability-preserving method developed by
Shu and Osher (1988) and Shu (1988).

The predictor and corrector steps for explicitly computing k}; in eq. (7)
are described in detail as follows. We first compute the predictor by

ki = IZV‘;J . )



130 WANG, YANG & LIU

The corrector is then computed in the following two steps,

K@ = k1,0 + rAtlkY; = L, + rAtl V! (10)

oo

k'l‘J = k?_j(z) + I'Ath?,j(z) + fi,j(tn + I'At)

Ly, + 2rAtL; + (AL + £, + Ao 11)
where the second-order operator L can be obtained from L as follows

L? = Diag(L?L?L?

Diag[(1/0)D,(1/p)D,(1/p)D,(1/0)D,(1/p)D,(1/p)D] . 12)

Similarly, we can explicitly compute li‘-,“j in eq. (8) by using a similar
predictor-corrector approach

kY = k1@ + radlk?@ + £ jlt, + (1-0AQ]
= Lwt; + 2ratl?W); + (rAo’LPwh; + £jlt, + (1-nAt ,  (13)

>

where K} @ = Lw!; + rAtl?W!;, Wi, = ¥, + (1—2r)Atk?;.
Combining eq. (6) with egs. (9)-(13), we obtain the explicit PCA.

For practical applications, the implementation of the PCA is divided into
the following major steps:

1. Compute kf; using egs. (9)-(11).

(a) Compute L¥?; and L*¥"; using eq. (12) and (A-1) to (A-7), and then
substituting them into eq. (10) to obtain kj;®;

(b) Compute Lk?® using the formulae (A-1) to (A-7) and the result ki@
in step (a);

(c) Substitute these results obtained in steps (a) and (b) into eq. (11) to
obtain k7 ;.

2. Compute R?,j following the similar steps as in computing k} ;. The only
difference is that, the vectors ¥]; and ki;* in egs. (10) and (11) are
replaced by the vectors W} ; and k} @, respectively.

1,) 2

3. Substitute the results ki ; and li?d- into eq. (6) to obtain the values of ¥}*]
at the (n+1)-th time step.
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THEORETICAL PROPERTIES OF THE PCA
Theoretical error

Using the Taylor series expansion, the error of the interpolation formulae
for spatial derivatives listed in Appendix A can be verified to be O(Ax* + Az*).
The temporal error, however, is O(At?) because we use the third-order implicit
Runge-Kutta method and the predictor-corrector method. Therefore, the PCA
has a fourth-order accuracy in space and second-order accuracy in time.

Convergence rate

In this subsection, we use the following 2D initial value problem for the

acoustic wave equation to demonstrate the numerical accuracy and convergence
of the PCA,

(0%u/0x?) + (0%u/9z?) = (1/c?)(d%u/ot?) , (14a)
u(0,x,z) = cos[—(2xfy/c)xcosl, — (2nfy/c)zsinb,] , (14b)
du(0,x,z)/dt = —2xfysin[ —(2xfy/c)xcos, — (2xf,/c)zsinb,] , (14¢)

where c is the velocity of the medium, 6, is the incident angle at time t = 0, f,

is the frequency. It is known that this initial problem has an exact solution as
follows,

u(t,x,z) = cos{27fy[t — (x/c)cosf, — (z/c)sinf,]} . (15)

In the numerical experiment, the computational domain is: 0 < x < 20 km and
0 < z < 20 km; the frequency f, = 10 Hz, the velocity ¢ = 4000 m/s, 6, =
w/4 and the maximum propagation time is T = 1 s. The error of the numerical
solution u;, with respect to the exact solution is measured in the L*-norm (e.g.,
Dumbser and Kiser, 2006), i.e.,

E.=|u-u] = th;}axlu?,j - ut,x;,z)| (16)

The convergence rate is defined by (e.g., Dumbser and Koser, 2006)

0,. = log(E}_/E} H/log(h"/h"™") . 17
where uj; and u(t,x;z) are respectively the numerical solution and the
analytical solution for the n-th time step of the initial problem [see eq. (14)], h*
is the spatial step for time t,.
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Table 1 shows the convergence rate O, . of the PCA for different spatial
and temporal grid sizes with the same Courant number o = 0.1 (o = cAt/AXx),
where its first column is the spatial increment, the second column is the error
E, ., and the third column shows the convergence rate of the PCA. From this
table, we can conclude that the numerical convergence rate of the PCA is about
3, which is a combined effect of time and spatial accuracy. In addition, the
convergence rates do not vary considerably as the spatial grid size increases,
which demonstrates that the PCA is a robust numerical scheme.

