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ABSTRACT

Zhang, C., Li, X., Ma, X. and Song, G., 2014. A Runge-Kutta method with using eighth-order
nearly-analytic spatial discretization operator for solving a 2D acoustic wave equation. Journal of
Seismic Exploration, 23: 279-302.

In this paper, we develop an eighth-order NAD-RK method for solving a 2D acoustic wave
equation. The new method uses an eighth-order nearly-analytic discretization (NAD) operator to
approximate the high-order spatial derivatives in the wave equation. The wavefield displacements
and their gradients are used simultaneously. And we apply a third-order Runge-Kutta (RK) method
to solve the semi-discrete ordinary differential equations (ODEs) with respect to time. Thus this
method has third-order accuracy in time and can achieve eighth-order accuracy in space. Theoretical
properties including stability and errors are analyzed for the eighth-order NAD-RK method in detail.
Meanwhile, the numerical dispersion relationship for this method is investigated and the numerical
dispersion is tested in our study. The study shows that the eighth-order NAD-RK method has the
smallest numerical dispersion and the weakest numerical dispersion anisotropy compared with the
eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)
method. The computational efficiency of the eighth-order NAD-RK method is also tested. The results
show that the eighth-order NAD-RK method needs less computational time and requires less memory
than the eighth-order LWC and SG methods. Finally, the eighth-order NAD-RK method is used to
simulate acoustic wavefields for two heterogeneous layered models. The simulation results further
demonstrate that the eighth-order NAD-RK method can provide high-order accuracy for the complex
heterogeneous models and is effective to suppress the numerical dispersion caused by discretizing
the acoustic wave equation when too coarse grids are used or strong discontinuities exist in the
medium. Thus, the eighth-order NAD-RK method can be potentially used in seismic tomography and
large-scale wave propagation problems.
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INTRODUCTION

Numerical methods for solving wave equations have been playing an
important role in exploration seismology. The previous numerical models are
mainly used as an interpretive aid in complex geology and as a benchmark for
testing algorithms. With a great increase of computer performance and memory,
plenty of numerical methods are proposed to simulate wave phenomena in the
complex media and widely applied in waveform inversion of earth structure.
However, the quality of a numerical method depends heavily on the accuracy
resolution for a wide range of temporal and spatial increments present in
acoustics and seismology. Therefore, it is important to develop efficient
numerical method with high accuracy and fast computation speed.

At present, the main numerical methods for solving the seismic wave
equations include the finite-element method (Chen, 1984; Ma and Liu, 2006;
Moczo et al., 2007; Smith, 1975; Yang 2002), the pseudo-spectral method
(Huang, 1992; Kelly and Marfurt, 1990; Kosloff and Baysal, 1982; Kosloff et
al., 1984; Marfurt, 1984), the finite-difference method (Dablain, 1986; Dong
et al., 2000; Kelly and Wave, 1976; Lele, 1992; Moczo et al., 2000, 2002;
Saenger et al., 2000), the reflectivity method (Chen, 1993), the spectral element
method (Komatitsch and Vilotte, 1998; Seriani and Priolo, 1994), and so on.
The advantages and disadvantages of those methods have been discussed and
analyzed in the cited references (Chen et al., 2010; Yang et al., 2007, 2012,
2010). As we all know, finite difference (FD) is the most widely used numerical
scheme in solving the wave equation for wave propagation in seismology due
to easy implementation. A low-order FD method on the temporal derivatives is
effective and stable, however, this limits the accuracy of modeling. To increase
the simulation accuracy, the high-order FD methods (Blanch and Robertson,
1997; Lax and Wendroff, 1964; Virieux, 1986; Zeng and Liu, 2001) have been
proposed on the spatial derivatives, such as the high-order Lax-Wendroff
correction (LWC) method and the high-order displacement-stress staggered-grid
(SG) FD method. Unfortunately, the high-order FD methods are usually
unstable in the wavefield modeling (Chen, 2007) and often have very large
numerical dispersions (Yang et al., 2002, 2006; Zhang et al., 1999; Zheng et
al., 2006) resulting from the discretization of wave equations when too few
samples per wavelength are used or strong interfaces exist in the model. In the
last years, the so-called time-space domain FD methods (Finkelstein and
Kistner, 2007, 2008) have been proposed to calculate the seismic wave
propagation in time and space domain. A new time-space domain high-order FD
method has been developed by Liu and Sen (2009) and successfully applied to
model the acoustic wavefields propagation. But the unified methodologies
generally decrease the modeling accuracy with the increasing of the wavenumber
and still suffer from serious numerical dispersions when models have large
velocity contrasts between different layers.
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In recent years, the nearly-analytic discrete (NAD) method (Yang et al.,
2003) and various NAD-type methods (Wang et al., 2009; Yang et al., 2006,
2007, 2009) have been developed to effectively suppress the numerical
dispersion caused by discretizing the seismic wave equations when too coarse
grids are used. Based on the truncated Taylor series expansion and local
interpolation compensation for the truncated Taylor series, the NAD method
uses the linear combinations of a function and its spatial gradients to
approximate the high-order spatial derivatives, leading to preservation of more
wavefield information and a more compact spatial discretization. Plenty of
detailed discussions of NAD-type methods are available in references (Wang et
al., 2009; Yang et al., 2006, 2007, 2009). These NAD-type methods are much
better at suppressing numerical dispersion than the FD methods above. But the
spatial accuracy of these methods is only 4th-order, the research on NAD
operator with higher-order accuracy is needed.

