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ABSTRACT

Xue, Y., Ma, J. and Chen, X., 2013. High-order high-resolution Radon transform for
AVO-preservation multiples attenuation. Journal of Seismic Exploration, 22: 93-104.

Multiple attenuation and primary energy preservation are important for seismic data
processing. Sparse Radon transform can reduce smearing and separate primaries and multiples quite
well. But when the primary amplitude varies abruptly, multiple attenuation by sparse Radon
transform will be degraded, and the energy of primaries will be distorted. To remediate this
problem, we propose a high-order high-resolution Radon transform. Radon transform only performs
summation along linear, parabolic or hyperbolic events. Our method incorporates event summation
with orthogonal polynomial transform, and meanwhile obtains the gradient and curvature of events.
This information will improve resolution of Radon transform in situations where amplitudes vary
abruptly with offsets. The high-order Radon transform takes advantages of Radon transform and
orthogonal polynomial transform, which will attenuate multiples while preserving AVO information
of seismic data. Synthetic data examples show that high-order Radon transform is successful in
multiple attenuation and AVO preservation.

KEY WORDS: sparse Radon transform, high-order Radon transform, AVO,
orthogonal polynominal transform, multiple attenuation.

INTRODUCTION

Radon transform is widely used in seismic data processing, especially for
multiple attenuation and seismic data reconstruction. For the Radon transform
in infinite aperture array, one event can be focused into a point; while in reality,
because of the finite aperture, the point will be smearing. The smearing will
degrade the resolution and distort primary amplitude (Kabir, 1999). Primary
with true amplitude will benefit AVO analysis, stack and other processing

procedures. How to keep the true primary amplitude is still an open research
problem.
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Radon transform is not an orthogonal transform; it is generally posed as
an inversion problem. The damping least-squares method is one of most
commonly used inversion method (Hampson, 1986), but its resolution in Radon
domain is low, especially for multiples with small moveouts. Thorson and
Claerbout (1985) proposed a high-resolution Radon transform based on a
maximum a posteriori (MAP) stochastic inversion, and forced a local focus in
the velocity space. The method is realized in time domain, and involves the
inversion of a large matrix, which limited its application. Yilmaz (1989)
inverted the Radon transform in frequency domain using singular value
decomposition (SVD). SVD can reduce the rank of equations, improve signal
to noise ratio, and reduce the smearing. Sacchi (1995) solved the Radon
transform problem by deriving a maximum a posteriori estimator at each
frequency based on sparsity constraint. This algorithm forces the velocity
parameters to concentrate on their main components. This method can improve
the resolution in Radon domain, and compensate for the amplitude outside of
original aperture. Since then a lot of improved sparse Radon transform methods
have been developed in order to prevent aliasing (Cary, 1998; Herrmann, 2000)
and preserve the true amplitude (Herrmann, 1999; Schonewille, 2002). From
these methods, we can see that the sparsity criterion is helpful to improve
resolution and prevent aliasing. However if the sparsity constraint is too strong,
fitting with the original data is degraded, although better resolution is obtained.
An extreme example is that one point in Radon domain is mapped into an event
with constant amplitude, and its AVO information is lost. There must be a
trade-off between AVO preservation and high-resolution. Wang (2011)
introduced an AVO-preserving sparse parabolic Radon transform. The method
split seismic gathers into two Radon gathers: one is the same as the traditional
Radon transform, and the other is the one with AVO signature. The method
does Radon transform with AVO information, which makes it better than
traditional Radon transform. In this paper we propose a Radon transform
method focusing on both resolution enhancement and AVO-preservation.

Generally, AVO can be formulated by an even-order polynomial of offsets
(Ursin, 1990). Johansen et al. (1995) tracked AVO with unit orthogonal
polynomials and showed that AVO of seismic data may be extracted and
described by a unique spectrum of polynomial coefficients. In the polynomial
fitting, the first three coefficients can be used to reveal AVO characteristics: the
zero-th order coefficient is proportional to the stack, the first order represents
the mean gradient, and the second describes AVO curvature. Orthogonal
polynomial transform for AVO representation is only valid for flat events. Once
the event is not strictly flat, the spectra of orthogonal polynomial are smeared
and their physical meaning is lost.

