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ABSTRACT

Luo, J., Wu, R.-S. and Gao, J., 2016. Elastic seismic envelope inversion. Journal of Seismic
Exploration, 25: 103-119.

We propose the elastic seismic envelope inversion method, which is an extension of our
previous work about the acoustic situation. Seismic full waveform inversion suffers severely from
the local minima problem, which comes from the lack of low frequency information in the data. The
envelope of the data carries ultra low frequency information and thus can be used to construct the
large scale component of the model. We give the method of envelope inversion for the elastic
situation where P-wave velocity and S-wave velocity are inverted simultaneously. Numerical
examples using the Marmousi II model proved that the combined elastic envelope inversion plus
waveform inversion (EI+WI) provides much better results than the conventional elastic full
waveform inversion, especially for the case of lacking low frequency information in the seismic data.

KEY WORDS: full waveform inversion, envelope inversion, elastic.

INTRODUCTION

Lally (1883) and Tarantola (1984) first proposed the full waveform
inversion method in the acoustic approximation. Later Tarantola (1986) gave the
theory for elastic full waveform inversion and showed the choice of parameters
for the inversion. Mora (1987, 1988) implemented the elastic inversion using
a preconditioned conjugate gradient algorithm and gave the inversion results
from synthetic data sets. After that, many authors have investigated the elastic
full waveform inversion (Sambridge et al., 1991; Crase et al., 1992; Debski and
Tarantola, 1995; Djipéssé and Tarantola, 1999; Sears et al., 2008; Sears et al.,
2010). However, as in acoustic situation, in order to get good inversion results,
we always need good initial models.
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The difficulty of initial model construction comes from the lack of low
frequency information in the seismic data. If we have low frequency
information, then a successive inversion from low frequency to high frequency
using the time domain multiscale method (Bunks et al., 1995) or the frequency
domain method (Pratt, 1999; Pratt and Shipp, 1999; Brenders and Pratt, 2007)
will be fine. These methods allow us to first get the long wavelength
background from the low frequency signal and then get the details from high
frequency signal. However, there is always no low frequency signal existing in
the seismic source, and the generation of low frequency signal below 5 Hz is
very expensive. Therefore, the important thing is how to get the long
wavelength background model without low frequencies.

Several approaches have been proposed to reduce this problem in recent
years. Shin and Cha (2008, 2009) developed the Laplace domain and the
Laplace-Fourier domain full waveform inversion.

They used the damped signal in their method and can provide a smooth
background model for the inversion. Liu et at. (2011) developed the normalized
integration method. Biondi and Almomin (2012, 2013, 2014) combined full
waveform inversion with wave equation migration velocity analysis and used
extended lag in their method. Wang et al. (2012) combined wave equation
tomography and full waveform inversion in the misfit function. Warner and
Guasch (2014) developed the adaptive waveform inversion method in which the
Wiener filter is measured. Wu et al. (2013, 2014) and Luo et al. (2013, 2015)
proposed the envelope inversion (EI) method where the envelope of the seismic
data is used and which can give a very smooth background model.

The above approaches are mostly ‘developed in the acoustic situation.
However, as we all know, the real earth is elastic, so it would be better to
perform elastic waveform inversion rather than acoustic. In this paper, we
extend our previously proposed envelope inversion method to the elastic
situation. We first give the theory of this method where we show the misfit for
the elastic envelope inversion and derive the gradient for P-wave velocity and
S-wave velocity. Then we use the Marmousi II model to prove the validity of
this method. To further test the independence of this method to the source
frequency band, we used a low-cut (cut from 5 Hz below) source wavelet for
the inversion. Numerical tests showed that the combined inversion elastic
EI+WTI can provide much more faithful and accurate final results than the
conventional elastic FWI.

ELASTIC FULL WAVEFORM INVERSION IN THE TIME DOMAIN

The 2D isotropic elastic wave equation has the following expression,
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p(d%u'/dt?) — (a7'/9x)) = f
M
7= MY+ Nu, + o+ o)

Here the Einstein summation convention is used. In the above equation,
u' is the i-th component for the displacement vector, 7'/ means the ij component
for the stress tensor. A and p are the Lamé coefficients, and p is the density. f
is the body force and M'J is the traction. The relationship between P-, S-wave
velocity and Lamé coefficients is given by,

ve = VI + 2w)lp]

vs = V/(Wp) .