In this paper, we propose an alternative numerical method combining the
Runge-Kutta method with high-order nearly-analytic discretization operators for
solving 2D acoustic wave equation in order to further reduce the numerical
dispersion, which is called the eighth-order NAD-RK method in brief. We first
transform the 2D acoustic wave equations into an semi-discrete ordinary
differential equations (ODEs) and solve the converted ODEs by using the
third-order RK method (Qiu et al., 2008), which is a very stable and effective
numerical computational method for solving the ODEs. Then we use the
eighth-order nearly-analytic discretizations (Tong et al., 2013) to approximate
the second- and third-order spatial derivatives included in the converted ODEs.
Meanwhile, we analyze the stability condition, theoretical error, numerical
error, numerical dispersion relation, and computational efficiency for the 2D
acoustic case. Numerical results show that the eighth-order NAD-RK method
can significantly suppress numerical dispersion, greatly shorten the CPU time,
and reduce memory usage, compared with the SG method with an accuracy of
O(At* + Ax® + AZ®) (simply called the eighth-order SG method hereafter) and
the LWC method with an accuracy of O(At* + Ax® + Az®) (called the
eighth-order LWC method). Finally, the wavefields modeling results show that
the eighth-order NAD-RK method can provide higher accuracy solution than the
eighth-order LWC method, the eighth-order SG method and the new time-space
domain high-order FD method with an accuracy of O(At> + Ax® + Az®) (called
the eighth-order TSD-FD method).

FORMULATION OF THE EIGHTH-ORDER NAD-RK METHOD

As we know, any numerical method for solving the seismic wave
equations involves the approximations of the spatial derivatives and temporal
derivatives. In conventional FD methods such as LWC method and SG method,
the temporal derivatives included in the wave equations are approximated by the
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truncated Taylor series expansion, and the spatial derivatives are approximated
using the linear combinations of displacements at some grid point and its
neighboring grid points. In conventional NAD-type methods, the high-order
spatial derivatives are approximated using the fourth-order NAD operators. In
this section, by using the third-order Runge-Kutta method to discretize the time
derivatives and the eighth-order NAD operators to approximate the high-order
spatial derivatives, we develop an eighth-order NAD-RK method, which uses
both wavefield displacements information and gradient field information to
reconstruct wavefield of the displacements. In other words, in the eighth-order
NAD-RK method, we use simultaneously wave displacements and their gradients
to approximate the high-order derivatives included in wave equations.

To derive the eighth-order NAD-RK method, firstly we briefly review the
third-order Runge-Kutta method for solving ODE.

Third-order Runge-Kutta method for solving ODE

Consider the following ordinary differential equation
du/dt = L(u) , D

where u = u(x,t), with x € R? denoting space variables and t denoting time
variable, and L(u) is a known function with respect to u. We can numerically

solve eq. (1) as an ordinary equation using the following third-order
Runge-Kutta method (Qiu et al., 2008)

u® = u" + (1/3)AtL@ ,
u@ = u" + (2/3)AtL@®) ,
utl = Yot + B3/4u® + (3/4)AtL@u®) @

where At is the time step, u® and u® are intermediate variables, and u® =
u(nAt).

Of course, we can also use the fourth-order Runge-Kutta method to solve

eq. (1). However, it will inevitably increase the computational cost and storage
space.

To save storage space and improve calculation speed, by eliminating the
intermediate variables of u® and u® in scheme (2), we can obtain the
computational formula as follows

uth = w4 ALY + (1/2)ACLYW) + (1/6)ACL@") . 3)
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To use the third-order Runge-Kutta method for solving the acoustic wave
equation, we need to transform the acoustic wave equation.

Transforms of acoustic wave equation
The 2D acoustic wave equation in a homogeneous medium is given by
02u/0t2 = cj[(0%u/dx2) + (9%u/dz?)] 4)
where u is the displacement and c, is the acoustic velocity.

Let w = du/ot, U = [u,(0u/dx),(0u/dz)]T, W = [w,(0w/dx),(dw/dz)]" .
From eq. (4), we can obtain the following vector equations

aU/ot = W |

®)
dW/ot = A-U

where the third-order spatial differential operator A is defined by A =
ci[(82/0x2) + (3%0z%)]Ls,5, with L, a 3 x 3 identity matrix. Let V = (U,W)T,
then eq. (5) can be rewritten as follows

aV/ot = L-V | (6)

0 I,
where the spatial differential operator L is defined by L = ( A 303] .
6x6

\

Eighth-order NAD-RK method

Apparently, eq. (6) is a system of ODEs, so we consider to solve it by
the idea of solving ODEs. Following, we will take two steps to solve eq. (6).

