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ABSTRACT

Li, C., Huang, J., Li, Z. and Wang, R., 2016. Plane-wave least-square reverse time migration with
encoding strategies. Journal of Seismic Exploration, 25: 177-197.

Plane-wave Least-Squares Reverse Time Migration (PLSRTM) delivers high resolution
images with less computational cost compared with conventional Least-Squares Reverse Time
Migration (LSRTM). But a great number of computational cost is still necessary to suppress
migration artefacts. The study of plane-wave encoding strategy with better migration artefacts
reduction may help to further improve the computational efficiency. In this paper, we present the
theory and work flow of PLSRTM method; furthermore four different encoding strategies are
applied to PLSRTM including static encoding, dynamic encoding, hybrid encoding and random
dynamic encoding. Additionally, the illumination preconditioner and the mixed optimization method
are introduced to accelerate the convergence rate. The numerical tests are implemented both on the
synthetic data of Marmousi model and the 2D field data to compare the image quality and the
computational cost of different encoding strategies. The results suggest that the static encoding
method has a best imaging quality but highest computational cost while the improved encoding
strategies have better computational efficiency which is suitable for the processing of mass data.
Among them, PLSRTM with hybrid encoding has the advantage of less I/O cost and PLSRTM with
random dynamic encoding shows better imaging quality and convergence with less iteration.

KEY WORDS: least-square migration, plane-wave encoding, encoding strategy,
randomized sampling.
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INTRODUCTION

With increasing complexity of exploration targets, it is difficult for
traditional acquisition to explore the complex area effectively. Thus, more and
more high-density seismic acquisition methods with small surface element and
high coverage times are used recently. Due to the enormous data of high-density
acquisition, the method for encoding large number of common shots to several
supergathers is provided to improve efficiency (Berkhout, 1992). However, the
migration results will be blurred by the limited frequency band and the
acquisition geometry because of directly regarding the adjoint instead of the
inverse of modelling as the migration operator (Claerbout, 1992). Under the
inversion framework, the gradient-based optimization schemes can be applied
to the migration method to solve this problem in data domain.

Areal shot migration is firstly proposed (Berkhout, 1992) to encode the
shot data to produce one supergather and achieves improved migration
efficiency, and then the plane-wave migration is implemented in common offset
domain by Radon transform (Mosher et al., 1997). Because the plane waves are
produced by stacking a set of linear time-shifting gathers which are coherent
signals, the migration image of one plane-wave does not contain crosstalk noise.
However, the migration of plane-waves introduces aliasing artifacts (Dai et al.,
2013) which degrades the quality of final images. Thus, the approach based on
stacking the images from several plane-waves with different shooting angles is
proposed to suppress migration artifacts and produce high-resolution images of
complex structures (Chen et al., 2002; Liu et al., 2002: Zhang et al., 2005).
However, conventional plane-wave migration still has its problem of low
signal-to-noise ratio (SNR) and resolution in dealing with unconventional
reservoirs. By involving the imaging problem into the inversion framework, the
imaging results can be significantly improved with local optimization method
(Tarantola, 1984; 1987). Lambaré et al. (1992) propose the linearized prestack
inversion of seismic profiles based on the classical optimization theory. The
linearized inversion are also implemented to invert the perturbations of P- and
S-wave impedances and density in the elastic media (Jin et al., 1992). After
that, the Least-Square Migration (LSM) is implemented on Kirchhoff migration
operator to suppress the recording footprint noise due to the coarse receiver
interval (Nemeth et al., 1999). LSM can deliver high resolution and
amplitude-preserved images with huge computational cost (Dai et al., 2011;
2012; Huang et al., 2014). To combine the advantages of plane-wave migration
and LSM, Dai et al. (2013) firstly introduce plane-wave encoding to
Least-Square Reverse Time Migration(LSRTM) and testify the encoding
strategies of dynamic encoding to further improve computational efficiency. Li
et al. (2014a) apply the improved Plane-wave Least-Square Reverse Time
Migration (PLSRTM) method to the imaging of fault block reservoirs. Wang et
al. (2014) extend the 2D plane-wave least-squares Kirchhoff migration to 3D.
Additionally, Li et al. (2014b) present the PLSRTM method for rugged
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topography with modified plane-wave encoding function to avoid datum
correction. For the previous studies, the implementation of plane-wave encoding
strategies are mainly static encoding and dynamic encoding approaches. But a
considerable amount of computation is still necessary to implement the static
encoding approach, while the dynamic encoding approaches are penalized by
huge I/0 cost. Thus some improved encoding strategies should be proposed and
discussed with other encoding approaches for better practical application.

