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ABSTRACT

Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correct normal
moveout - with comparison to migrated images. Journal of Seismic Exploration, 26: 455-479.

The benefits of simultaneous source acquisition are compromised by the challenges of dealing
with intense blending noise. While the median filtering approach can be effectively used in
attenuating blending interference due to its superb performance in rejecting spiky noise, it requires
two or three times of normal moveout (NMO) based velocity analysis in order to exactly flatten the
seismic data and thus it is computationally expensive. In this paper, we propose an efficient
deblending framework that is based on a modified median filtering approach and does not require
a correct NMO correction. The modified median filtering approach depends on a novel median filter
that can spatially change the filter length and can deal with curved events due to the incorrect NMO.
The median filter with variable window length is an adaptive median filter, thus it can be
conveniently used in the presented processing workflow without the need of much human input. We
not only compare the deblending performance in the data space, but also present detailed comparison
in-the image space. An important criterion we use to compare the deblending performance is the

local correlation between deblended data and removed blendinﬁ noise. The whole deblending
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INTRODUCTION

The simultaneous-source acquisition refers to the newly developed
acquisition technique that fires more than one shots at nearly the same time
regardless of their interference. In conventional acquisition, either the temporal
shooting intervals or the spatial sampling intervals are large enough so that the
interference between successive shots can be left out. Thus, the novel technique
can reduce the acquisition period and at the same time can improve the data
quality because of the significantly decreased spatial sampling interval (Wood,
1974; Garotta, 1983; Martinez and Crews, 1987; Womack and Cruz, 1988;
Ward et al., 1990; Werner, 1993; Beasley et al., 1998; Ikelle et al., 2000;
Moerig et al., 2002; Beasley, 2008; Moore et al., 2008; Spitz et al., 2008;
Berkhout, 2008; Moore, 2010; Mahdad et al., 2011; Beasley et al., 2012;
Mahdad, 2012; Qu et al., 2015, 2016; Xue et al., 2016a, 2017).

The profound benefits of simultaneous sources, which are compromised
by the blending interference generated from adjacent sources (Wapenaar et al.,
2012), have attracted much attention (Abma et al., 2010, 2012; Abma, 2014;
Berkhout et al., 2012; Chen et al., 2014a, 2015; Hampson et al., 2008; Mahdad
et al., 2012; Qu et al., 2014; Zu et al., 2016b; Zhou et al., 2017; Chen et al.,
2017a). There are two main categories to deal with the blended interference.
The first category is to separate the blended data as the conventional seismic
data for the subsequent seismic processes, which is called "deblending".
Deblending is currently the dominant way to process simultaneous sources data
and there are a lot of successful field applications reported in the literature. The
second category is direct imaging and inversion without deblending, which do
not require the dithering schedule. Recently, some researchers indeed get some
good results on simultaneous sources by directly imaging and inversion
(Berkhout et al., 2012; Choi and Alkhalifah, 2012; Guitton and Daz, 2012; Xue
etal., 2016¢; Chen et al., 2015; Zhang et al., 2016b; Ren and Tian, 2016; Shen
et al., 2016; Gan et al., 2016e; Ebrahimi et al., 2017; Chen et al., 2017b).
However, few successful field data tests using those direct imaging algorithms
have been reported.

The deblending can be posed as a problem of noise attenuation or filtering
(Liu et al., 2015; Gan et al., 2015a; Xue et al., 2016b; Liu et al., 2016b.f,d:
Gan et al., 2016c,b; Huang et al., 2016, 2017b), which can then be solved by
the prediction based method s (Liu et al., 2011; Liu and Chen, 2013), sparse
transform based methods (Chen et al., 2016; Chen, 2016; Li et al., 2016¢; Liu
et al., 2016a; Sun and Wang, 2016; Wu et al., 2016; Kong et al., 2016; Siahsar
et al., 2017; Chen, 2017), decomposition based methods (Chen and Ma, 2014;
Yang et al., 2015a; Liu et al., 2016c; Ikelle, 2016; Chen et al., 2017c),
morphological operation based methods (Li et al., 2016a,b), inversion and
optimization based approaches (Chen and Fomel, 2015; Chen and Jin, 2015).
Mahdad et al. (2011) utilize the least-squares deblended data to estimate the
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blending noise and apply a threshold in common receiver domain to subtract it
from the blended data. Chen et al. (2014b) implement the simplest form of
median filtering to separate the blended data by flatting the common mid-point
(CMP) gathers with two or three times of iterative normal-moveout (NMO)
velocity analysis. Huo et al. (2012) extend the well-known conventional median
filter from a scalar implementation to a vector median filter that can separate the
blended CMP gathers without requiring the NMO. Gan et al. (2016d) develop
a novel structure-oriented median filter that is applied along the local structure
direction. Kim et al. (2009) simulate the noise model from the blended record
and then adaptively subtracts the blended interference by matching the noise
model and the blended interference. Another way for deblending is inversion.
Inversion methods treat the separation problem as an estimation problem, which
is ill-posed, so the regularization item is required to obtain a stable estimation
(Ikelle, 2007; Akerberg et al., 2008; Lin and Herrmann, 2009; Doulgeris et al.,
2012; Chen et al., 2014a; Qu et al., 2014; Zhang et al., 2016a; Zu et al.,
2016b,a). The inversion based deblending approach has been demonstrated to
perform better than the filtering based approach but at the expense of
significantly more expensive computational cost than the inversion based
approach. Chen (2015b) propose a robust iterative deblending method with
multiple constraints (i.e., sparsity and orthogonality) for dealing with more
complicated data structures. Zhou (2017) propose a similar multiple-constraints
regularized iterative framework by constructing a blending mask from the
blending schedule based on the POCS framework.