First, we use the local interpolation method (Yang et al., 2003) to
approximate the second- and third-order spatial derivatives of displacement u
and particle-velocity w in the right-hand side of eq. (6), by the linear
combinations of u,w, and their spatial gradients at the grid point (i,j) and their
neighboring grid points. These computational formulae of the high order
nearly-analytic operator (Tong et al., 2013) for approximating the second- and
third-order derivatives are listed in Appedix A for detail. Here, because we
simultaneously use the wave-displacement, particle-velocity, and their gradients
to reconstruct the wave-displacement and velocity fields, the eighth-order
NAD-RK method can work very well in reducing the numerical dispersion even

when the strong discontinuity exists in complex media or the coarse spatial step
is used.
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Second, after the high-order derivatives are discretized, eq. (6) is
converted into a system of semi-discrete ODEs with respect to t and can be
solved by the third-order Runge-Kutta method [formula (3)]. In other words, we
can apply formula (3) to solve the semi-discrete ODEs (6) as follows

Vil = Vo AIL(VY) 4+ + (1/2)APLAVY) + (1/6)ACL(V™) . @)

where V" = V(nAt). Substituting V = (U,W)T into eq. (7), we can obtain the
computational formulae as follows

U™ = UM + AtW" + (12)A2A(U") + (1/6)ACAWD) (8a)
WL = W™ + AtA(U") + (1/2)ACAW™) + (1/6)ACAXU") (8b)
where A = cj[(0%/0x?) + (3%/0z2)]L,,; and A2 = A - A.

Eqgs. (8a) and (8b) are called the eighth-order NAD-RK method.

STABILITY CRITERION AND ERROR ANALYSIS
Stability criterion

In order to keep numerical iterations stable, we need to consider how to
choose the appropriate time and space steps, i.e. At, Ax and Az. As we know,
the Courant number « defined by o = c,At/h, under the condition Ax = Az =
h, mathematically gives the relationship between the velocity c, and the two grid
sizes. We need to decide the range of o to make our method stable. In this
section we derive the stability condition of the eighth-order NAD-RK method
for the 2D case. Following the Fourier analysis and the analysis process
proposed by Yang et al. (2006), after a series of mathematical operations (see
Appedix B), we obtain the following stability condition for the 2D case:

At < a,,(h/cy) ~ 0.5416(h/c,) , ©)

where o, is the maximum value of the Courant number.

Error analysis

Using the Taylor series expansion, it can be shown that the errors of the
interpolation formulae presented in Appendix A for 9™ u/9x™3z' 2 < m+I[ <
3) are O(Ax® + Ax®). In other words, the eighth-order NAD-RK method is an
eighth-order accuracy scheme in space. When the third-order Runge-Kutta
method is used to solve the ODEs (6), the temporal derivative error should be
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O(AP). Therefore, the theoretical error of the eighth-order NAD-RK method is
O(Af + Ax® + AZY).

In the following we investigate the numerical errors of the eighth-order
NAD-RK method. We consider the following 2D initial value problem

d2u/ot2 = c3[(0%u/9x2) + (0%u/dz?)] ,
u(0,x,z) = cos[2nfy{ —(cosby/co)x — (sinfy/cy)z}] , (10)
au(0,x,z)/0t = —2mfosin[27wfy{ —(cosby/co)x — (sinfy/co)z}]

where 0, is the incident angle at time t = O and f, is the frequency. The exact
solution of this initial value problem (10) is given analytically by

u(t,x,z) = cos[2nfy{t — (cosby/cy)x — (sinfy/cy)z}] . (11)
The relative numerical error is defined as follows
N M N M
E(%) = V{Y X [utx.z) — uliP /Y, Y [utxz)lP} X 100% ,  (12)
i i=1 j=1

i=1 j=

—

where u(t,,X;,z;) is the exact solution and uf; is the numerical solution.

In the numerical experiment, the computational parameters are chosen by
the computational domain 0 < x,z < 10 km, frequency f, = 20 Hz, acoustic
velocity ¢, = 4 km/s, grid sizes Ax = Az = 50 m, and the time step At =
0.001 s. Fig. 1 shows the computational results of the relative error E(%) as
given in eq. (12). Three curves correspond to the eighth-order NAD-RK
method, the eighth-order LWC method, and the eighth-order SG method,
respectively. From Fig. 1, we can observe that the eighth-order NAD-RK
method has the smallest numerical error among the three numerical methods.

NUMERICAL DISPERSION

In this section we analyze the numerical dispersion relation of the
eighth-order NAD-RK method for the 2D acoustic wave equation (see Appendix

C), following the methods proposed in by Yang et al. (2012) and Dablain
(1986).

Dispersion relations (C-2) and (C-3) show that the numerical dispersion
of the eighth-order NAD-RK method is a non-linear function of the propagation
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Fig. 1. The relative errors of the eighth-order NAD-RK method, the eighth-order LWC method, and
the eighth-order SG method measured by E,, are shown in a semi-log scale for the 2D initial value

problem (10). Here, the spatial and temporal increments are 50 m and 1 ms, respectively. angle

6 and the Courant number o. Thus we choose the wave propagating azimuths
of 8 = 0°, 15°, 30°, 45° to investigate the effect of wave propagation
directions on the numerical dispersion for the 2D case and compare the
eighth-order NAD-RK method against the eighth-order LWC method and the
eighth-order SG method.