In this paper, we present the PLSRTM method with four different
encoding strategies including static encoding, dynamic encoding, hybrid
encoding and random dynamic encoding. To improve imaging quality and
accelerate the convergence rate, we also introduce the illumination
preconditioner and the mixed optimization operator into the PLSRTM method.
After that, the new imaging method is applied to the synthetic data of Marmousi
model and field data set to evaluate the imaging quality, amplitude preservation
ability, convergence rate, computational and I/O cost of PLSRTM with different
encoding strategies.

METHODS
Plane-wave encoding method of observed data

For a two-dimensional exploration area, encoding process of shot records
can be expressed as,

Uix,0) = | uGcx,wer dx, (1)

where u(x;x,,w) denotes the observed common receiver record which is
generated from the source at the location of x, and recorded by geophones at x,
and U(x;x,,w) is the encoded plane-wave from a synthesized line source at Xp-
From eq. (1), the common-receiver gathers are transformed into a single trace
from a line-source wavefield, which is equivalent to producing plane-waves by
the tau-p transform method, which also can be physically interpreted as the
delay shot acquisition. In the time domain, e“P> refers to a time-shift which
changes linearly with source location, while p denotes the ray parameter with
the expression p = sinf/v. Here 0 is the incident angle at the surface, and v is
the near-surface velocity. The schematic diagram of plane-wave encoding is
modified from Zhang’s method shown in Fig. 1 (Zhang et al., 2005).

Born modelling in plane-wave domain

In the plane-wave domain, the solution of the Helmholtz equation can be
expressed as,
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Fig. 1. Diagram of plane-wave encoding modified from Zhang’s method (Zhang et al., 2005).

Up(x;%p) = W(@)Go(x;x;) @

where Gy(x;x,) is the Green’s function corresponding to background slowness
So» Up(x;X,) denotes the wavefield related to the plane-wave source at the
location of X,, and W(w) denotes the wavelet of the synthesized line source
which is set as a series of point sources.

We assume the background slowness perturbation is 6s(x), thus the true
slowness model can be described as s(x) = s, + 6s(x). The wavefield U(x;x,)
from source to the imaging point underground can be obtained by solving the
Helmholtz equation with slowness model s(x):

[V + o’sx)’]U(x;x,) = F , (3)

where the item F = —6(x — X,)W(w) represents the plane-wave source. Then
substituting s(x) = s, + 6s(x) into eq. (3) we can get:

[V? + w’sg + 2w’se0s(x)]U(x;x,) = F , 4)

where the high-order term O(6s?) is neglected because of the small background
slowness perturbation.

After that, we transform the third term of eq. (4) to the right side, and
both sides are multiplied with Green’s function G,(x;x’), then integrate over the



PLANE-WAVE LEAST-SQUARE RTM 181
whole volume with index x’. According to the Helmholtz equation of
background wavefield [V> + w’sy(x)*]U,(x;x,) = —6(x — x")W(w) and eq. (2),
we can find out the following equation [V? + w’si]p)Gy(x;x’) = —8(x — x).