Table 1. Convergence rates of the PCA.

Ax E;. 0.
8.00E-2 1.4938E-002 -
4.00E-2 2.3584E-003 2.6632
2.00E-2 3.3487E-004 2.8161
1.00E-2 4.4533E-005 2.9106

Stability criteria

It is well known that the temporal and spatial grid sizes relative to a given
velocity must satisfy certain relationship to keep the numerical scheme stable.
Using Fourier analysis methods (e.g., Richtmeyer and Morton, 1967; Yang et
al., 2006), we derive the following stability criteria of the PCA for the 1D
acoustic case (see Appendix B for details)

co(At/AX) < ay,, =~ 0.626 , (18)
or

At < oy, (AX/cy) = 0.626(Ax/cy) (19)

where ¢, denotes the wave velocity, At and Ax are the time and spatial
increments, respectively.

Similarly, for the 2D acoustic case, we can obtain the following stability
condition of the PCA,

At < o, (Ax/cy) = 0.556(Ax/c,) . (20)

Here we assume Ax = Az = h.
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For an anisotropic heterogeneous elastic medium, the Courant number
oy Can not be determined exactly because the velocity of the wave varies at
different wavelength-scale or in different directions when it propagates through
the computational region. But it can be approximately obtained by using a local
homogeneous method. Our conjecture is that the stability criteria given in egs.
(19) and (20) are still valid in a heterogeneous medium if we use the maximum
velocity c,.

NUMERICAL DISPERSION AND EFFICIENCY

To investigate the effectiveness of the PCA in suppressing the numerical
dispersion, we derive its numerical dispersion relations for both 1D and 2D
cases and compare them against those of the high-order LWC methods (e.g.,
Dablain, 1986) and the fourth order staggered-grid FD method (SG) (e.g., Luo
et al., 1990; Moczo et al., 2000). Detailed derivation can be found in Appendix
C.

Fig. 1 shows the numerical dispersion curves of the PCA (Fig. la),
eighth-order LWC (Fig. 1b), and the tenth-order LWC method (Fig. 1c)
corresponding to different Courant numbers for solving the 1D acoustic wave
equation, from which we can see that the PCA and the high-order LWC
methods have the same variation pattern as the Courant number increases. In
other words, for a small Courant number, the numerical velocity is usually
smaller than the real one, especially in the high frequency range, whereas the
numerical velocity becomes larger when the Courant number is relatively large.
However, when the Courant number is less than 0.5, the numerical dispersion
error of the PCA is smaller than those of both the eighth-order and tenth-order
LWC methods. For example, when Courant number is equal to 0.3, the
maximal deviation of the numerical velocity of the PCA from the real one is
about 5%, whereas the corresponding errors of the high-order LWC methods
such as eighth-order and tenth-order LWC methods are about 15% for the same
case.

Fig. 2 is the 2D numerical dispersion curves of the PCA (Fig. 2a, and
Fig. 2¢) and the fourth-order staggered-grid FD method (SG) (Fig. 2b and Fig.
2d) for the acoustic wave equation at different propagation angles with respect
to the x-axis for the Courant number o« = 0.1 (Fig. 2a and Fig. 2b) and « =
0.4 (Fig. 2c and Fig. 2d), where the four lines are corresponding to the
propagation angles being v = 0°, 15°, 30°, 45°, respectively. It is shown that
the maximal deviation of the numerical velocity from the exact one is no greater
than 10% for the PCA, while it is about 25% for the SG method under the same
Courant number. In addition, the numerical dispersion error of the PCA does
not show significant variation for different propagation angles, which means that
the PCA has little numerical anisotropy for the 2D case.
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We now investigate the numerical dispersion and computation efficiency
of the PCA in wave-field simulation. Here, we consider the following 2D
acoustic wave equation