Fig. 2 shows the variation of numerical dispersion errors along with the
sampling ratio S. Four curves shown in Fig. 2 denote different propagation
directions § = 0°, 15°, 30°, 45°, respectively. Here, the curve farther deviates
from R = 1, means that the numerical dispersion error is greater. Table 1 gives
the maximum dispersion errors in different wave propagation directions for
three methods at different Courant numbers. Table 2 shows the maximum
differences of the maximum dispersion errors in different wave propagation
directions for three methods at different Courant numbers. The curves plotted
in Figs. 2(a)-(c) are the numerical dispersion ratio of the eighth-order NAD-RK
method for the Courant numbers 0.1, 0.3, and 0.4, respectively. Figs. 2(a)-(c)
show that the maximum phase velocity error is about 7.42% (See Table 2).
Figs. 2(a)-(c) also show that the numerical dispersion errors are slightly
different in different propagation directions. The maximal difference of the
numerical dispersion between different propagation directions is about 3.64 %
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(See Table 2). This implies that the eighth-order NAD-RK method has very
small numerical dispersion and weak numerical dispersion anisotropy. From
Fig. 2(a) we can find that the numerical phase-velocity for the eighth-order
NAD-RK method is smaller than the exact phase-velocity. However, from Figs.
2(b)-(c) we can find that the numerical phase-velocity for the eighth-order
NAD-RK method is greater than the exact phase-velocity. However, the overall
variation of the numerical dispersion error for different Courant numbers and
propagation directions is still less than 8% (See Table 1).

Figs. 2(d)-(f) and Figs. 2(g)-(i) show the numerical dispersion curves of
the eighth-order LWC method and the eighth-order SG method, respectively.
Compared with Figs. 2(a)-(c), the numerical dispersion shown in Figs. 2(d)-(i)
is more serious. In Figs. 2(d)-(f), the maximum dispersion error of the
eighth-order LWC method is about 18.77% (See Table 1) and the maximum
dispersion error in Figs. 2(g)-(i) of the eighth-order SG method is about 17.88 %
(See Table 1), while the maximum dispersion errors of the eighth-order
NAD-RK method in Figs. 2(a)-(c) are less than 8% (See Table 1). On the other
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Fig. 2. The numerical dispersion ratio of the eighth-order NAD-RK method, the eighth-order LWC
method, and the eighth-order SG method for the Courant numbers 0.1, 0.3, and 0.4, in four
directions of § = 0°, 15°, 30°, and 45°.
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hand, Figs. 2(d)-(f) and Figs. 2(g)-(i) show that there are large differences of
the dispersion errors in different wave propagation directions for the
eighth-order LWC and SG methods. From Table 2, The maximal difference of
the maximal dispersion errors in different directions are about 15.94% for the
eighth-order LWC and 18.58% for the eighth-order SG, respectively, while the
maximal difference of the maximal dispersion errors of the eighth-order
NAD-RK method in different directions is about 3.64 % as mentioned earlier.
In short, the eighth-order NAD-RK method has much less numerical dispersion
than the eighth-order LWC and SG methods.

Table 1. The maximum dispersion errors in different wave propagation directions for different
methods at different Courant numbers.

The eighth-order The eighth-order The eighth-order

Method

NAD-RK method LWC method SG method
Courant = 0.1 0.023876 0.187670 0.178835
Courant = 0.3 0.025420 0.181909 0.15929
Courant = 0.4 0.074230 0.176561 0.139844

Table 2. The maximum differences of the maximum dispersion errors in different wave propagation
directions for different methods at different Courant numbers.

The eighth-order The eighth-order The eighth-order

Method

NAD-RK method LWC method SG method
Courant = 0.1 0.012352 0.157039 0.154933
Courant = 0.3 0.023550 0.158388 0.169269
Courant = 0.4 0.036430 0.159411 0.185804

Now we examine the numerical dispersion of the eighth-order NAD-RK
method through the comparison of waveforms computed by different methods.
We consider the 2D acoustic wave equation as follows

02u/0t = c§[(3%u/dx?) + (9%u/0z2)] + f(t) . (13)
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Here we choose the acoustic-wave propagating in a homogeneous medium
with the acoustic velocity of 4 km/s. The time increment is At = 0.005 s and
the recorded time length is T = 1.2 s. The receiver R is located at (x,z) = (7
km, 7 km). The model domain with a uniform grid spacing (Ax = Az = 50 m)
is 0 < x,z < 12 km. The source with a frequency of f, = 16 Hz is located at
the center of the model domain. The source function is chosen by

f(t) = sin Qufyt)exp(— L4 . (14)

In order to investigate the effect of the spatial increment on the numerical
dispersion, we define the grid points per minimum wavelength (Dablain, 1986)
as G = v, /(f,-Ax). Here, v,,, denotes the minimum acoustic wave-velocity and
f, is the peak frequency.