Following Chen et al. (2014b), we are investigating a more efficient
median filtering based deblending approach. The velocity analysis required by
correct NMO (CNMO) is not necessary in the newly developed deblending
framework, where a novel median filtering approach is applied to cope with
curved events due to imperfect NMO correction. In the proposed deblending
framework, a pseudo-NMO (PNMO) with a rough NMO velocity is adequate
to guarantee a successful deblending performance. The median filter with
variable window length is a fully adaptive filtering method that can be
conveniently used in the presented framework without troublesome human input.
We introduce the algorithm steps in detail and confirm the deblending

performance in both data space and image space via one synthetic and one field
data examples.

METHOD
Data transformation
The crosstalk noise is coherent in common shot gathers and is incoherent

in common receiver and offset gathers. For better spatial coherency in order to
apply a median filter, the field data is first transformed from shot-receiver
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domain to midpoint-offset domain.

The transformation from shot-receiver domain to midpoint-offset domain
can be realized by the following equations:

m=(s + r)/2 , (h
h=x-:9/72, (2)

where m, s and r denote the coordinates of midpoint, shot, and receiver,
respectively. h denotes the offset.

Median filtering with a fixed window length

A median filter can be used to obtain an excellent job in rejecting impulse
(spiky) noise, which has extreme value compared with neighbor values.
Compared with the commonly known smoothing filter, the median filter enjoys
several advantages.

* The median filter is better in preserving edges because each output value
for the data points are one of the neighbor values. Different from the
mean filter (Yang et al., 2015b), the median filter will not create
unrealistic values near the boundaries (edges).

*  The median filter is less sensitive to extreme values. Instead of calculating
a contribution from these extreme values in a mean filter, the median
filter simply remove these extreme values.

® The median filter can be applied repeatedly because of the smaller
damages it causes to edges. In the contrary, the mean filter will cause
much more damages to the data structure.

Given a 1D signal, to implement a median filter, the following two steps
are taken:

1. For each data point in the 1D signal, creating a local window with fixed
window length L. The window is composed of the current processing

point and its neighboring points.

2. Selecting the median of each local window and use this median value as
the output value of the current processing point.

Given a 2D signal, a 1D median filter is applied along the spatial
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Fig. 2. Demonstration of median filtering in the case of imperfect flattening. (a) Data before median
filtering. (b) Data after median filtering with fixed window length.

In order to deal with unflattened events and preserve useful energy as
much as possible, we can use a variable window length strategy. In the modified
median filtering, L becomes L;;, varying with respect to location x;;. The new
filtering expression is:

L,
O =arg min ), v, = v, 3)
Va i =1
where V;; is the output value for location x; ; after applying the modified median

filter, U;; = {v, vy,..., vV } The filter length L;; can be chosen based on the
criterion that is 51m11ar to Liu et al. (2009).

L+1, 0= |sf] <5,
L+14, s < |[sf] <s,
Lij=1{ L, s < [shy] <85, @)
L -4 < lsul < 84
L -4, s < |Si.j| = Spax

where [,,0,,0;,1, are predefined parameters corresponding to the increments or
decrements for the length of filter window and are generally chosen as 4,2,2,4
in default, respectively; s} is the signal reliability (SR), which can be defined
as the local similarity (Fomel, 2007) between the initially filtered data u}; with
a window length L and the original data u;; for point x; ;:
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= Sluf, uj] . &)
Here, S[x, y] denotes the local similarity between x and y. s,, s,, s;, and s, are
four thresholds, and are empirically chosen as s; = 0.15s,,,, s, = 0.25s,,,, S;

= 0.758 x> and s, = 0.855,,,,. S;ax denotes the maximum value of the 51m11ar1ty
map (Chen, 2015a).