(0%u/0t?) = c3[(0%u/dx?) + (0%u/dz?)] + f , (21)
() (b)
1.3 . 1.3¢
. , .
1.2}
1.1}
R 1.0 =
0.9 == a=005
Lk e = 0.3
0.8+ —_—a=05 0.8} —— a=05
- - —a=0626 -« = a=0.929
0.7 . s 0.7 . ;
0 nl2 m 0 w2 b3
kh kh
©
1.3¢
1.2+
1.1} L
R 1.0 s
0.9+ — — a=005
PO |
—=05
0.8f — - —@=0803
0.7 A g
0 w2 F4
kh

Fig. 1. The ratio R of the numerical velocity to the phase velocity versus wave-number respectively
for (a) the PCA, (b) the eighth-order LWC method, and (c) the tenth-order LWC method, where
four lines correspond to o = 0.05, 0.3, 0.5, and o,,, respectively.
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where the force source located at the center of the computational domain, is a
Ricker wavelet defined as f = sin(27fy)exp(—4n2f3t2/16) (Zahradnik et al.,
1993) with the peak frequency f, = 20 Hz. The velocity is ¢, = 4000 m/s and
the computation domainis 0 < x < 15kmand 0 < z < 15 km.

(@ ()
11 11
PR
R 1.0 _"-’-’E_r% R 1.0
™
*
0.9 0.9
0.8 s 0.8
' . "f;;. ' p=15 kY
":45, s =3P X
'''''' a= e —— <
0.7
0700 0.4 0.2 0.3 04 05 0.0 0.1 0.2 0.3 0.4 0.5
Ax/ A AxlA
© (Y]
1.1
R 1.0
0.9
0.8
D'Eo

Fig. 2. The ratio R of the numerical velocity to the phase velocity versus Ax/\ (the wavelength \),
generated by the PCA (a) and the fourth-order SG (b) under the Courant number o« = 0.1, and the
PCA (c) and the fourth-order SG (d) under the Courant number of o = 0.4, for different
propagation angles with respect to the x-axis, where four lines correspond to v = 0°, 15°, 30°, 45°,
respectively.
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Fig. 3 shows the wave-field snapshots at t = 1.6 s computed on a very
coarse grid (Ax = Az = 60 m) which means about 3.3 grid points per shortest
wavelength, generated respectively by the PCA, the fourth-order LWC and the
fourth-order staggered-grid (SG) FD method. Fig. 4 shows the wave-field
snapshots generated by the fourth-order LWC with Ax = Az = 10 m and the
fourth-order staggered-grid (SG) FD method with even a finer grid of Ax = Az
= 8 m, respectively, at the same time step under the same Courant number to
effectively suppress the numerical dispersion. We can see that the wave fronts
shown in Fig. 3, simulated by the three methods are nearly identical. However,
the result generated by the PCA (Fig. 3a) shows no visible numerical dispersion
even for such a coarse grid of 60 m (about 3.3 points in the shortest
wavelength), whereas the results of both the fourth-order LWC and
staggered-grid FD methods are severely dispersed (see Figs. 3b and 3c).

@ 0 Distance(km) 15 (b) 0 Distance(km) 15
N o

— —
E E
=t o
3 3
]
2 =
= E
- w
= -]
=) a
w wn |
— —

© 0 Distance(km) 15

Distance(km)

15

Fig. 3. Snapshots of seismic wave fields at time 1.6 sec on the coarse grid (Ax = Az = 60 m),
generated by the fourth-order LWC (a), the fourth-order SG (b), and the PCA (c), respectively.
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Comparison between Fig. 3(a) and Fig. 4 demonstrates that the PCA can
produce the same accurate wave field snapshot with no visible numerical
dispersion on a much coarser grid as those of the fourth-order LWC and the
fourth-order staggered-grid (SG) FD method on significantly finer grids. But
their computational costs are quite different: it took the PCA about 11.7 min to
compute Fig. 3(a), but the fourth-order LWC method and the fourth-order
staggered-grid (SG) FD method took about 438.2 minutes and 195.3 minutes to
generate Figs. 4(a) and 4(b), respectively. It means that, to achieve the same
accuracy, the PCA is about 37 times faster than the fourth-order LWC and 17
times faster than the fourth-order staggered-grid (SG) FD method.