Fig. 3 shows the waveforms recorded at receiver R on a coarse grid (Ax
= Az = 50 m), where the solid line denotes the exact solution calculated using
the Cagniard-de Hoop technique (de Hoop, 1960) and the dashed lines denote
the numerical solutions calculated by the eighth-order NAD-RK method [Fig.
3(a)], the eighth-order LWC method [Fig. 3(b)], and the eighth-order SG
method [Fig. 3(c)], respectively. In this experiment, we have G = 5 for the
case of Ax = Az = 50 m in generating Fig. 3. Fig. 3(a) shows that the
waveform computed by the eighth-order NAD-RK method is identical with the
analytic solution for the coarse grid case (Ax = Az = 50 m), whereas the
high-order LWC and SG methods cause serious numerical dispersion [Figs. 3(b)
and 3(c)] for the same grid size. This comparison demonstrates that the
eighth-order NAD-RK method can provide the same accurate waveform as the
analytic solution and can effectively eliminate the numerical dispersion caused
by discretizing the wave equation for the coarse grid case. It also suggests that
the eighth-order NAD-RK can increase computational efficiency and save
computer memory if a coarse grid is used for large scale wavefield simulations.
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08 — — NAD-AK 08 ——Llwc | 08 |——8a
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Fig. 3 Comparison of waveforms with the analytical solution for the homogenous medium, generated

by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC method, and (c) the eighth-order
SG method, respectively.
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COMPUTATIONAL EFFICIENCY

In this section, we examine the numerical dispersion and computational
efficiency of the eighth-order NAD-RK method for the 2D case through the
comparison of waveforms and wavefield snapshots computed by different
methods.

Here, we choose the same equation as (13) with a velocity of ¢, = 4
km/s. The Courant number and the recorded time length are a = c,At/Ax =
0.28 and T = 1.0 s, respectively. The receiver R is located at (x,z) = (7 km,
7 km). The computational domain is 0 < x,z < 12 km with the mesh spacing
Ax = Az = 40 m. The explosive source with a frequency of f, = 40 Hz is
located at the center of the model domain. The source function is

f(t) = —5.76f3[1 — 16(0.6ft — 1)*] X exp[—8(0.6ft — 1)}] .  (15)

Fig. 4 shows the wavefield snapshots on the coarse grid of Ax = Az =
40 mat T = 1.0 s, generated by the eighth-order NAD-RK method [Fig. 4(a)],
the eighth-order LWC scheme [Fig. 4(b)], and the eighth-order SG scheme [Fig.
4(c)], respectively. From Fig. 4, we can observe that the wavefronts of
acoustic-waves, computed by three methods, are almost identical. However, the
wavefield snapshot [Fig. 4(a)], generated by the eighth-order NAD-RK method
on the coarse grid of Ax = Az = 40 m, shows no visible numerical dispersion,
whereas Figs. 4(b)-4(c), computed by the eighth-order LWC and SG methods
on the same mesh, show serious numerical dispersion.

Distance km Distance/km Distance’km
0 12 0 12 0 12

Depthv/km
Depthvkan
Depthvkm

12 12 12

Fig. 4. The snapshots of acoustic wave fields at time T = 1.0 s on the coarse grid of Ax = Az =
40 m, generated by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC method, and
(c) the eighth-order SG method, respectively.

Fig. 5 shows the waveforms recorded at receiver R on a coarse grid of
Ax = Az = 40 m, calculated by the eighth-order NAD-RK method [Fig. 5(a)],
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the eighth-order LWC scheme [Fig. 5(b)], the eighth-order SG scheme [Fig.
5(c)], respectively. Fig. 5(a) shows that the waveform computed by the
eighth-order NAD-RK method has no numerical dispersion for the coarse grid
case of Ax = Az = 40 m, whereas the eighth-order LWC and SG methods
cause serious numerical dispersion [Figs. 5(b) and 5(c)] for the same grid size.
This comparison shows that the eighth-order NAD-RK method can provide a
highly accurate waveform and can effectively eliminate the numerical dispersion
caused by discretizing the wave equation for the coarse grid case. It implies that
the eighth-order NAD-RK method can increase computational efficiency and
save computer memory when a coarse grid is used for large scale wavefield
simulations.
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Fig. 5. The waveforms at the receiver R(7km,7km) on the coarse grid of Ax = Az = 40 m,

generated by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC method, and (c) the
eighth-order SG method, respectively.

To further test the computational efficiency of the eighth-order NAD-RK
method, next we show wavefield snapshots calculated by the eighth-order LWC
method and the eighth-order SG method on fine grids. To exactly eliminate the
numerical dispersion, the space grids are chosen as Ax = Az = 18 m for the
eighth-order LWC method and Ax = Az = 20 m for the eighth-order SG
method, corresponding to the numbers of grid points of 668 X 668 and 601 X601,
respectively. While for the same computational domain, the number of mesh
points for the eighth-order NAD-RK method is only 301 X301 on the coarse grid
of Ax = Az = 40 m. Here, we have G = 2.5 for generating Fig. 4(a), G =
5.6 for generating Fig. 6(a) and G = 5 for generating Fig. 6(b). As a result, the
memory requirement of the eighth-order NAD-RK method is approximately
20% of that of the eighth-order LWC method and approximately 25% of that
of the eighth-order SG scheme.