Finally, the left hand side (LHS) and right hand side (RHS) of eq. (4) can be
rewritten as,

LHS = | [V2 + &*Ip)Gy(xx) UK ;x,)dx’
= — | Uwx)sx — x)dx’ = Uxx,)

RHS = s Gy(x;x)Fdx' — 2w? § 800s(XHYU(X";x,)Go(x;x")dx’

— | Gyxix)6x — xYW(w)dx’
+ w? s m(x")W(w)G(x';x,)Gy(x;x")dx’

Upxx,) + o | mE)W(w)G(x':x)Gy(xix)dx’ (5)

where m(x’) = —2s,6s(x) is defined as the reflectivity. Assuming slowness
perturbation is small enough and applying the Born approximation G(x';x,) =~
Gy(x";x,) to the RHS equation, we can calculate the scattered field as:

Ui(x;x,) = Ux;x,) — Ug(x;x,)
= o | mx)W(@)GK':x,)Gy(x;x")dx’

=~ g m(x)YW(w)Go(x";x,)Go(x;x)dx" . 6)

Thus the reverse time migration operator (Baysal et al., 1983) in the plane
wave domain is

M0 = 3 | @WH@)U, %) G xix ) GE (R x)dx D

where * means the adjoint of the matrix, m,;,(x) denotes the migration results
which is the stacked images of different plane-waves at x,.

To simplify the formula, Born modeling operator and plane-wave reverse
time migration are presented by a vector matrix notation, respectively,

d=Lm;m-=1L"d , (8)
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where m is the matrix form of migration profile or reflectivity model; d is the
matrix form of plane-wave records; L and L' denote Born modelling and
reverse time migration in plane-wave domain, respectively.

Preconditioning operator

In our method, an illumination operator (Beydoun and Mendes, 1989; Luo
and Schuster, 1991) is applied as the preconditioning into the gradient to
compensate the weak illumination of deep area. The operator can be expressed
as,

10 = Y | wRe{G(x:x, 0)G*(x;x,.0)}dw | ©)

where I(x) is the illumination operator in plane-wave domain which is calculated
by stacking the illumination energy from different plane-waves at x, and Re{ }
denotes the real part of the operator. Additionally, a high-pass filter is applied
to the gradient as the preconditioning at the first 3 iterations which can decrease
the low frequency noise in the migration results.

Plane-wave least-squares reverse time migration

For one plane-wave records of ray parameter p, the misfit function in
plane-wave domain can be expressed as,

f,(m) = % || Lm, — d|? . (10)

where L, m, and d,, and are Born modelling, migration operator and observed
data corresponding to the plane-wave with ray parameter p, respectively.

In this paper, a preconditioned conjugate gradient method is used to solve
the misfit function in plane-wave domain,

g(k+l) = Lg[meF()k) - dp] >
B(k) — (g(k+I)Ig(k+1))/(g(k)lg(k)) ,
z&+D — Ig(k+1) + B(k)z(k) , (11)

a(k+1) — ([z(k+1)]Tg(k+1))/([Lpz(k+1)]TLpz(k+1)) ,

m!()k+l) — mlgk) _ Ol(k+1)Z(k+1)

’
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where k is the iteration number; g**V, z&*D, o are steepest descent gradient,
the conjugate gradient and the update step length at iteration number k+1,
respectively. I is the illumination preconditioning operator which is discussed
in the previous section.

However, only one plane-wave record is not enough to illuminate all the
underground structures and suppress strong migration artefacts. High-quality
images can be obtained by stacking images from the plane-wave records with
different shooting angles. Assuming there are N plane-waves, the misfit function
of prestack PLSRTM can be modified as,

N
fym) = %4 Y, |Lm, — &2 = %|Lm — d|? , (12)
i=1
Ll ml
L, m,
L = , =
\ Ly ) \my

where d; denotes the i-th plane-wave gather, L, and m; are Born modeling
operator and migration image related to the i-th plane-wave, respectively; L, m,
d denote Born modeling operator, the prestack image and the plane-waves,
respectively. Thus the misfit is given as the summation of the data residual of
plane-waves, and the migration images of different plane-waves are updated
independently. The optimization is also implemented with the preconditioned
conjugate gradient method to solve the misfit function (12).