Even though the PCA needs 24 arrays to store the wave fields and their
gradients, the fourth-order LWC and the staggered-grid (SG) method, on the
other hand, need only 3 and 5 arrays, respectively, to store the displacements
to produce the same accurate results, the coarser grids for the PCA results in
a significant saving in memory usage. Fig. 3(a) was computed on a 251 X 251
grid, while Figs. 4(a) and 4(b) were computed on a grid of 1501 X 1501 for the
fourth-order LWC and 1875 X 1875 for the fourth-order staggered-grid (SG)
FD method, respectively. Therefore, the PCA takes only about 22% and 9% of
the memory that required by the fourth-order LWC and the fourth-order
staggered-grid (SG) FD method, respectively.

To show the accuracy of the PCA in wave-field simulation, we compare
its waveform with the analytical solution computed using the Cagniard-de Hoop
method (Aki and Richards, 1980). In this experiment, the computational domain
is0 <x =< 10km and 0 < z < 10 km, the acoustic velocity ¢ = 4000 m/s,

(a) )

0 Distance(km) 15 0 Distance(km) 15

= <

Distance(km)

Distance(km)

15

wi
—

Fig. 4. Snapshots of seismic wave fields at time 1.6 sec on a fine grid, generated by (a) the
fourth-order LWC (Ax = Az = 10 m) and (b) the fourth-order SG (Ax = Az = 8 m).
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the spatial increment Ax = Az = 20 m. The source is located at the center S
(5 km, 5 km) and defined as

f = —5.76f3[1 — 16(0.6f;t — 1)2Jexp[—8(0.6f;t — 1)7] . (22)

Fig. 5 shows the comparison of waveforms for receiver at R(4.2 km, 5
km) generated respectively by using the PCA, fourth-order LWC, and the
staggered-grid (SG) method with a central frequency f, = 50 Hz against the
analytical result denoted by the solid line, from which we see that the PCA
result (Fig. 5a) matches well with the seismogram calculated by the Cagniard-de
Hoop method, but Figs. 5(b) and 5(c) show that the fourth-order LWC and the
SG methods have serious numerical dispersion.

(a) o8 (b) 0.8
0.4 0.4 %

0.0 \" 0.0 %‘-‘

-0.4

0.4

Normalized Amplitude

Normalized Amplitude

——— Analytic

-0.8 -0.8

2 -1.2
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Time (s) Time (s)

—_
o

—
o

0.4

e
i
-

0.0

Normalized Amplitude

Analytic

-0.8
.......... SG

-1.2
0.0 0.2 0.4 0.6

Time (s)

Fig. 5. Comparison of waveforms for the high frequency 50 Hz with the analytical solution for the
acoustic case, generated by (a) the PCA, (b) the fourth-order LWC, and (c) the fourth-order SG,

where the solid and dashed lines denote the analytical solution and the numerical solution,
respectively.
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Fig. 6 shows the comparison of waveforms generated by the PCA and the
analytical solution with central source frequency f, = 50 Hz for receivers at
R(4 km, 4 km) that is about 17 wavelength away from the source (Fig. 6a) and
at R(3.5 km, 3.5 km) that is about 26 wavelength away from the source (Fig.
6b). Both figures show good match between the simulation result of PCA and
the Cagniard-de Hoop method, which demonstrates the PCA is accurate for
far-field computation.

(a) 08 (b) os

o 04 04

B =

£ E

£ j 5 Ik

= 00 P‘ £ 00

= <

- =

= -t

= =

s 04 F 04

-] =

£ z

z 08 Analytic 7z s Analytic
' - PCA ' e PCA
-1.2 -1.2
0.0 0.5 1.0 0.0 0.5 1.0

Time (s) Time (s)

Fig. 6. Comparison of waveforms generated by the PCA and the analytical solution for the high
frequency 50 Hz for the acoustic case, recorded at receiver R(4 km, 4 km) (a) and receiver R(3.5
km, 3.5 km) (b).