Fig. 6 shows the wavefield snapshots on the fine grid, generated by the
eighth-order LWC method (Ax = Az = 18 m) and the eighth-order SG method
(Ax = Az = 20 m) for the same Courant number as that in the coarse mesh of
40 m. The comparison between Fig. 4(a) and Fig. 6 demonstrates that the
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eighth-order NAD-RK method on a coarse grid (Ax = Az = 40 m) can provide
the same numerical accuracy as those of the eighth-order LWC and SG methods
on fine grids. But the computational cost of the eighth-order NAD-RK method
is completely different from those of the eighth-order LWC and SG schemes.
For instance, to generate Fig. 4(a), it takes the eighth-order NAD-RK method
about 56 s, whereas to generate Figs. 6(a)-(b) it takes the eighth-order LWC
method and the eighth-order SG method about 325 s and 85 s, respectively. This
demonstrates that the computational speed of the eighth-order NAD-RK method
is roughly 5.8 times of the eighth-order LWC method and about 1.52 times of
the eighth-order SG method to achieve the same accuracy. All our examples are
computed on a 2-core Pentium 4 computer with 2.33G memory.

Distancekm Distance/kan
0 12

Fig. 6. Snapshots of wave-fields at time T = 1.0 s on the fine grids, generated by (a) the
eighth-order LWC method (Ax = Az = 18 m) and (b) the eighth-order SG method (Ax = Az =
20 m).

NUMERICAL SIMULATIONS

In this section we will show some numerical examples to demonstrate the
performance of the eighth-order NAD-RK method in suppressing the numerical
dispersion through choosing two 2D acoustic models and comparing the
numerical results computed by the eighth-order NAD-RK method, the
eighth-order LWC, SG, and TSD-FD methods.

Two-layer acoustic model

In the first example, we choose a two-layer acoustic model with the
velocities in the upper and lower layers being 2.4 km/s and 5.0 km/s. The
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computational domain is 0 < x < 25 km and 0 < z < 25 km. The horizontal
interface is at a depth of 15 km. The explosive source of eq. (15) with f, = 16
Hz is at coordinate (12.5 km, 14 km). The receiver R is located at (13.3 km,
12.9 km). The spatial increment and time step are h = Ax = Az = 50 m and
At = 0.002 s, resulting in G = 3.

The wavefield snapshots and waveforms, computed by the eighth-order
NAD-RK method, the eighth-order LWC method, the eighth-order SG method,
and the eighth-order TSD-FD method, are shown in Figs. 7 and 8. Figs. 7(a)
and 8(a), generated by the eighth-order NAD-RK method, show clear wavefield
snapshots and waveforms, and almost no visible numerical dispersion although
such coarse grids of Ax = Az = 50 m are used. However, from Figs. 7(b-d)
and 8(b-d), we can see that the eighth-order LWC method [Figs. 7(b) and 8(b)],
the eighth-order SG method [Figs. 7(c) and 8(c)], and the eighth-order TSD-FD
method [Figs. 7(d) and 8(d)] suffer from serious numerical dispersions. This
numerical experiment demonstrates that the eighth-order NAD-RK method can
provide high accuracy for the layered medium with strong discontinuities.

Distance’km Distance’kan

25

Fig. 7. Snapshots of wave fields at time T = 2.4 s on the coarse grid of Ax = Az = 50 m for the
two-layer model, generated by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC
method, (c) the eighth-order SG method, and (d) the eighth-order TSD-FD method, respectively.
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Fig. 8. The waveforms at the receiver R (13.3km, 12.9km) on the coarse grid of Ax = Az = 50
m, generated by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC method, (c) the
eighth-order SG method, and (d) the eighth-order TSD-FD method, respectively.

Heterogeneous acoustic model

In the last experiment, we investigate the effectiveness of the eighth-order
NAD-RK method, the eighth-order LWC method, the eighth-order SG method,
and the eighth-order TSD-FD method for the heterogeneous acoustic case. We
choose a three-layer model, and velocity of every layer is shown in Fig. 9.
Here, the spatial increment and time step are chosen as Ax = Az = 40 m and
At = 2.0 ms. The source, located at the center of the computational domain, is
a Ricker wavelet with frequency f, = 20 Hz [see eq. (15)], where G = 3.

The wavefield snapshots at 1.4 s are shown in Figs. 10(a)-(d), generated
by the eighth-order NAD-RK method, the eighth-order LWC method, the
eighth-order SG method, and the eighth-order TSD-FD method, respectively.
From Fig. 10(a), we can see that the eighth-order NAD-RK method has no
numerical dispersion, whereas Figs. 10(b)-(d) show that the eighth-order LWC,
SG and TSD-FD methods cause serious numerical dispersion.
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Fig. 9. A three-layer heterogeneous acoustic model.
Distance/km Distancekm

Distance/km Distance/kim

Fig. 10. Snapshots of wave fields at time T = 1.4 s on the coarse grid of Ax = Az = 40 m for the
three-layer model, generated by (a) the eighth-order NAD-RK method, (b) the eighth-order LWC
method, (c) the eighth-order SG method, and (d) the eighth-order TSD-FD method, respectively.
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DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a new numerical method to solve the 2D
acoustic wave equation, which is called the eighth-order NAD-RK method. The
method uses the high-order NAD operators to approximate the high-order spatial
differential operator and applies the third-order Runge-Kutta method to perform
the time discretization. As a result, the eighth-order NAD-RK method has
third-order accuracy in time and eighth-order accuracy in space.