-In general, the optimization can be converged after n iterations ideally
when the objective function is n-dimensional quadratic differentiable function.
However, the inversion is usually failed to converge after n iterations due to the
existence of ambient noise, calculation errors and other instability factors (Chen
etal., 1985). Thus the conjugate gradient method implemented in this paper will
recalculate the steepest descent direction and restart the algorithm after every
five iterations. The workflow diagram of the new PLSRTM is shown in Fig. 2.

Encoding strategies

Generally, there are several encoding strategies. The PLSRTM mentioned
above do not change the computed plane-waves at each iteration which is called
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static encoding. Prestack PLSRTM with static encoding can suppress migration
artefacts by stacking images of plane-waves with different ray parameters, but
large amount of calculation is necessary. In order to further improve
computational efficiency, Schuster et al. (2011), Dai et al. (2013) have proposed
a dynamic encoding approach. The misfit of this approach can be given as,

f;(m) = % ” Ls(t)m - ds(t) "2 > (13)

where s(i) is a sampling function which represents a label corresponding to the
ray parameter of plane-waves. The relation between the label s(i) and the ray
parameter is p = p.;, + s(i)Ap, where Ap here means the interval of p in each

Input mo, shot data d and
encoding function

}
Compute plane-wave
Lm(k—l)
:
Compute residual
Lm&-1 —d

1

Compute the gradient
g® = LT(Lm®V — q)

S
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Compute conjugate
gradient
z® and the step a®

Updat the model k=k+1
m(k) —] m(k_l) + z(k)a(k]
!

—-‘ Output m™

Fig. 2. Flow chart of PLSRTM.
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iteration and p,;, is the minimum value of p. The value of s(i) varies with i
(iterations) uniformly in the dynamic approach just like Fig. 3b shows. In this
approach, niter (maximum number of iterations) plane-wave records are
encoded, which results in huge I/O cost.

Thus this paper introduces hybrid encoding strategy into PLSRTM, in
which the value of changes one time with every n (n is chosen manually)
iterations. Only niter/n plane-waves are generated, so the I/O cost is only 1/n
times of the dynamic approach. Ray parameters of plane-wave records for each
iterations of hybrid encoding are plotted in Fig. 3c, and here we set n equals 5.

In the two strategies we mentioned above, the plane-waves are chosen in
a defined sequence for each iteration. Since the angles of plane-waves are
defined uniformly, structures with some specific angles cannot be fully
illuminated by only a few iterations. So we propose the randomized sampling
approach to the dynamic encoding strategy, in which the value of s(i) is selected
randomly for each iteration as shown in Fig. 3d. Although there are no
computational improvements, randomized sampling allows more information for

the original iterations which result in faster convergence and better images of
complex structures.

In a word, the misfit of all the three strategies with single plane-waves
can be expressed by eq. (13), but the value of s(i) is different. For example,
egs. (10) and (13) will be equivalent if s(i) is a constant which represents the
plane-wave with ray parameter p. The preconditioned conjugate gradient method
is implemented to find out the solution of the misfit as eq. (13) shows.

x10"
2

+  statistic

[ a2 o o T e R TR T

x10% +  dynamic

—
f+++f+****++’t
+

et
e
b

xR E R
. L REERR
oo XRK R T TEE
g KRR KR
L MR E R Y FRRR

KKK K

x 10 O random dynamic

1
o LS ©

Ray parameter
°
T
>
>
>
°

Iteration

Fig. 3. Ray parameter of computed plane-waves for each iteration.
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EXAMPLES
PLSRTM with static encoding

In this section, the PLSRTM with different encoding strategies are applied
to the synthetic data set of Marmousi model. The size of the velocity model is
7.57 X 3.5 km with a 10 m grid interval. The inversion starts with the
migration velocity model which is smoothed by the true velocity using the
median filter method (Fig. 4a). Firstly, we calculate a perturbation model as the
slowness difference 8s,,. = s>, — S between the real model and the smoothed
model (Fig. 4b).