Fig. 7 shows the PCA results computed at frequencies as high as 70 Hz
(Fig. 7a) and 90 Hz (Fig. 7b) for a fixed spatial grid size of 20 m. No
dispersive noise can be noticeable even for the peak frequency of 90 Hz, these
clean waveforms confirm the effective simulation of PCA.

To test the effectiveness of the PCA in numerical simulation for more
complicated models, we chose a two-layer acoustic model which has a velocity
of 2 km/s in the upper layer and 4 km/s in the lower layer. The computational
regionis 0 < x < 4 km and 0 < z < 4 km, and the depth of the horizontal
interface is at z = 2.2 km. The source is the same one used in the above
acoustic model with a peak frequency of f, = 40 Hz, and it is located at the
coordinate (2 km, 1.6 km). The spatial increment is 8 m, and the time step is
At =1 X 10™*s. Fig. 8 is the comparison of waveforms computed by the PCA
and the analytic solution at the receiver R(1.6 km, 1.2 km), from which we can
see that the two waveforms match with each other quite well, which illustrates
that the PCA is accurate for modeling the layered acoustic medium which has
large velocity contrast between adjacent layers.
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Fig. 7. Waveforms for different peak frequencies of (a) 70 Hz and (b) 90 Hz, computed by PCA
for a fixed spatial increment Ax = Az = 20 m for the acoustic model.
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Fig. 8. Comparison of waveforms generated by the PCA for the high frequency (f, = 40 Hz) on the
spatial grid (Ax = Az = 8 m) with the analytical solution for the two-layer acoustic model.
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We also test the validity of the PCA in the elastic case by comparing its
waveforms with the analytic solution. The P- and S-wave velocities are
respectively 44/3 km/s and 4 km/s, and the density is p = 1 g/cm®. The
computation region is 0 < x < 16 km and 0 < z < 16 km, the three
components of the source vector are also given by eq. (22) with a peak
frequency f;, = 40 Hz, and the source is located at the center of the region with
the coordinate S(8 km, 8 km). The spatial increment is 10 m, and the time step
is At = 1 x 107 s. Fig. 9 shows the waveforms comparison between the PCA
and the analytic solution at time T = 1.2 s for the receiver at R(6 km, 6 km),
which is about 28 wavelength away from the source location. From the nice
match of the waveforms for both the direct P- and S-waves, we conclude that
the PCA is also accurate for modeling the elastic case.

0.8
0.4
@
=
2
= 0.0
<
=
= -0.4
‘. '
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S
Z Analytic
-0.8
ssssssssess PCA
-1.2
0.0 0.6 1.3
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Fig. 9. The waveform comparison between the PCA and the analytic solution with the dominant
frequency of f; = 40 Hz on the medium grid (Ax = Az = 8 m) for the elastic model.

WAVEFIELD SIMULATIONS

In this section, we demonstrate the performance of the PCA in the 2D
acoustic and elastic models and compare it against that of the fourth-order LWC
method (Dablain, 1986). All numerical experiments are implemented on a PC
with 1 GB memory and 1.33 GHz CPU.
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Elastic isotropic model

In this example, we choose the Lamé constants N\ = 2.75 GPa and u =
6.25 GPa, the density p = 2.1 g/cm®. The source wavelet, a Ricker wavelet
described by eq. (22) at the peak frequency f, = 25 Hz, is located at the center
of the computation domain. The spatial and time increments are Ax = Az = 60
m and At = 0.003 s, respectively. The computational domain is 0 < x < 18
km and 0 < z < 18 km, which results in 301 X 301 grid points. A receiver
R is located at (x,z) = (10.5 km, 11.1 km).

