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ABSTRACT

He, B. and Wu, G., 2015. A slim approximate Hessian for perturbation velocity inversion with
incomplete reflection data. Journal of Seismic Exploration, 24: 281-304.

A recent velocity model building is the full waveform inversions (FWI) that allow to recover
the long-scale structures through the refraction waves and diving waves, and the short-scale
structures which provide the high-resolution component through the reflection waves. However,
incomplete seismic data include non-geological artifacts in the gradient for velocity update. The
strong off-diagonal elements of approximate Hessians are important to reflection FWI with
incomplete data; however, it is difficult to implement an approximate Hessian using the forward
modeling method because of the cost of the computation efficiency. In this study, we investigate the
ability of an approximate Hessian to remove artifacts that are caused by incomplete reflection data.
In order to reduce the costs associated with calculating the Hessian, the large model is separated into
sparse sub-models, and an alternative slim approximate Hessian is implemented sequentially on these
sub-models. Afterwards, The complete model is obtained from sub-model using the radial point
interpolation method (RPIM).

A two-dimensional flat-layers synthetic example provides a reasonable test case for our
method. We find that the slim approximate Hessian removes non-geophysical artifacts as effectively
as the approximate Hessian, but has the advantages of greater cost-efficiency and lower memory
requirements.
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INTRODUCTION

Seismic inversions obtain the geophysical features of lithological layers
and boundaries, describing the geological structure of reservoirs and their
interfaces. Conventional seismic inversions, such as the acoustic impedance
inversion, elastic impedance inversion, and the AVO (amplitude versus offset)
inversion are implemented using convolutions based on one-dimensional ray
theory (Hampson et al., 2012; Connolly, 1999, 2007). These methods are well
developed, as they are cost-efficient compared to wave equation methods.
However, model waves based on one-dimensional ray theory are a gross
simplification of waves propagated in the real three-dimensional complex earth
system. As full waveform inversions are implemented based on the wave
equation, varied waves are incorporated into the inversion process, including
direct waves, diving waves, diffraction waves, refraction waves, reflection
waves, and scattering (Virieux and Operto, 2009). The classic full waveform
inversion (FWI) is the reflection FWI proposed in the time domain (Tarantola,
1984; Lailly, 1983). With the development of seismic modeling in the frequency
domain (Pratt and Worthington, 1990), full waveform inversion in the frequency
domain can take advantage of multi-scale inversion and parallel computation
techniques (Pratt et al., 1998). An alternative technique (Shin and Cha, 2008)
proposed a full waveform inversion in the Laplace and Fourier-Laplace domains
in order to avoid cycle-skipped portions of the data.

Full waveform inversion is a procedure that has a wide range of
applications from long-scale to short-scale structures, and from shallow to deep
versions (Fichtner, 2010). When the data range is observed over a wide
aperture from near offset to far offset, the long-scale structures for shallow
sections will be recovered from the refraction and diving waves (Shipp and
Singh, 2002), and reflection data provide the inversion for short-scale structures,
which correspond to the higher resolution components of velocity. To account
for the absence of low frequencies in models and data, the velocity is always
split to provide a smooth background velocity and oscillatory component
(reflectivity). Symes and Kern (1994) proposed a reflection waveform inversion
using differential semblance analysis to provide a data fit, followed by updates
to smooth the background velocity. Xu et al. (2012) recommended a similar
reflection inversion method using Green’s function, and applied this method to
Gulf of Mexico data. Currently, most research is focused on smooth background
velocities for migration images. Further study on higher resolution models with
high-wavenumbers would therefore be beneficial. In this study, we assume that
the observed data include both the refraction and reflection waves, and
implement the refraction FWI and reflection FWI accordingly. This involves
inversion of the long-scale structures using refraction data, and of the short-scale
structures using reflection data. Perturbations in velocity reflect short-scale
structures.
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The classical objective function for full waveform inversion is built based
on the match between observed and simulated data. The comprehensive
solutions based on Newton methods are prohibitively expensive due to the
computational costs of forward modeling. Fortunately, gradient-based methods
are very efficient, owing to the ease of computing gradients using the
adjoint-state method, especially for large datasets. Since gradient calculation
performances improve with reverse time migration, for reflection inversion the
high-wavenumber structures are always mixed with artifacts that are not
geologically reasonable (Ma, 2012). Furthermore, incomplete observed seismic
data, due to a limited acquisition system or inappropriate seismic processing,
would add further artifacts. Sirgue (2004) had investigated that the wavenumber
illumination depended on the half offset-to-depth ratio of the source-receiver pair
to the target. The larger the offset-to-depth ratio, the smaller is the
wavenumber. Therefore, the refraction FWI which focus on the shallow and
large-offset seismic waves always excludes the high-wavenumber
non-geophysical artifacts. And then it is more reliable to apply the refraction
FWI to marine and land seismic data (Plessix et al., 2010, 2012; Ravaut et al.,
2004; Shipp and Singh, 2002; Vigh, 2012) than the reflection FWI.