Then shot-domain data are generated with fixed spread geometry where
757 shots are distributed with a 10 m shot interval. Each shot is recorded by
757 receivers with a 10 m receiver interval. A Ricker wavelet with a 30 Hz
peak frequency is used as the source wavelet, and the record length is 3 s in
time with a 0.5 ms interval. After the simulation, all the shot gathers are
processed to get rid of the direct wave and surface wave. To implement the
PLSRTM, 757 shot gathers are encoded to generate 24 plane-wave gathers with
the shooting angles range from —30 to +30 degrees. Fig. 5 shows the encoded
plane-wave records with different ray parameters. As the velocity model has
complicated structures and strong lateral velocity variations, the reflection events
of plane-waves are very intricate. To begin with, the shot data are implemented
with conventional reverse time migration(RTM) for comparison, and the Laplace
filtering image is shown in Fig. 6. Although RTM can produce clear image of
most subsurface structures, the profiles contain obvious migration noise. In
addition, the steep structures in the middle part can not be imaged correctly.

Offset{m) Offset{m)
0 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000

Fig. 4. Marmousi model. (a) real velocity; (b) real reflectivity.
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Fig. 5. Plane-wave records with (a) p = —0.5 ms/m; (b) p = 0 ms/m; (c) p = 0.5 ms/m.

Offset(m)
00 1000 2000 3000 4000 5000 6000 7000

Depth(m)

Fig. 6. Image of the traditional RTM.

After that, PLSRTM is applied to a single plane-wave record with a ray
parameter of 0.0 ms/m and 0.5 ms/m, respectively, and the results are shown
in Fig. 7. We can see that the image of only one plane-wave record contains
strong artefacts which cannot be completely suppressed by optimization.
Besides, the plane-wave source has obvious direction illumination
characteristics, and the image is of highest resolution when incident angle of
plane-wave is perpendicular to the target structure.
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Offset(m)

Offset{m)
1000 2000 3000 4000 5000 3000 4000

Depth(m)

Fig. 7. Image of PLSRTM with static encoding (single plane-wave) after 40 iterations (a) p = 0.0
ms/m; (¢) p = 0.5 ms/m. Image of PLSRTM with static encoding (single plane-wave) after 80
iterations (b) p = 0.0 ms/m; (d) p = 0.5 ms/m.

In order to further suppress the migration artefacts and improve imaging
quality, all 24 plane-wave records are processed by prestack PLSRTM with
static encoding. The stacked images of 24 plane-waves are shown in Fig. 8, in
which the artefacts are completely suppressed and all structures are well imaged
with high resolution and balanced amplitude.

Offset(m) Offset(m)
1000 2000 3000 4000 5000 6000 7000 ° 1000 2000 3000 4000 5000 6000 7000

Fig. 8. Stacked image of PLSRTM with static encoding (24 plane-wave) after (a) 40 iterations; (b)
80 iterations.
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Improved encoding strategies

From the synthetic test, we know that prestack PLSRTM has the
advantages of well migration artefacts suppression and high imaging quality. But
its computation is np times (np is the number of computed plane-waves)
compared with PLSRTM of single plane-wave. In order to obtain a high quality
image with less computation, PLSRTM is implemented with dynamic encoding
and hybrid encoding strategies, where the ray parameters of encoded
plane-waves range from —0.2 to +0.2 ms/m (corresponding to the angle
ranging from —30 to +30 degrees). Fig. 9 shows the PLSRTM images with
dynamic encoding and hybrid encoding after 40 and 80 iterations, respectively.
After 40 iterations, the images of dynamic encoding have better migration
artefacts reduction than that of hybrid encoding. And both of the two strategies

m)