@)

The most commonly used least squares misfit function for elastic full
waveform inversion in the time domain has the following form,

T

om) = Y Y | s — woPde . 3)
N3 i 0

where s' is the i-th component of the synthetic wavefield, u' is the i-th
component of the observed wavefield, and m is the model parameter. We
assume that the density is constant, and consider v, and vg as the model
parameters. The gradient of the misfit function ¢ with respect to v, and vy can
be obtained by

T
do/dv, = Y, Y. | [s() — w®)]@s/avp)dt |
ST i 0

. “)
doldvs = Y, ¥ | () — w®l@s/ovedt .
sr i 0
Introduce the Jacobian operator (J,,Js) and data residual vector 5, where
JP = aSi/VP
, p=s —u. (5
Jg = 3s'/vg
Then eq. (4) can be written in the following form,
daldv, = Jiy
(6)

daldvg = Jin
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The Jacobian (J;p,Jg) is also known as the Fréchet derivative. We can use the
backpropagation method to calculate the gradient in eq. (6), which is the
zero-lag correlation of the forward propagated source wavefields and the
backward propagated residual wavefields (for details see Appendix A).

ELASTIC SEISMIC ENVELOPE INVERSION METHOD
Trace envelope extraction

We start from the introduction of the definition of trace envelope. The
envelope of a trace can be extracted by taking the amplitude after the analytical
signal transform using the Hilbert transform. Each real signal has a
corresponding analytic signal f(t) which can be constructed from the original
real signal f(t) and its Hilbert transform H{f(t)},

f = ) + iH{f©®)} . @)

The Hilbert transform is defined by
+ o

H{f©} = —(/NP | [fie—nldr | ®)
where P is the Cauchy principal value.

The envelope of f(t) can then be obtained by
e(t) = VI'() + H{f)}] , ®

From the above we see that we can easily get the envelope of a signal from the
Hilbert transform.

Shot gathers

In the following we show the property of the envelope from a shot gather
example. Fig. 1(a) shows the data traces from the Marmousi II model. Both the
x-component and the z-component of the wavefields are shown. The data was
generated using a Ricker wavelet with the dominate frequency of 10 Hz. Fig.
1(b) shows the envelope of the traces in (a). We can see that the envelopes look
much smoother than the original traces. Then we analyze the spectra of the
original traces [Fig. 1(c)] and the trace envelopes [Fig. 1(d)]. We can see that
there is a lot of low frequency information in the envelopes, which is not the
case for the original traces. Because of this property, we can fit the envelope
rather than the original data in the misfit function so that the rich low frequency
information can be used in the inversion.
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Fig. 1. (a) Data traces from the Marmousi II model; (b) trace envelope; (c) trace spectra; (d)

envelope spectra. The left panels are for the x component and the right panels are for the z
component.
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Misfit function

As in our acoustic envelope inversion (Wu et al., 2013, 2014), the misfit
function for the elastic envelope inversion can be defined as follows,

T
om) = % Y ¥ | [{lel (OF — el ©F|%dt (10)
ST i 0

where e}, and e}, are the envelope of the i-th component of the synthetic
wavefield and the observed wavefield, respectively, and m is the model
parameter.

Using eq. (9), we can re-write eq. (10) into the following form,
T
om = %Y Y [ HISOF + [i0P) - (o + ui©P}|d
sr i 0

T
—uYy Y | Ea (11)
N3 i 0

where s' and u' are the i-th component of the synthetic wavefield and the
observed wavefield, respectively, s and u); are the corresponding Hilbert
transforms. E; is the instant envelope data residual. In the above equation we
applied a square to the envelope, because the squared envelope has better
performance in large scale background recovery (Wu et al., 2013b; Luo et al.,
2014).

Gradient calculation for elastic envelope inversion
In this paper, we assume the density is constant, and consider v, and v

as the model parameters. We calculate the derivative of the misfit function with
respect to vp and can get the following result,

da/0vp

T
kY, Y | E[is©P + [sioryav,]a
st i 0

T
Y Y | E[2s00si0)/0v,] + 2si([0si0/av,] dt
sr i 0
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Fig. 2. The Marmousi II model. (a) P-wave velocity model; (b) S-wave velocity model.