Nemeth et al. (1999) discussed the suppression of non-geological artifacts
in a diffraction model using least squares migration. Least squares migration is
analogous with the first iteration of a perturbation update by the Gauss-Newton
method using reflection data. Although the background velocity and perturbation
velocity are updated alternately according to reflection FWI (Xu et al., 2012),
only the perturbation velocity is updated if a reliable background velocity has
been obtained. we focus on the perturbation velocity update, and we do not
discuss the background velocity update in this paper. Additionally, a slim
approximate Hessian method is proposed to conserve computational memory and
storage for field seismic data. Compared with the approximate Hessian method
and the filtering method, this slim method works well for both a test dataset and
field data applications.

HESSIAN RESPONSE

The classical objective function for full waveform inversion is defined as
the least squares of the data misfit:

Jim] = % |u@m) — d|? , )
where u(m) and d are the synthetic and observed datasets, respectively.
For reflection FWI, in order to avoiding local solution the inversion

processes were separated into two stages based on the supposition that the
velocity model can be divided into a smooth background section and a
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perturbation (van Leeuwen and Mulder, 2009, 2010). A variable projection
(Golub and Pereyra, 1973) provides a way forward for this least squares
solution. The full seismic wavefield can be described as:

u = Flm]

Using the Born approximation, the linear modeling operator can be
expressed as

F[m] = 0u/om
du[m] = (du/dm)|,m, = F[m]m, , 2

where m,, is the perturbation model. For the least squares migration, it behaves
as reflectivity. In this study, m, is the perturbation velocity, and r = m,/m
stands for reflectivity, where m is the smooth background model.

Neglecting multi-scattering, the input observed data should include only
born data without direct wave. Observed data d, include direct wave and the
simulation data F[m]m, by Born equation do not include direct wave. In order
to match the observed data with the simulation data, we get the new observed
data without the direct wave using equation as:

d[mg] = dy, — Flm,] . &)

According to the Appendix, the perturbation component is expressed as,

m, [m] = (F*[m]F[m])~'F*[m]d[m] = (H,[m])'F*[m]dm] , @
where H,[m] = F*[m]F[m].

The term F*[m]F[m] in eq. (4) is the normal operator, which is also
called the approximate Hessian, and is the linear part of the Hessian. Eq. (4)
indicates that the perturbation model for a given background is similar to the
least squares migration, while the term F*[m]d[m] corresponds to reverse time
migration. The update using refraction is performed in a similar way to the
perturbation component calculation using reflection. The difference is that the
data for refraction FWI, in data session 6d = Flm] — d is residual, and the
observed data, d, include refraction, reflection, diffraction, diving waves, and
scattering waves. In contrast, for reflection FWI, the input data, d[m], are
reflected waves.

Application of the approximate Hessian, H,, follows the well-known
Gauss-Newton method. In this paper, H, = F*F, and the explicit format is
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Hy) = Y 2 3 [0u(,X,, X, X)/0mx)][0uw, X, x,.y)/0m@)] . ()

@ Xy Xr
Rewriting using Green’s function, this becomes

H(xY) = ), ot Y, |50) |2G(w,X,0)G*(@,%,y) Y, Gw,x,x)G*(w,y.x) .  (6)

X

T

Owing to the cost of forward modeling and the huge storage required for
the approximated Hessian, gradient-based methods provide simple solution
methods, such as the steepest descent and conjugate gradient methods. For the
steepest descent method, a scalar is used instead of the approximate Hessian. In
detail, the perturbation component is propagation with F*[m]d[m] shortened to
F*d. Setting y = X, we obtain the diagonal approximate Hessian:

H(x%) = Y f ), [5) 2] Gl,x,0 2 Y, [Glex,x)|? ™

w

Fig. 1 shows a model with three layers and a total of 51 X 51 nodes. The
approximate Hessian is shown in Fig. 2. Using a multi-shot system, the diagonal
elements in the approximate Hessian are overwhelmingly dominant (Figs. 2c and
2e) and the response of one point is focused on a small zone surrounding this
point (Fig. 3). Compared with a 51-shot system, the off-diagonal elements play
important role for the one-shot system, although these elements are far smaller
than the diagonal elements (Figs. 2d and 2f). Nevertheless, the response of one
point can affect the full model space (Fig. 4).
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Fig. 1. Model and records: (a) velocity, the model contains three layers with 51 X 51 nodes and
(b) records (one-shot) from 51 receivers.
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Fig. 2. Hessian responses (one-shot system) of regular receivers: (a) part of the approximate Hessian
(51-shot system); (b) part of the approximate Hessian (one-shot system); and (c) and (d) are the
diagonal elements of (a) and (b), and (e) and (f) are the off-diagonal elements of (a) and (b),
respectively.
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Fig. 3. The response at one point (51-shot and 51 receivers): (a) sample depth (z) = 33,
CDP (x) = 11 and (b) z = 33, x = 26.
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Fig. 4: The response at one point (one-shot and 51 receivers): (a) sample depth (z) = 33,
CDP (x) = 11 and (b) z = 33, x = 26.

THE PERTURBATION COMPONENT INVERSION USING INCOMPLETE
REFLECTION DATA

Within the scope of seismic exploration, seismic signals are picked up by
a considerable number of receivers arranged on the ground or sea floor above
a geological formation. Since it is not always possible to place receivers or
explosive sources in the theoretically best positions, especially for mountainous
areas, rivers, and city buildings, seismic data are usually irregular and
incomplete. In this section, we discuss the perturbation component inversion
with incomplete reflection data.
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Slim approximate Hessian for perturbation component

The diagonal elements represent the illumination of the source-receiver
system. Since calculations are simpler for the diagonal elements, the
approximate Hessian is usually replaced with its diagonal elements. However,
for incomplete data, the approximate Hessian typically has strong off-diagonal
components (Nemeth et al., 1999) that must be considered when removing
artifacts. Fig. 5a shows incomplete data for one-shot with only six receivers
arranged on the surface. Figs. 5b and 5d show parts of the approximate Hessian
according to the source and six-receiver system. It can be clearly seen that the
off-diagonal elements are greater than the diagonal elements. Indeed the
response of one of the off-diagonal elements is too strong to justify considering
the diagonal elements only (Fig. 6).
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Fig. 5. Incomplete reflection and approximate Hessian: (a) incomplete reflection data; (b) part of
the approximate Hessian (one-shot); (c) diagonal elements of (b); (d) off-diagonal elements of (b).
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Fig. 6. The response of one point (one-shot and only six receivers): (a) sample depth (z) = 33, CDP
(x) = 11 and (b) z = 33, x = 26.

In order to reduce the costs associated with calculating the Hessian,
image-guild FWI (IGFWI) (Hale, 2009) uses subsurface structures to constrain
the inversion of a sparse model. With respect to the sparse model, a projected
Hessian matrix saves both computational time and memory, and Ren et al.
(2012) decomposed the explicit Hessian into the local angle domain to avoid the
significant inversion problems. In this study, we introduce an alternative slim
approximate Hessian to reduce the cost of approximate Hessian calculations and
keep the strong off-diagonal components for incomplete data.

We rewrite the term m,[m] as m,,[m], standing for the perturbation
velocity after k iterations, based on the background velocity m. And we give the
new term m’; ,[m] in model domain,

my [m] = F*[m]d[m] . ®)

In order to reduce the cost of H,[m], we introduce a split operator P, to

split the model-domain term m, ,[m] to sub-models, marked as m”,,[m], which

are also in model domain. The relation between m'{;,k[m] and m'{;i,k[m] is
N
Vs — Y
m; [m] = Z mlpzi,k[mk] > &)
i=1

and
m”,[m] = m” [m]P, = F*[m]d[m]P; . (10)
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The split operator P, can takes different forms, including wavelet
transform, cubic splines, or image-guided interpolation. In this paper, we
implement the split operator P; as a linear interpolation, satisfying the relation

N
Y P =1

i=1

Therefore the perturbation velocity in sub-model domain is written as:
m,; [m] = (H,[m]) ' (my;[m]) . (11)
In fact, we need a complete model for velocity update and fit the observed

data. We introduce a shape function ¢ to interpolate the sub-model to the
complete model.