Fig. 9. Image of PLSRTM with dynamic encoding after (a) 40 iterations; (b) 80 iterations. Image
of PLSRTM with hybrid encoding after (c) 40 iterations; (d) 80 iterations. Image of PLSRTM with
random dynamic encoding after (e) 40 iterations; (f) 80 iterations.
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192 LI, HUANG, LI & WANG

Numerically, the formula

SNR = [mf |/ m{, - m®| (14)
is introduced to calculate the normalized SNR of PLSRTM with different
encoding strategies, where m{), is the image of conventional LSRTM after k
iterations. Fig. 12 shows the normalized SNR versus iteration number curve, in
which PLSRTM with random dynamic encoding has much higher normalized
SNR than other encoding strategies. The denominator of normalized SNR refers
to not only migration artefacts but also model residual at the first few iterations
because of the illumination difference between plane-waves with specific
shooting angle and shot data. In some ways, the improvement at the first few
iterations may partly owe to better illumination of randomized sampling
approach. As iteration increases, the illumination difference becomes smoother
and the improvement of normalized SNR becomes more convincing.

T T T

Normalized SNR

-+ statistic with 24p ]
dynamic
+  hybrid 7
~ random dynamic
0 r r r r r r r
10 20 30 40 50 60 70 80
lteration

Fig. 12. Comparison of normalized SNR curve with different encoding strategies.

Under the inversion framework, the computational cost of PLSRTM to
single plane-wave is about twice of the RTM to single shot in one iteration.
Assuming the computation and I/0 consumption of RTM is 1, the computational
cost for PLSRTM equals to np X niter X 2/ns (the number of shots), 1/O
consumption equals to np/ns. The comparison of PLSRTM with different
encoding strategies are summarized in Table 1 which shows that: PLSRTM with
different encoding strategies can produce much better image with less
computation compared with traditional RTM. In detail, PLSRTM with static
encoding (single plane-wave) produces coarse images with moderate artefacts
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and uneven illumination. But high-quality images can be obtained by stacking
images corresponding to several plane-waves with the prestack approach with
much more computation. Fortunately, the improved encoding strategies can help
PLSRTM to producing high quality images with less computation. Among them,
PLSRTM with hybrid encoding has the advantage of less I/O cost while
PLSRTM with random dynamic encoding has the advantage of better migration
artefacts suppression and illumination at original iterations.

Table 1. Comparison of PLSRTM with different encoding strategies for the synthetic data of
Marmousi model.

Static encoding

Static encoding Dynamic Hybrid Random dynamic
RTM (Single . . )
(24 plane-waves) encoding encoding encoding
plane-wave)
Computation 1 0.064 1.52 0.064 0.064 0.064
/0 cost 1 0.0013 0.032 0.106 0.021 0.106
Imaging quality Good Good Best Better Better Best
SNR Lower Lowest Higher Higher High Higher

Field data example

In this section, the PLSRTM with different encoding strategies are tested
on a 2D field data set. The data is extracted from a 3D data set and there are
84 shots with a 90 m shot interval and each shot is recorded with 154 receivers
with a 20 m interval. Firstly, the common shot data are transformed into
common receiver gathers and then encoded to produce 16 plane-waves with ray
parameters ranging from —0.3 ms/m to +0.3 ms/m.

Fig. 13 shows the imaging results of the RTM, and PLSRTM with
different encoding strategies. From Fig. 13 we can see that PLSRTM with
different encoding strategies produce improved images compared with
conventional RTM. The final images of PLSRTM with different encoding
strategies have comparable SNR and quality, but prestack PLSRTM with static
encoding produces the image of highest SNR. Specifically, we exhibit the
images of PLSRTM with dynamic encoding after 25 iterations (Fig. 14a), in
which the energy of the steep structure in the deep part cannot be recovered.
But this steep structure is well illuminated in the images of PSLRTM with
random dynamic encoding (Fig. 14b). Then, the misfit convergence curve of
PLSRTM with different encoding strategies is plotted in Fig. 15. When the
velocity is not completely accurate, the convergences of PLSRTM with different
encoding strategies are robust. And, the convergences of the prestack approach
are the best, because the prestack image ensemble accommodates more
unknowns to allow for better fitting of the observed data (Dai et al., 2013).
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Offset(km)
4

Fig. 13. Final images of RTM(a), PLSRTM with static encoding(b), dynamic encoding(c), hybrid
encoding (d) and random dynamic encoding (e) strategies. Image of RTM lacks precision to
illuminate all the structures.