Inversion with full frequency band source wavelet

We first show the validity of this method using a full frequency band

source wavelet. The source wavelet is the Ricker wavelet with the dominant
frequency of 10 Hz (Fig. 3).
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Fig. 3. (a) Time domain and (b) frequency domain full frequency band Ricker wavelet and its
envelope.

We use the 1D linear initial model as the starting model (Fig. 4) and

invert the P-wave velocity and S-wave velocity using elastic envelope inversion.
Fig. 5 shows the envelope inversion results.
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Fig. 4. Linear initial model. (a) P-wave velocity model; (b) S-wave velocity model.
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Fig. 5. Envelope inversion results. (a) P-wave velocity model; (b) S-wave velocity model.

From these results we can already see the large scale component of the
model which comes from the low frequency information in the data envelope.
Based on these results, we can perform a successive elastic full waveform
inversion using the results in Fig. 5 as the new initial model. Fig. 6 shows the
final inversion results, which are the results from the combined elastic envelope
inversion and waveform inversion. We can see that these results are very close
to the true model. We also performed the conventional elastic full waveform
inversion starting directly from the linear initial model and show the result in
Fig. 7 as comparison. From the comparison we can easily see that the combined
elastic envelope inversion and waveform inversion provides much better results
than the conventional elastic full waveform inversion method.
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Fig. 6. Combined elastic envelope inversion and waveform inversion results. (a) P-wave velocity
model; (b) S-wave velocity model.

Distance (km) Distance (km)

2500
2000

" 4 # . { 1500

1000

Depth (km)

500

Fig. 7. Conventional elastic full waveform inversion results. (a) P-wave velocity model; (b) S-wave
velocity model. :

Inversion with the low cut source wavelet

To further demonstrate the ability of the elastic envelope inversion
method, we perform the inversion using a low-cut source wavelet (with low
frequencies below 5 Hz removed) as shown in Fig. 8. From the figure we can
see that the low frequencies below 5 Hz has been removed from the source,
however the envelope is still very rich in low frequency, which shows the

independence of the low frequency in the envelope with the low frequency in
the source wavelet.

We use this low-cut source to perform elastic envelope inversion and
Fig.9 shows the envelope inversion results. If we compare these results with
those in Fig. 5, we can see that although the results using low-cut source is not
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as good as those using the full band source, however we can still clearly see the
large-scale component in the results. As in the previous, we perform elastic full
waveform inversion using the envelope inversion results as the new initial
model. Fig. 10 shows the final combined elastic envelope inversion plus
waveform inversion results. If we compare these results with those in Fig. 6,
we can see that there is almost no difference in the final results. We also
perform the conventional elastic full waveform inversion starting directly from
the linear initial model and show the results in Fig. 11 as comparison. We can
see that the conventional full waveform inversion results are influenced very

much because of the lacking of low frequency information in the data and the
results become even worse.
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Fig. 8. (a) time domain and (b) frequency domain low-cut Ricker wavelet and its envelope.
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Fig. 9. Elastic envelope inversion results using the low-cut source. (a) P-wave velocity model; (b)
S-wave velocity model.
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Fig. 10. Combined elastic envelope inversion plus waveform inversion results using the low-cut
source wavelet. (a) P-wave velocity model; (b) S-wave velocity model.
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Fig. 11. The conventional elastic full waveform inversion results using the low-cut source. (a)
P-wave velocity model; (b) S-wave velocity model.

From the above tests we can see that the elastic envelope inversion
method is very effective for the large-scale component model construction, even
without low frequencies in the source wavelet.

CONCLUSION

In this paper, we extended our previously proposed acoustic envelope
inversion method to the elastic situation. The data envelope is very rich in low
frequency information, which can be used to retrieve the large scale component
of the model. The gradient of P-wave velocity and S-wave velocity is obtained,
and the validity of this method is proved by the numerical examples using the
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Marmousi II model, where we used 1D linear initial model. The elastic
envelope inversion is independent of the frequency band of the source wavelet:
The P-wave velocity and S-wave velocity can be inverted effectively even
without low frequencies in the source wavelet.
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APPENDIX A

GRADIENT CALCULATION FOR ELASTIC FULL WAVEFORM
INVERSION

We first calculate the gradient of the misfit function with respect to \ and
n. The gradient with respect to v, and vy can be obtained by eq. (2).