Fig. 10 are the three-component wave-field snapshots at t = 2.5 s
generated by the PCA. We can see that the P- and SV-waves shown in the
horizontal component u; (Fig. 10a) and vertical component u, (Fig. 10c) have
no apparent dispersive noise even though coarse grids (Ax = Az = 60 m) are

(a) 0 Distance (k) 18 (b) 0 Distance (km) 18
=]

Distance (ki)
Distance (km)

18
18

© 0 Distance (km) 18

Distance (km)

18

Fig. 10. Snapshots of seismic wave fields for three components at 2.5 sec in an elastic isotropic
medium, generated by the PCA, for (a) u, component, (b) u, component, and (c) u; component.
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used in the computation. It indicates that our method enables wave propagation
to be simulated accurately in large-scale models using coarse computational
grids.

Fig. 11 shows the waveforms of three components at the receiver R
computed by the PCA (Fig. 11a) and the fourth-order LWC (Fig. 11b),
respectively. Comparison between these two figures indicates that the PCA has

almost no visible numerical dispersion, but the fourth-order LWC suffers from
this numerical dispersion seriously.

@ (b)

U L |

11~ 5

u3 uy

0.0 0.5 1.0 L5 2.0 25
Time (5)

0.0 0.5 1.0 15 20 25
Time (5)

Fig. 11. Comparison of three-component waveforms for the elastic isotropic case, and the synthetic
seismograms (a) and (b) are generated by the PCA and the fourth-order LWC method, respectively.

2D SEG/EAGE salt model

To further illustrate the applicability of the PCA in the heterogeneous
medium, we test its performance using the 2D standard SEG/EAGE salt model
shown in Fig. 12, which has strong velocity variations ranging from 1500 m/s
to 4482 m/s. In this experiment, the numbers of grid points are 401 X 201, and
we test two groups of spatial increments, Ax = Az = 20 m and Ax = Az =
40 m. The Ricker wavelet source formulated in eq. (22) with a peak frequency
of f, = 15 Hz is located at the surface of the earth model.
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Fig. 12. SEG/EAGE salt model with the minimum acoustic velocity of 1500 m/s and maximum
velocity of 4482 m/s.

Fig. 13 shows synthetic seismograms computed using the PCA which are
respectively 4 second (Fig. 13a) and 8 second long (Fig. 13b). In the
computation, we use free-surface boundary condition and apply the second-order
absorbing boundary condition proposed by Yang et al., (2002). We can see that
the synthetic seismic records for both fine and coarse grids are clearly free of
numerical dispersion, which demonstrates the effectiveness of the PCA in
numerical simulation in the complex heterogeneous medium.

CONCLUSIONS AND DISCUSSION

We suggest an explicit predictor-corrector algorithm (PCA) by using the
implicit Runge-Kutta method to solve acoustic and elastic wave equations. We
first transform the wave equation into an ordinary differential equation (ODE)
system, then we use an implicit Runge-Kutta method associated with the
predictor-corrector method to solve the ODE system by using the NAD operator
to approximate the high-order spatial derivatives included in the ODE system.
In other words, the time derivatives are approximated via the explicit
predictor-corrector algorithm and the high-order space derivatives are calculated
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Fig. 13. Synthetic seismograms for the SEG/EAGE salt model generated by the PCA from time t
=0tot =4sona fine grid (Ax = Az = 20 m) (a) and from time t = 0 to t = 8 s on the coarse

grid (Ax = Az = 40 m) (b).
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using the multivariable interpolation approximation. On the basis of such a
structure, we have to first convert these high-order time derivatives to the spatial
derivatives, which is similar to the high-order FD or so-called LWC methods
(Lax and Wendroff, 1964; Dablain, 1986). However, in approximating the
high-order spatial derivatives the PCA is different from these high-order FD,
LWC, and staggered-grid methods stated previously that only use the wave
displacement at some grid points to approximate the high-order spatial
derivatives or directly discretizing the original wave equation. This PCA uses
simultaneously the wave displacement-, velocity- and their gradient fields to
restructure the wave fields [see formulae (A-1) to (A-7)]. In other words, when
determining these high-order spatial derivatives included in eq. (5), the PCA
uses not only the values of the displacement u and the particle velocity w at the
mesh point (i,j) and its neighboring gridpoints, but also the values of the
gradients of the displacement u and particle velocity w. Based on such a
structure, the PCA retains more wavefield information included in the
displacement function, the particle velocity, and their gradients. As a result, the
PCA can effectively suppress the numerical dispersion and source-generated
noises caused by discretizing the wave equations when too-coarse grids are used
or models have large velocity contrasts between adjacent layers. And the PCA
has higher spatial accuracy though it only uses a local difference operator that
three gridpoints are used in a spatial direction.