Offset(km)
4

Fig. 14. Image of PLSRTM with dynamic encoding (a) and random dynamic encoding (b) after 25
iterations.

At last, the summary of this test is shown in Table 2. And # in Table 2
means that the imaging quality of PLSRTM with random dynamic encoding is
even better than the dynamic and hybrid approaches. What we should point out
here is that RTM and PLSRTM have different migration apertures. The
migration aperture in the shot-profile migration is normally not the whole survey
size while the migration aperture of PLSRTM needs to cover the whole survey.
So this point is taken into account when we make the computational comparison
between conventional RTM and PLSRTM. From Table 2 we can see that
PLSRTM with improved encoding strategies can produce much better results
with only 3.17 times of computation compared with conventional RTM. In
terms of I/O cost, the hybrid approach is the most practical which need the
minimum amount of memory if the input data is enormous.
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Fig. 15. The misfit convergence curve of PLSRTM with different encoding strategies.

Table 2. Comparison of PLSRTM with different encoding strategies for the field data.

Static encoding Dynamic Hybrid Random dynamic
RIM (16 plane-waves) encoding encoding encoding
Computation 1 29.7 3.17 3.17 3.17
1/0 cost 1 0.5 1.59 0.32 1.59
Imaging quality Good Best Better Better Better#

CONCLUSION

This paper presents the theory of PLSRTM with different encoding
strategies. The hybrid encoding and random dynamic encoding approach are
introduced to improve the convergence and efficiency of PLSRTM. To make a
comprehensive comparison of different encoding strategies, the imaging tests are
implemented with the synthetic data of Marmousi model and the 2D field data.
With the imaging results, we can draw the following conclusions: (1) PLSRTM
can suppress the aliasing artefacts introduced by plane-wave migration, and has
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higher imaging resolution and better amplitude preservation compared to the
traditional RTM method; (2) The development of dynamic encoding, hybrid
encoding and random dynamic encoding strategies can greatly enhance the
computational efficiency while ensuring imaging quality; (3) Different encoding
strategies have their own advantages and shortcomings. Generally speaking,
prestack PLSRTM with static encoding is of highest imaging quality, but the
computational costs are still too expensive if the input data is enormous. So it
is more suitable for the precise imaging of small exploration areas with not too
much input data. PLSRTM with other encoding strategies has improved
computational efficiency, which is fit for the processing of mass data. But the
I/O cost is another problem for mass data processing in the GPU
implementation, which can be solved by hybrid encoding approach with similar
imaging quality and efficiency. PLSRTM with random dynamic encoding
produces well illuminated images with less iteration, so it will be a good choice
if the feature of underground structures is complicated. Therefore, appropriate
strategies should be selected according to imaging requirements and the
characteristics of encoding strategies when dealing with the field seismic data.

Since the background velocity is invariable at each iterations, the
PLSRTM does a linearized inversion which can produce high quality images if
the migration velocity does not differ much with the background velocity.
Therefore, PLSRTM is less sensitive to migration velocity than conventional
RTM method. In addition, as defined in eq. (5), the reflectivity in this paper is
velocity perturbation rather than the real reflectivity. Actually, the reflectivity
is relative to the reflection angles in the AVO/AVA inversion. However, only
when the reflection angles equals to 90 degrees, the velocity perturbation in this
paper has a linear relationship with the reflectivity. To perform AVO/AVA with

PLSRTM, the relationship between reflectivity and reflection angles should to
be considered.
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