Radon transform indeed superposes a set of constant amplitude events,
and smearing appears as soon as AVO exists, but it can discriminate events.
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Orthogonal polynomial transform can preserve AVO information only for flat
layers. Combining those two can give us a high-order high-resolution Radon
transform, which can perform Radon transform while preserving AVO
information.

THEORY

In this par\t, we first give a review on the orthogonal polynomial
transform, and then we will derive the high-order high-resolution Radon
transform.

Orthogonal polynomial transform

It is well known that AVO curve at each sample time t can be represented
with even-order polynomials (Ursin and Dahl, 1990), i.e.,

d(t,x) = cot) + c,;(O)x* + c,(®Ox* + ... , (1)

where x and d(t,x) are the offsets and amplitude, respectively, and the c;(t) are
the polynomial coefficients. Note that the c;(t) coefficients need to be computed
jointly. If the fitting order is changed, all of coefficients have to be recalculated.

The orthogonal polynomial transform was introduced by Johansen et al.
in 1995, and this transform fits the AVO as follows:

M

dt,x) = Y, ¢Op® @)

j=0

where {p;(x),j = 0,1,...,M} are a set of unit orthogonal polynomials from offset
coordinate x with N+1 samples, M +1 is the number of basis function p;(x) and
each basis function p;(x) has the general form of a polynomial of degree j. Using
the least-squares method, the coefficients can be obtained readily

N
qm=§wmmm. A €)

¢i(t) indicates the j-th order property of AVO at time t. They construct the
spectrum of orthogonal polynomial transform. The research of Johansen et al.
(1995) showed that this spectrum can be classified as AVO, and this AVO can
be represented with the first several orthogonal polynomial coefficients.
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In the Appendix, the construction of the orthogonal polynomials is given;
it results in a zero-th order polynomial py(x) = 1/4/(N + 1). In eq. (3), when
j = 0, the zero-th order orthogonal polynomial coefficients are obtained

N
co®) = [IVN + DI Y. dit,x) . @)

i=0

It is proportional to stack; on the other hand it is also the Radon transform along
the horizontal direction. The first-order coefficient c,(t) gives the mean gradient
of amplitude variations and the second-order coefficient c,(t) indicates whether
the AVO is changing from increasing to decreasing, or vice versa.

We also mention here that the power of the seismic data at time t can also
be expressed by orthogonal polynomial coefficients as follows:

N M
Y dtx) = Y, GO . 5)
i=0 j=0

High-order Radon transform

Radon transform can be classified into linear, parabolic, and hyperbolic
radon transform. Here only the high-order parabolic Radon transform model is
given and linear and hyperbolic cases can be obtained in a similar manner.

The parabolic Radon transform performs the amplitude summation along
parabolas, as described by the following:

N
m(7,q) = E dtt = 7 + gxd,x) . (6)

i=0

It is comparable to the concept of stack with different curvatures. If g=0,
eq. (6) is proportional to eq. (4). So the Radon transform at ¢ = O just is the
zero-th order orthogonal polynomial transform. Instinctively we hope to get
AVO higher order orthogonal polynomial properties along different curvature
parabola traces. Thus combining egs. (3) and (6), we get:

N
m(r,q) = ), dt = 7 + @&x)p(x) - 0

i=0



RADON TRANSFORM FOR AVO-PRESERVATION 97

The above transform has the data along the parabolic parameter q at
intercept time 7 decomposed on every basis function P;(x). It splits t—x data into
high-order Radon domains. The zero-th order Radon profile my(7,q) is
proportional to the traditional Radon transform, with only a scale difference; the
first order profile m(r,q) is a mean gradient gather and it captures the
increasing or decreasing trend of amplitude variation with offsets at different
direction; the second order m,(7,q) is a curvature gather and describes amplitude
increase and then decrease, or vice versa. These first three gathers take most of
the energy of the event and are important to get AVO inversion parameters. The
other higher order gathers hold information about amplitude detail or noise, and
muting them improves the S/N ratio (Johansen et al., 1995).