Theoretical error analysis shows the PCA is fourth-order accuracy in
space and second-order accuracy in time, and its numerical convergence rate
defined by the L*-norm (e.g., Dumbser and Koser, 2006) is about three.
Comparison between the numerical results computed by the PCA and the
analytical solution shows that the PCA is very effective in suppressing the
numerical dispersion in both acoustic and elastic cases (see Figs. 5a, 6, 8 and
9). Both the numerical dispersion analysis and the wave-field simulation results
show that the numerical dispersion error of the PCA is smaller than those of the
SG scheme (Luo et al., 1990;Moczo et al., 2000) and the high-order LWC
methods such as the fourth-order, eighth-order, and tenth-order LWC methods
(Dablain, 1986) when the Courant number o < 0.5.

Even though the PCA needs more central processing unit (CPU) time to
compute the ¥"*! at the (n+1)-th time step from V" than those of the
fourth-order LWC and the fourth-order SG method which is because the PCA
needs more matrixes and the number of instructions for each time iteration, it
allows much coarser grids to obtain the similar accuracy result as the other two
methods on finer grids. As a result, the PCA is more efficient in overall
computation and memory usage compared to the fourth-order LWC and the
fourth-order SG method as shown in the numerical dispersion and efficiency
section.
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The PCA can be used for different applications in the large-scale wave
field simulations, reverse time migration, and waveform inversion, etc, for its
effectiveness in seismic simulation including solving the acoustic and elastic
wave equations. Meanwhile, the PCA not only computes the displacement u and
the particle velocity w, but also explicitly compute the gradients of the two
wave-fields, so it can be easily extended to two-phase porous medium cases.
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APPENDIX A

APPROXIMATIONS OF THE SPATIAL HIGH-ORDER DERIVATIVES
The explicit PCA needs to evaluate the high-order spatial derivatives

included in eq. (5) or egs. (6)-(11) and (13). Following Konddoh et al. (1994)

and Yang et al. (2006), we compute them using a multi-variable high-order

interpolation method. For convenience, we present the approximation formulae

used in the PCA as follows

0,,V}; = 2/Ax»)0%v; — (1/2Ax)(E; — E;Hd,v} (A-1)

o
0V}, = QIAZDSWE, — (12A2)(EL — E;)9,v; (A-2)
3.1 = (12A%)(EL — E;H9,v; + (12A2)(EL — E;)a v,

— (1/4AxAZ)(E[EL — E!E;' — E;'El + E{'E;Y)V), , (A-3)
3,V3; = (152Ax%)(EL — E;hvt,

— (312Ax?)(EL + 81 + E;Ha !, , (A-4)

0;,v1; = (152A7°)(E; — E;")vi;

— (32AZ)(E! + 81 + E;)a,v (A-5)

Lj o

amv'-,‘,j = (1/4Ax%Az)
X (SE;E;—SE;IE;I+E}(E;1—E;‘E;—4E;+4E;1—6E§+6E;‘)v';,j
+ (1/2AxAz)

X (=EE.-E{'E;'+E!+E;! —28)0,v} ;+ (1/AX%)80,v1) (A-6)

3X2ZV?J = (1/4AX2AZ)
X (SE,{E;—-SE;IEQI—E,I(Egl+E;1E;—4E,{+4E;1—6E;+6E;1)v‘-,‘,j
+ (1/2AxAz)