First, we transform the 2D acoustic wave equations into the ODEs (5) or
(6) and give the computational formulae (2) or (3) of the third-order RK method
for temporal discretization to solve the converted ODEs. Then we use the
computational formulae of the eighth-order nearly-analytic discretizations (see
Appedix A) to approximate the second- and third-order spatial derivatives,
which are included in the converted ODEs. Meanwhile, following the Fourier
analysis, we obtain the stability condition for the 2D case through a series of
mathematical operations (see Appedix B). The numerical error of the
eighth-order NAD-RK method is much smaller than those of the same order
schemes such as the eighth-order LWC and the eighth-order SG methods, which
is confirmed by the relative errors shown in Fig. 1. Then, after detailed
derivations (see Appendix C), we get the dispersion relations (C-2) and (C-3)
of the eighth-order NAD-RK method, and compare the numerical dispersions
ratios and the waveforms of the eighth-order NAD-RK method against the
eighth-order LWC and SG methods. The results show that the eighth-order
NAD-RK method has the smallest numerical dispersion among the three
methods. In other words, the eighth-order NAD-RK method can effectively
suppress the numerical dispersion.

By analyzing computational efficiency of the eighth-order NAD-RK
method from the waveforms and wavefield snapshots computed by the
eighth-order NAD-RK method, the eighth-order LWC method, and the
eighth-order SG method, we conclude that the eighth-order method requires less
computer memory and has higher computational speed to achieve the same
computational accuracy when a coarse mesh is used for large scale wavefield
simulations. At last, we choose two 2D acoustic layered models with large
velocity contrasts to demonstrate the performance of the eighth-order NAD-RK
method in suppressing the numerical dispersion, and compare those numerical
results computed by the eighth-order NAD-RK method, the eighth-order LWC
method, the eighth-order SG method, and the eighth-order TSD-FD method.
These results further illustrate that the eighth-order NAD-RK method has a very
good effect in suppressing the numerical dispersion and can provide high
accuracy for the layered model with strong discontinuities. Therefore, we
conclude that the eighth-order NAD-RK method has potential applications in
large-scale wave fields modeling, seismic tomography and inversion.
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APPENDIX A
APPROXIMATION OF HIGH-ORDER DERIVATIVES

In order to obtain the approximation formulae of high-order derivatives
in eq. (6) for the 2D case, Tong et al. (2013) derived these approximate
formulae. For convenience, here we present the approximation formulae of the
displacement u as follows

9, /0% = (UAXD[(T/58)Wy_p 5 +U,50) + (64/27)(W_ 1,0, 1,) — Su,]

+ (VAO[(1/36){(0u_,,/8%) — (0,5, /0%)} + (8/9){(du;_1, /%) —(@u,,,/3)}] , (A-1)
92;,/022 = (UAZ)[(T/58) Wy y+ty,) + (64/27) (W +Uy) — Su]

+ (UAD[(1/36){(3u;,_o/32) — (0 ,,/02)} + (8/9){(Du;y_/32) —(Bu s, /32)}] , (A-2)
Puy/0x° = (VA [~ BU/144) W~y — (88/9)(uj_—1y,1 )]

+ (UAR)[ —(1/24){(8u;_,,/3%) +(3u;,,,/0%)}

— (8/3){(8u;_1, /%) +(Bu;, 1, /3X)} — 150u,,/0x] , (A-3)

Puy /07> = (AR~ (G144 (W, —0;) — (88/9) (W~ ., )]

+ (VA —(1/24){(;_,/02) + (. /07)}

— (8/3){(@Uyy_/32)+ DUy, /02)} — 150u,,/07] (A-4)

Fu;/0x07° = (31/864AXAZ) Wz x2 = Wogyos + Uiaayos = Wigpen + 205y — 2U;45))
+ (44/27AxAZ) (W 101 — Uj_1py + Wopgor — Wopper + 205, — 2u5,,))
— (1/144A22)[(U_y /%) + (OU;,,2/0%) + (BU;_y,,/0X)
+ (0Uj,545/0X) — 20Uy, ,/0x — 20u;_,,/0X]
— (4/9Az2)[(duy_; _/0X) + (OUy,;41/0X) + (OU_; 4 11/0X)

+ (3Uy,1,_1/0%) — 20u,,,/0X — 20u;_,,J0X]
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— (1/144AXAZ)[(00;_15/0Z) + (0U49442/0Z) — (05 +,/0Z)
— (90,2 x—,/02)]
= (4/9AxAZ)[(0u;_; x_/0Z) + (0041 x41/02Z) — (OU;_; 4.1/0Z)

= (3uj41,-1/02)] , (A-5)

0’u;,/0x*0z = (31/864AX’°AZ) (42542 = Wogp—z + Wigpes = Wiagpos + 2Uj5y — 2U554)

+ (4412TARPAZ) (W54 1 e = Woppmr F Wopper — Wapgor + 2050, — 2U5,,)

= (1/144Ax2)[(30)_1 x—5/0Z) + (0Uj42442/0Z) + (OU;_214,/0Z)

+ (0,5 »/02) — 20U;,,/0Z — 20uy,_,/9zZ]
— (4/9Ax)[(0u;_; x_1/0Z) + (341 44,/02) + (QW_,4,,/02Z)

+ (0uy,4-1/02) — 20u;,,,/0Z — 20u;,_,/0z]
— (1/144AXAZ)[(00;_, x_5/0X) + (U1 442/0X) — (OUj_3 442/ OX)

- (045 4 —o/0%)]

— (4/9AxA2)[(0u;_; _1/3X) + (OUj; x11/0X) — (U_;441/0X)

— (0u,1,-1/0%)] , (A-6)

where Ax, Az denote the space increment in the x- and z-directions,
respectively.