First we define the gradient of the wavefield u' with respect to X and 7 as

I = Ui, tr) = dui(r, 0/0N{)
(A-1)

~
|

w = Ulr,tir) = dui(r,,0)/du(r) ,
where r, is the receiver location.

We assume a small perturbation in the model space 6\ and &7, which
caused a small perturbation to the wavefield, then we have

p(3%u'/at?) — (37'9/9x]) = f

_ (A-2)
70 = MU+ Nu, + pluy +oug)
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old*(u + 6u)/ot*] — [o(r + &7)'/ax]) = f
. (A-3)
(74+67)1 = MU+ (N8 I(u+6u), , + (n+ow)[(u+ou);; + [(u+du) ]
Subtract (A-3) by (A-2), we have
p(8%6u'/0t?) — (867'1/0x)) = 0
(A-4)

From the analytic solution of the elastic wave equation, we know that,
suir,) = — § ave) | dr[acic, e t)/axssMie 1)
v
= — s dv(’) s dt'[dG'i(r,t;r',t')/3x¥]
v

X [5)\(r’)6ikuz,1 + op(r) (v + ug)l

— | avay | dveGie e, eyox
S
X [8*u, M) — § ave) | dvreciie s vyoxt
\'%
X (U, + u)u’) (A-5)
From the above equation we can get,

Ullrptr) = — | dv[0GH(r, tir,t')/0x4I6%y,, |
(A-6)
Ui, tr) = — 5 dt'[0G (r,, t;r,t")/ax ] (u;, + uy ) .

From the definition of the misfit function in eq. (3), we can get similar
results as that in eq. (6) for \ and 7,

da/dN = Jiy
(A-7)
do/op = Jin

Substitute eq. (A-6) into (A-7), and we get

do/on = — Y. | dt | dvaciic,.tr.ey/ox16%y, suir,.0
g
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= — [ a'Y | aaciic, tir,tyexiour, o,

g

- — [ atum, | (A-8)
do/on = — Y. | dt | dv[aGicr, tr,t)ex I w,, + uy)ouir,.0
:
= — S dt’ Z S dt[0G ) (x,, t;r,t")/ax|u'(r,,H)(u; . + Uy ;)
:
= — | ava, +uyu, | (A-9)

where "<" means backpropagation wavefields.

From eq. (2) we can get the gradient of the misfit function with respect
to vp and vg as follows

doldv, = —2pv | dtu i (A-10)
APPENDIX B

GRADIENT CALCULATION FOR ELASTIC ENVELOPE INVERSION

From the definition of the misfit function in eq. (10), we can get similar
results as that in eq. (15) for A and 7,

dalaN = Jip
) (B-1)
da/op = Jin
where
J)\ = aui/V)\ ) .
, n = Eu(® — H{Eiuﬁ(t)} . (B-2)

J, = aullv,
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Substitute eqs. (A-6) and (B-2) into (B-1), we get
dolon = — Y, | dt | dv[aGia, tr,t)/0x 15k,
g

X [Eu'(t) — H{Eui()}1(ry,t)

= — S dt’ E S dt[0GHi(r,,t;r,t")/ax[Eu'(t) — H{Euy(®)}]u,,
g

T (B-3)

dolop = — Y, | at | dvracie, tirtyox, + u,)
g

X [Eu'(t) — H{Eui(®}(r,,0)

~ [ar Y | aqaciic, r.eyoxt
g
X [Eu'(t) — H{Eui®}(r,, 0, + ug))

= - 3. dt’(u;, + uk,j)aj,k ) (B-4)

Al "

where "<" means backpropagation wavefields and "7" means this
backpropagation wavefields is obtained by using envelope residual.

From eq. (2) we can get the gradient of the misfit function with respect
to vp and vy as follows

d0/dvp = —20v, | dtu i (B-5)

d0/dvg

~dpvg | diu i, — 2ovs | d, + u)fi, (B-6)