N
m,, [ml(x) = Y, ¢(xym; [m](x) (12)
i=1

where n is the number of the grid points in the support domain of point (x). The
radial point interpolation method (RPIM) (Liu and Gu, 2005; Liu et al., 2005)
is implemented for the interpolation, which is developed using the radial basis
function (RBF). And the trial function for RPIM is written as

N
m, ,[m](x) = Z Rx)a(j) = R"(x)a , (13)
i=1

where R(x) is the RBF and n is the number of radial baéis functions (RBF).
There are many types of RBF, such as the multi-quadric (MQ) function, the
Gaussian function, and the thin plate spline (TPS) function. The MQ function

is applied in this study:
Rix,y) = [ + @d)’l* , (14)

where a, and q are shape parameters. A standard MQ-RBF (q = 0.5) is used
for the RPIM, and distance is given by r? = (x — Xp)*> + (y — yp)*

Coefficients matrix a can be determined to be satisfied at these n nodes

surrounding the point of interest x. This leads to n linear equations, one for
each node. The matrix form of these equations can be expressed as

m,,,[m] = Ra 1s)

where the moment matrix of RBFs is:
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‘R Ryr) - R
Ri(r) Ryr) - Ry

R, = : (16)
R Ror) - Ry(r)

The RPIM shape function & can be expressed:
®'(x) = R"x)R;! . (17)
Eq. (12) can be rewritten as:

m, [m](x) = ®my;,[m] . (18)

The choice of the split operator

The conventional splitting method is to split the full model into smaller
models, gradually moving through full model. In this paper, we define N = 2,
and therefore there are two sub models (Figs. 7a and 7b). For a 2D velocity
model, the split operator P; is expressed as:

Nl T S I e O S S I ¢ ()

This study provides two additional methods for splitting the model. Figs.
7c and 7d show sub-models covering the entire model range, (the
"rectangle-model"). In this situation, the split operator P; is expressed as:

101 10 010 - 01
S K A IR 2% E R R TS PR ()
101 10 010 0 1

Another splitting method is executed in both two dimensions. Figs. 7e and 7f

show a staggered method for splitting the model (the "stagger-model"). The split
operator P; is:



292 HE & WU

Fig. 7. Three methods of model splitting are shown. (a) and (b): conventional methods; (c) and (d):
rectangle-model method; and (e) and (f): stagger-model methods. The total model is the sum of (a)
and (b), (c) and (d), or (e) and (f). The white and black nodes are the efficient nodes.



SLIM APPROXIMATE HESSIAN 293

0 1 0 1 010 10
010 10
1 0 -1 0
Pl=¥(.)¥.(.)1.,1’2=(.)...::.(21)
010 10 101 0
101 - 0 1] 010 - 1 0]

As the number of nodes is approximately halved for both methods, the
slim approximate Hessian needs only a quarter of the memory compared to the
full model. Additionally, forward modeling is more efficient.

The strategy for the alternative slim approximation Hessian

The strategy for the alternative slim approximation Hessian was designed
as follows:

Stage 1 involves executing F*d for the tentative complete model to obtain
m; [m]:
T

Frd = | u(T — 0(@u/00) | 22)
0

where u, (T — t) is the back-propagated reflection, which combines with the
wave equation:

m[&u,(T — /6] — Vu,(T — 1) = ). —d(x,1) . (23)

X

T

In stage 2, the tentative complete model, m’;,[m] and the background
velocity m , is split into sub-models, respectively. Since the nodes in the
rectangle-model are regular, it is simple to apply the finite-difference operator
for modeling. In contrast, it is difficult to apply the finite-difference operator to
the stagger-model. Therefore, in this study, we adopt the rectangle-model.

Stage 3 involves applying the operator F*F = H,[m,] to the first
sub-model m?, ,[m] to obtain the model m,, ,[m]. And then it is able to get the

complete velocity model m,,[m] using the radial point interpolation method
(RPIM).