Similarly, the corresponding computational formulae related to the

particle-velocity w can be obtained simply by substituting u by w into (A-1)-
(A-6).

APPENDIX B
DERIVATION OF STABILITY CRITERION

To obtain the stability condition of the eighth-order NAD-RK method for
the 2D case, for simplicity we consider the harmonic solution of eq. (7) under

the condition Ax = Az = h. Substituting the solution

U?, = Urexplik(jAxcosd + lAzsin6)] , (B-1)
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where
i = [uj,, (0u/0x)],, (0u/dz)j;, V5 s (0v/9x)5 , (0u/dz); )]

U" = [u", (0u"/dx), (Au"/9z), v", (av"/0x), (dv"/9z)] ,

into eq. (7) with relations (A-1) to (A-6), we can obtain the following equation
[u™!,(@u"*1/9x),(0u"1/9z),v" !, (av"1/9x),(av" 1 /9z)]T
= G[u",(du"/9x),(du"/9z),v",(dv"/9x),(av"/9z)]T . (B-2)

Due to the complexity of the elements g; of the amplification matrix G,
here we only show the first and second row of G as follows

gy =1+ [=5 + (64/27)cosé + (7/54)cos2¢é + (64/27)cosy + (7/54)cos2nlo?

g, = —[(@®/9sing + (1/36)sin2¢]ihe? |,
g3 = —[(8/9)sinm + (1/36)sin2qlihe? |,

gy =t + [—(5/3) + (64/81)cost + (7/162)cos2¢ + (64/81)cosn + (7/162)cos2q]ta?

g5 = —[(8/27)sing + (1/108)sin2€]ihta? |,

g1 = —[(8/2T)siny + (1/108)sin2q]lihte?

1 = [(176/27)sing + (31/216)sin2¢ + (31/864)sin(2¢ —2n) + (44/27)sin(¢ —1)
+ (44/2T)sin(E+1) + (31/864)sin(2¢ +2m)]ic/h ,

£, =1 — [(15/2) + (16/9)cost + (1/36)cos2¢ + (1/144)cos(2¢ —2n)
+ (4/9)cos(E —1n) + (4/9)cos(t+1) + (1/144)cos(2¢ +2n)]e? |

g = [(1/144)c0s(2§ —27) + (4/9)cos(§ —n) — (4/9)cos(£ +1)

— (1/144)cos(2¢ +2n)]a?
g = [—(31/2592)sin(2¢ —21) — (44/81)sin(¢ —n) + (176/81)siny

+ (31/648)sin2n + (44/81)sin(£+n) + (31/2592)sin(2¢ +21)]ita*/h

s = t + [(1/432)cos(2E —2n) + (4/27)cos(E —n) — (4/2T)cos(E +n)
— (1/432)cos(2 +2n)]to? |,
s = —[(15/2) + (1/432)cos(2E —21) + (4/2T)cos(t —1) + (16/27)cosn

+ (1/108)cos2n + (4/27)cos(é +n) + (1/432)cos(2€ +2n)]ta®
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where AX = Az =h, § = khcos#, n = khsing, o = CoAt/h, i = /—1. kcosf and ksind are
the wave number, @ is the wave propagation angle with respect to the x-axis.

From the amplification matrix G, we can numerically obtain the following stability
criterion of the eighth-order NAD-RK method for the 2D case by solving the eigenvalue
problem |A\(G)| < 1 for all eigenvalues \(G), [ = 1,2,...,6.

o < ap, = 0.5416 . (B-3)

where «,,, denotes the maximum Courant number.

APPENDIX C
DERIVATION OF THE NUMERICAL DISPERSION RELATION

To obtain the numerical dispersion relation of the eighth-order NAD-RK method for
the 2D case, we consider the harmonic solution of eq. (7) while Ax = Az = h and substitute
the solution

1, = Ulexpli{wp,mnAt +j(khcosf) + I(khsin6)}] , (C-1)

where

Ui, = [uj,, (u/dx)},, (0u/dz);,, v}, (3v/9X)],, (av/dz)]]] ,

U° = [u’, (0u®0x), (du’/adz), v°, (9v"/9x), (3v°/3z)] ,
into eq. (7) with relations (A-1) to (A-6) to obtain the following dispersion equation

Det(e"l; — G) = 0 . ' (C2)

where ¥ = wy,At, i = /(—1), G is the same as that presented in eq. (B-2) and I is a
sixth-order identity matrix.

B For convenience, we suppose C,, = wpn/k, kK = 27/\, @ = cAt/h, S = WA, ¢ =
khcosf, and n = khsinf. By solving the dispersion equation (C-2), we can get the following
ratio of the numerical velocity (c,,,,) to the exact velocity (c,)

R = c /o = y/2maS , (C-3)

where 1y satisfies eq. (C-2), which is a nonlinear function with respect to « and S.