As {p,(x), j = 0,1,...,M} is a set of unit orthogonal polynomial, it is easy
to get inverse high-order Radon transform from eq. (7)

dtx) = ) Ym(r =t — ql,Qp®) . ®
q J

Obviously the high-order Radon transform simulates events with a linear
superposition of a set of orthogonal polynomials, weighted by their Radon
gathers respectively. Compared to the traditional Radon transform, the high-
order Radon transform includes more amplitude variation information, such as
gradient and curvature, besides the stack property.

High-order high-resolution Radon transform

The physical meaning of high-order Radon transform is clear, and it is a
highly underdetermined problem because the number of unknown parameters is
much larger than the number of knows. In our paper we only consider the
three-order Radon transform; they are also important AVO inversion
parameters.

Considering the first three orthogonal polynomial transform gathers, eq.
(8) can be expressed in the generic matrix form

d =Y mr =t - gQpy(®) + L my(r = t — gx,q)p;(x)
J

q

m,

+Ymyr =t - q@AQp®x) = Lo L L) m| =Lm , (9
q m2

where L;, L,, L, are the summation operators (the same as L in traditional
Radon transform, except for a scale), the gradient operator and curvature
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operator, respectively. Compared with the traditional Radon transform, eq. (9)
is an extended Radon transform with more unknowns because more amplitude
variation is included.

To solve the above equation, the sparse inversion method is preferred
(Sacchi and Ulrych, 1995; Trad et al., 2003). We need to find optimal Radon
gathers by minimizing the following cost function (Trad et. al, 2003)

Jm) = [|[d -~ Lm[} + N[m]{ , (10)

where the /;-norm for the model is chosen in order not to penalize strong large
elements contained in the models. The trade-off parameter is used to balance the
data fit versus sparsity in high-order Radon domain. The /;-norm can be

transformed to /,-norm by using model weight matrices, which are proportional
to

[Woli = U4/|my| . (11)
Thus

[ml} =Y [m| = 0™WiW,m = |W,m]|3 . (12)

It plays a fundamental role in the inversion of sparse models. Using the
Iterative Reweighed Least Squares method, at each iteration, only large powers,
|m; |?, are kept, reducing the powers that are not relevant in fitting the data.

In our method Radon panels are composed of three sub-panels, summation
panel, gradient panel and curvature panel. For any event, the powers of three
panels are different because of AVO property. The model weight matrix of eq.
(11) will result in different level sparse constraint for the same event, which
distorts the relationship of sub-panel. To overcome this problem, an identical
weight matrix is adopted for all sub-panels in order to keep balance between
them. Here we utilize the energy distribution of Radon gather. From formula
(5), we can obtain the data energy distribution E(7,q) in the Radon domain by

2
B = ) mi(ra) . (13)
j=
And the model weight matrix W, is proportional to
(W, = IWVE, . | (14)
The expression E(7,q) describes the energy distribution along different
traces at intercept 7, which can capture the main model parameters more

precisely than traditional Radon transform m. For example, if event amplitude
varies with offset and average is nearly zero, its Radon parameter is also almost
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zero while it energy is large, which gives more precise sparsity constraint in the
Radon domain.

When replicating the above weight vector in diagonal, we get the key
inversion weight matrix of high-order Radon transform. Using Iterative
Reweighed Least Squares, high-order high-resolution Radon transform is
achieved.