In Stage 4, turning to the next iteration, m} , ,,[m] is split into sub-models
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and the operator F¥F = H,[m,] is applied to the second sub-model to obtain
m,, ,,[m]. RPIM is then used to obtain the total model, m, ., .

Fig. 8 shows part of the approximate Hessian for the total model and the
sub-model. The responses of one point on the sub-model, shown in Fig. 9, are
consistent with responses for the total model.

Fig. 8. Details of the approximate Hessian for (a) the total model, (b) the sub-model in Fig. 7a, (c)
the sub-model in Fig. 7c, and (d) the sub-model in Fig. 7e.

Filter for perturbation component calculation in the wavenumber domain

As artifacts behave very differently for geological information in the
wavenumber domain, a filter was designed to remove artifacts, and the filtering
method was compared to the slim approximate Hessian method. The application
of this filter involves three steps. First, we transfer the gradient from the space
domain to the wavenumber domain by a two-dimensional Fourier transform:
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Fig. 9. The response of one point in a sub-model (one-shot and only six receivers). (a) Distraction
position: sample depth (z) = 33, CDP (x) = 11 and (b) distraction position: z = 33, x = 26.

m(kok) = § | myx.z)e ks e gxdz | 24)

where m,(k,,k,) is the perturbation component in the wavenumber domain, k,
is the horizontal wavenumber, and k, is the vertical wavenumber. Secondly, a

filter, h(k,,k,), defined in the wavenumber domain, is applied to the perturbation
component:

my(k, k) = hi, k) | | mix,z)e Ik ek axdz 25)

Thirdly, we obtain the gradient in the space domain by a two-dimensional
inverse Fourier transform:

m/(x,2) = (1/4m) | | hek k)

X 5 § mp(x,z)e_jkxx e Kz dxdze Mx g Tz dk,dk, . (26)

The filter is designed in the wavenumber domain:

1 k, = ktan(60—¢)
hk,,k,) = 5 [arctan(k,/k,) +0+¢]/2p+e) [ktan(6+¢) <k, <k,tan(0+¢) ,
{0 k, = ktan(0+¢) 27

where 0 is determined relative to the geological structure. And ¢ is a small
transitional angle between the remain and mute angle region.
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Fig. 10a shows the reverse time migration, the result of F*d. With the
slim approximate Hessian, valid structure is retained and most artifacts are
removed (Fig. 10b). For the filter, when 6 = 45°, many artifacts are retained
(Fig. 10c). However, when § = 10°, the alias of the migrated section is
prohibitive (Fig. 10d). Therefore, the filter could not replace the slim
approximate Hessian for incomplete reflection data.
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Fig. 10. The perturbation component inversion with the one-shot and six receivers system: (a) the
result of F*d; (b) the perturbation component inversion with the slim approximate Hessian; and (c)
and (d) are the perturbation component inversions using § = 45° and § = 10° for the filter method,
respectively.

FIELD DATA APPLICATION

For field data acquisition, there are many reasons for incomplete data,
including scarcity of sources. As high-density acquisition will increase the cost,
sources are often sparsely arranged on the ground or sea floor. The second
factor is limitations in the receiver array, and the third factor is the
discontinuation of the seismic records, such as breakpoint, due to irregularity
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of receiver arrays caused by buildings, rivers and other complex topography.
In this study, we used a land-surface dataset to test the slim Hessian method.
The two-dimensional seismic data are extracted from a three-dimensional
survey, including 48 sources arranged in two shot arrays (Fig. 11). For each
shot array, there are 24 surface sources (the triangles in Fig. 11). The sparse
and irregular sources are one cause of artifacts. Fig. 12 shows the observed
reflected data for the full waveform inversion, which does not include Rayleigh
surface waves, direct waves, and refraction waves. The reflection is obviously
discontinuous, leading to strong artifacts in the inversion.
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Fig. 11. Acquisition system: the triangles are sources, and the filled circles are receivers.
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Fig. 12. Common-shot gathers (observed seismic data): (a) shot position CDP252, (b) shot position
CDP332, and (c) shot position CDP403.
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As energy decreases with depth, making deep velocity inversions difficult,
a cubic weight factor (dependent on depth) is applied to the gradient. Although
a series of researchers had paid attention to build the initial velocity (Lambaré,
2005, 2008), for this field data, the initial model is obtained by NMO analysis,
which includes 161 x 1201 nodes, and is shown in Fig. 13. Fig. 14 shows the
reflectivity obtained by reverse time migration (i.e., the result of F*d).
Following the method described above, for the second stage, the total
reflectivity model is divided to two sub-models (Fig. 15). For Fig. 15a, there
are 161 x 601 nodes, and for Fig. 15b, there are 161 x 600 nodes, keeping the
same structure for the total model and sub-models. For comparison, a filter with
0 = 15° is applied to Fig. 14 to remove the artifact. However, the valid steeply
dipping structures are also removed (Fig. 16). When applying the slim
approximate Hessian to Fig. 14, we retain these valid structures but remove the
artifacts (Fig. 17).
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Fig. 13. Initial velocity profile.
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Fig. 14. Reflectivity profile using operator F*d. There are 161 x 1201 nodes.
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Fig. 15. Sub-models: (a) sub-model 1, nodes 161 x 601 and (b) sub-model 2, nodes 161 x 600.
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Fig. 16. The gradient for perturbation inversion with filter.
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Fig. 17. The gradient for perturbation inversion with the slim approximate Hessian.