X (—EE!-E;'E;'+E!+E;! —269)9,v} ;+(1/AZ2)8%0,V})) (A-7)
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where the vector v is defined by v = (u,w)”, where u and w are respectively
the wave field displacement and particle-velocity. The symbols v{;, 9,vi;, 9,vi;
and 9,4,V ; denote v(iAx,jAz,nAt), (3/0x)v(iAX,jAz,nAt), (3/0z)v(i1AX,jAz,nAt)
and (9™+*v/9x™3z")} ;, respectively. The operators in the z-direction, involved in
eqs. (A-1) - (A-7), are 8ov}; = Vi, — 2vi; + v}, E}vi; = v}, and E7'vi,
= vi_,. The operators §;, E} and E}' in the x-direction can be similarly

defined.
APPENDIX B
DERIVATION OF THE STABILITY CRITERIA

1D Homogeneous Case

These formulae (A-1) and (A-4) for the 1D case can be degenerated into
the following form,

9V = (2/AX2)8W! — (12AX)(EL — E;Ho,v (B-1)
3,V = (152A%%) (L — E;)v! — (3/2Ax2)(E! + 81 + E;Nv , (B-2)

where vj = v(jAX,nAt), 62v] = vi,; — 2V} + Vv}_, E,{vj‘ = Vv},;, and E;'v} =
vi_,.
j—1

To obtain the stability condition of the PCA, we consider the harmonic
solution of eq. (6) for the 1D case. Substituting the following solution

u“}
W= | e | XLt (B-3)
axw“J

and the formulae (B-1) and (B-2) into egs. (6) - (11) and (13), we can obtain the
following equation

V'l = GV, (B-4)
where G is the amplification matrix.

Let G* denote the conjugate transpose matrix of G. Following the Fourier
analysis methods (Richtmeyer and Morton, 1967; Guan and Lu, 2006), we
know that the PCA with the amplification matrix G is stable if the spectral
radius p(G*-G) of G*-G satisfies p(G*-G) < 1. So from the condition of
p(G*:G) <1, we can obtain the stability condition
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o < oy < 0.626 (B-5)
or
At < o, (Ax/cy) = 0.626(Ax/cy) (B-6)

where o, denotes the maximum Courant number that keeps the PCA
computational stable.
2D Homogeneous Case

For a 2D problem, we consider the case when Ax = Az = h. Then,
following the same analysis as in the 1D case above, we can obtain the

following stability condition for the 2D case

At < oy, (h/cy) = 0.556(h/c,) . (B-7)

APPENDIX C

DERIVATION OF THE NUMERICAL DISPERSION RELATION

1D Homogeneous Case

To investigate the numerical dispersion error of the PCA, we derive its
numerical dispersion relation for the 1D case. Following the dispersion analysis
methods presented in Dablain (1986) and Yang et al. (2006), we consider the
harmonic solution of eq. (6) and substitute the solution for the 1D case

Uy
on W, . .
Vi = expli(wy,mnAt + kjh)] C-1
= | o, | SPLC jh)] (C-1)

X

aXWOJ

into egs. (6)-(11) and (13) with relations (B-1) and (B-2) to obtain the following
dispersion equation

DetM) = 0 . (C-2)
Due to the complexity of the matrix M, we omit its detail expressions.

From the dispersion relation (C-2), we can obtain the ratio of the
numerical velocity to the phase velocity ¢, as follows

R = cun/Co = wpmlt/al = y/ab (C-3)
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where « is the Courant number, § = kh, in which k is the wave number and h
= Ax and v w,,,At satisfies the dispersion eq. (C-2).

2D Homogeneous Case

For the 2D case, we derive the dispersion equation of the PCA for the
case of Ax = Az = h. Considering the harmonic solution of eq. (6), we
substitute the solution

Yo
Vi, = | 0¥ | exp{ilw,mnAt + (kcosv)jh] + (kcosv)lh} |, (C-4)
aZVO

into eq. (6) with relations (A-1) to (A-7) to obtain the 2D dispersion equation,
which includes the plane-wave propagation angle with respect to the x-axis as
an independent variable v. The detailed derivation of the dispersion equation for
the 2D case is omitted here, and we only show the ratio of the numerical
velocity to the phase velocity R (R = c,,./c;) by solving the 2D dispersion
equation. The dispersion curves of the PCA under Courant number 0.1 and 0.4
are shown in Fig. 2, and the dispersion relation curves of the SG method under
the same Courant number are also shown for comparison.