EXAMPLES

High-order high-resolution Radon transform combines the Radon
transform and an orthogonal polynomial transform. The advantage of this
method is AVO-preservation and high-resolution. Here two synthetic examples
are given to demonstrate the performance of the proposed method for multiple
attenuation and AVO preservation. Firstly, we compare the demultiple ability
of the proposed high-order high-resolution Radon transform with high-resolution
Radon transform. A CMP gather is displayed in Fig. 1(a). In the figure the
amplitude of the primary initially decreases but finally increases with offset, and
the amplitude of multiples increases with offsets, which distorts primary. The
curve of primary and multiple are shown in Fig. 1(b), and the spectrum
calculated by the orthogonal polynomial transform is shown in Fig. 1(c). Fig.
1(c) show that the first three orthogonal polynomial coefficients are enough to
represent the AVO curve. From these coefficients, we could estimate the model
weight of primary at ¢ = 0. For our method, the model weight is the sum of
squared polynomial coefficients, here about 0.97 for three sub-gathers; while for
high-resolution Radon transform the model weight is summation of primary
amplitude, which is almost zero here, so the focus of high-resolution will be
poorer than that of high-order high-resolution Radon transform. The results of
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Fig. 1. (a) A synthetic CMP gather with two events with AVO. (b) Curves of primary and multiple.
(¢) Spectrum of orthogonal polynomial transform for primary and multiple curves.
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high-order high-resolution Radon transform are shown in Fig. 2 (a), (b) and (c),
the primary and multiple are clearly separated, while the high-resolution Radon
transform of primary and multiple, in Fig. 2(d), overlap because of the
variations of amplitude, this is consistent with our above analysis. The results
of multiple attenuation by muting the parameter q > 0.01 s are shown in Figs.
2(e) and 2(f), respectively. The high-order high-resolution method captures
variations well while the amplitude of primary using high-resolution Radon
transform is distorted. Estimated multiples are also displayed in Fig. 2(g) and
(h). The primary residual is obvious with the high-resolution method and the
high-order high-resolution Radon transform shows little residuals. This
comparison shows that AVO-preserving and resolution of the high-order high-
resolution Radon transform outperforms that of the high-resolution Radon
transform.

The parameters around q = 0 of the three sub-panel of the high-order
high-resolution Radon transform ,shown in Fig. 2(a), (b) and (c), match primary
orthogonal polynomial coefficients quite well, these primary amplitude variations
are the main information needed for AVO inversion. With the proposed method
we estimated the zero offset R, and gradient G of the primary by removing the
first five traces. We evaluated multiple attenuation for different A7, and A7,
and A, is the travel time difference between primary and interfering multiple
at the minimum offset, and A7, the difference at maximum offset. The relative

errors (RE) of Ry and G are computed by the following equation:
REE; — (R(t)rue _ R) /R(t)rue , REG — (Gtrue _ G)/G[rue )

Fig. 3 shows the results for A7y = 0.04 s and A7, = 0.02 s. It
demonstrates the benefit of the proposed method over high-resolution Radon
transform. When A7, decreases, the proposed method preserves the relative
error to a similar level, whereas the high-resolution Radon transform shows a
slightly increasing trend. For the estimation of G, although the result of our
method shows more advantage than high-resolution RT, we have to admit that
the relative errors clearly increase with A7, decreasing.

We also applied our method on a CMP gather of a Pluto dataset in the left
of Fig. 4, most events show amplitude variation with offsets. The primary
results are estimated by subtracting the multiple from original gather, shown in
the middle and right of Fig. 4 with high-resolution Radon transform and high-
order high-resolution Radon transform respectively. Results show that high-
resolution Radon transform has multiple residuals left (black arrow), while high-
order high-resolution Radon transform can attenuate multiples completely.
Primaries obtained by high-order high-resolution Radon transform, pointed by
the blue arrow, are much clearer than that of high-resolution Radon transform.
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Fig. 2. Demultiple comparison between high-resolution Radon transform and high-order high-
resolution Radon transform. (a), (b) and (c) are high-order high-resolution Radon gathers m,, m,,
m,, respectively. (d) High-resolution Radon transform gather. Demultiple result of high-resolution
Radon transform and high-order high-resolution Radon transform are shown in (e) and (f),
respectively. (g) and (h) are estimated multiples with high-resolution Radon transform and high-order
high-resolution Radon transform, respectively.
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Fig. 3. The relative error of estimated R, and G. Top: A7, = 0.04 s. Bottom: A7, = 0.02 s.

CONCLUSION

Multiple elimination and AVO-preservation can benefit seismic data
interpretation. Sparse Radon transform improved resolution compared with the
traditional Radon transform. We proposed a high-order high-resolution Radon
transform method based on Sparse Radon transform and orthogonal polynomial
transform. This method extends the Radon transform to three dimensions and
gets more information about event amplitude variation with offsets, so it can
better preserve the amplitude. But computation cost is an important problem in
our method.