Without any preconditioning the inversion velocity is mix with the
artifacts (Fig. 18). The inversion velocity obtained by steepest decent method,
filtering method and the slim approximate method are shown in Fig. 19. The
inversion velocity by the steepest descent method keeps the steeply dipping
structure (around X = 16 km), but introduces too many non-geological artifacts.
With the filtering method, the high horizontal wavenumber components are
reduced; however, this method is not workable for the lateral geological
structure. The slim approximate Hessian method retains the information in
off-diagonal elements, but removes the artifacts caused by incomplete data.
Furthermore, the steeply dipping geological structures are also recovered.
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Fig. 18. Inversed velocity by full waveform inversion with no preconditioning.
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Fig. 19. Inversed velocity by full waveform inversion with (a) a filter, and (b) a slim approximate
Hessian. )

CONCLUSIONS

The reflection FWI makes use of high-resolution seismic waves and
achieves the perturbation model inversion. The widely used gradient-based
methods are very efficient due to the ease of computing gradients using the
adjoint-state method. However, for incomplete reflection data, the inversion
velocities are always mixed with non-geological artifacts. The strong
off-diagonal elements of approximate Hessians are important to remove the
artifacts using reflection FWI with incomplete data. In order to reduce the cost
involved in approximate Hessian calculations, a slim approximate Hessian
method is proposed. By this method, the total model is divided into small
sub-models, and a slim approximate Hessian is implemented sequentially. A
filtering method was introduced for comparison, but the filtering method could
not match the slim approximate Hessian for a complex geological structure with
steep dip. When applying the slim approximate Hessian method to field seismic
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data, we obtain a structurally continuous and higher-resolution velocity inversion
as effectively as the approximate Hessian, but more cost-effectively and with
lower memory requirements. This method represents a practical solution for
velocity inversion that offers an effective alternative to prohibitively expensive
calculations.
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APPENDIX
The objective function can be written as
J[m] = % | Fimlm,[m] — d[m]|* , (A-1)

where m[m] and d[m] are dependent on the background, m. For a given
perturbation m,, we obtain the misfit (Symes and Kern, 1994):

8[m]| - = (D, F[m]ém,F[m]m,[m] — d[m])
= (6m,D, F*[m,m,[m]](F[m]m,[m] — d[m])) . (A-2)
The gradient for the background component is
6J[m]/ém = D, F*[m,m,[m]](F[m]m,[m] — dm]) , (A-3)
which performs as the second order in the Hessian Matrix.

According the Sobolev scale of Hilbert norms, the s-th Sobolev norm is
given by Symes and Kern (1994) as

[om| = |A=6m] , (A-4)

where A™* is a smooth operator, such as the inverse of the Laplace operator.
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In order to calculate J[m], we need to estimate the perturbation velocity
m,[m]:
(8J[m]/6m)|,, = F*[m](F[m]m,[m] — d[m]) . (A-5)
Setting the gradient to zero gives
F¥[m|F[m]m,[m] = F*[m]d[m]) , (A-6)
and we then obtain the perturbation component as

m,[m] = (F*[m]F[m])~'F*[m]d[m] = (H,)"'F*[m]d[m] . (A7)