Orthogonal polynomial transform is orthogonal and it can represent
amplitude completely, so in high-order high-resolution Radon transform any
event can be characterized by its curvature parameter and spectrum of
orthogonal polynomial transform. Upon this analysis, curvature sample need not
satisfy sampling theory and extracting main curvature parameters is sufficient.
Thus the inversion space is reduced. This research aspect is left for future work.

Finally, the proposed method can also be applied on data reconstruction
and other datasets such as VSP.
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Fig. 4. Demultiple result for a CMP gather of PLUTO data. Left: original data. Middle: demultiple
with high-resolution Radon transform. Right: demultiple with high-order high-resolution Radon
transform.

ACKNOWLEDGMENTS

This work is partially sponsored by National Natural Science Foundation
of China (No. 41004056 and No0.41204095) and basic subject fund of China
university of Petroleum (Beijing) (JCXK-2011-08). The authors thank Mauricio

Sacchi for constructive discussions and useful high-resolution Radon transform
codes.

REFERENCES

Cary, P., 1998. The simplest discrete Radon transform. Expanded Abstr., 68th Ann. Internat. SEG
Mtg., New Orleans: 1999-2002.

Hampson, D., 1986. Inverse velocity stacking for multiple elimination. J. CSEG, 26: 44-55.
Herrmann, P., Mojesky, T. and Magesan, M., 1999. Amplitude preserving Radon demultiple.
Beyond sampling and aperture limitations. Abstracts, Nation. Conv. CSEG: 73-74.
Herrmann, P., Mojesky, T. and Magesan, M., 2000. De-aliased, high-resolution Radon transforms.

Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary, Alberta: 1953-1956.
Johansen, T.A., Bruland, L. and Lutro, J., 1995. Tracking the amplitude versus offset by using
orthogonal polynomials. Geophys. Prosp., 43: 245-261.

Kabir, M.M.N. and Marfurt, K.J., 1999. Toward true amplitude multiple removal. The Leading
Edge, 18: 66-73.



104 XUE, MA & CHEN

Sacchi, M. and Ulrych, T.J,, 1995. High-resolution velocity gathers and offset space reconstruction.
Geophysics, 60: 1169-1177.

Schonewille, M., 2002. High-resolution transforms and amplitude preservation. Expanded Abstr.,
72th Ann. Internat. SEG Mtg., Salt Lake City: 2066-2069.

Thorson, J.R. and Claerbout, J.F., 1985. Velocity-stack and slant-stack stochastic inversion.
Geophysics, 50: 2727-2741.

Trade, D., Ulrich, T.J. and Sacchi, M., 2003. The latest view of sparse Radon transform.
Geophysics, 68: 386-399.

Ursin, B. and Dahl, T., 1990. Least-square estimation of reflectivity polynomials. Expanded Abstr.,
60th Ann. Internat. SEG Mtg., San Francisco: 1069-1071.

Wang, B., 2011. AVO-preserving sparse parabolic Radon transform. Extended Abstr., 73rd EAGE
Conf., Vienna.

Yilmaz, O., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.

APPENDIX
CONSTRUCTION OF ORTHOGONAL POLYNOMIALS

We show how to construct a set of orthogonal polynomials from the offset
coordinates x. Let {py(X), p;(X), ... pu(X)} be a set of unit orthogonal
polynomials, then X' can be expressed by a linear combination of these basis
functions by

i

X = Z o Pe(X) . (A-1)

k=0

The basis function of polynomial degree j can also be composed by basis
functions with degree lower than j, i.e.,

j—1
PX) = {¥ — ), oup®}/ey (A-2)
k=0
By squaring (A-1) and taking the sum over x, the coefficients o, are given by
N
ol = ) xP(x) , (A-3)
i=0
and
N j-1
o = LY 6D - Y @ (A-4)
i=0 k=0

A set of orthogonal polynomial from offsets can be constructed based on
formulae (A-2)—(A-4). First we compute o, from (A-3), and get o, =
v (N+1), then Py = 1/4/(N+1). The subsequent coefficients and polynomials
are computed in the following order: «yy, oy, Py, 09, 01, 01y, Py, ... until the
order we need.