Applying the modified median filtering in the imperfectly flattened
gathers, we can preserve much useful energy that remains not flattened. Fig. 3
shows a demonstration on how the median filter with variable window length
can help preserve the unflattened energy.

D)5 A0 0503 552530022 ] .
lil;;1l]lil;1?'5!"‘3111)1“!P‘]“ 11ll!ir’]ll?‘j;m)ﬂml] |
el li e 2
’hl 1 ] i 1 3 e
T i
Ok lE"l % ~ el T
K ibi i P . I “““““«1:, ““"1!!!1!!.
E ]Eigm.- =il E Tl !__":1!-“«:.,,“ Hj
= 3' i o 3* “!-‘“h 1!1“!_‘!
] '!'“‘mq“
’ -
o~ o
50 100 150 200 250 50 on 150 200 250
Trace race
(a) (b)

Fig. 3. Demonstration of median filtering with variable window length in the case of imperfect

flattening. (a) Data before median filtering. (b) Data after median filtering with variable window
lengths.

Performance evaluation using local correlation

The eventual goal of spiky noise attenuation is to maximize the noise
removal and signal preservation. For evaluating the deblending performance, we
need to define a quantitative measure. The main target of the whole processing
workflow which will be discussed later (e.g., NMOs, stack, domains, multiple
runs, etc.) is to minimize the numerical measure. For synthetic example, since
we know the exact solution, we can use the following signal- to-noise ratio
(SNR) measurement (Gan et al., 2015b; Liu et al., 2016e; Gan et al., 2016a;
Zhong et al., 2016; Huang et al., 2017a):

SNR = 10logy([s[3/]s — §]D , (6)
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where s and § are exact signal and deblended signal, respectively. The SNR
measure is only valid for synthetic example, since we have the ground truth.
For field data example, we do not know the true signal. In order to numerically
measure the denoising performance, we define the local correlation coefficient
for such purpose:

t+w/2 t+w/2 t+w/2
7O = ) ab/v{ ) a ) b}, (7
i=t—w/2 i=t—w/2 i=t—w/2

where w is window length. a and b are to input vectors for the calculation. v,.(t)
denotes local correlation coefficients. The local correlation is a localized version
of the commonly known global correlation coefficient, which is often widely
used for calculating the correlation coefficient (or similarity) between two
vectors. The global uncentered correlation coefficient between two discrete
signals a? and b? can be defined as the functional

N

v=Yab/V{ al b} ®

i=1

where N is the length of a signal. iy denotes global correlation coefficient.

An example of local correlation is shown in Fig. 4. Fig. 4a shows the
removed noise using median filter after exact flattening. Fig. 4b shows the local
correlation between removed noise and denoised data. Another example is
shown in Fig. 5, where the event is not flattened well. Fig. 5a shows the
removed noise using median filter after imperfect flattening. Fig. 5b shows the
removed noise using median filter with variable window length after imperfect
flattening. Fig. 5a shows serious signal damage while the signal damage in Fig.
5b is much smaller since we can only observe a small amount of spatially
coherent signal. Figs. 5c and 5d show the local correlation maps corresponding
to Figs. 5a and 5b, respectively. We can observe clearly that the local
correlation map effectively detect where we lose useful signals. With this
criterion, we can compare the denoising performance of different methods even
in the case of field data applications.

Efficient deblending without correct normal moveout

In the proposed new deblending framework, the correct NMO is not
required. Instead, we need apply median filtering twice. The first median
filtering is applied with a fixed window length while the second median filtering
is applied with a variable window length.
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Fig. 4. (a) Removed noise using median filter after exact flattening. (b) Local correlation between
removed noise and denoised data.

As a comparison, we first outline the algorithm framework of the
traditional median filtering based deblending approach as follows:

1. Transform the blended data from CSG to CMG.
2. Apply velocity scan and pick the NMO velocity.
3. Apply normal moveout to raw blended records.
4. Apply median filtering along the offset direction in CMG.
5. Apply inverse normal moveout.
6. Iterate steps 2-5 by two or three times.
The efficient deblending framework is shown as follows:
1. Transform the blended data from CSG to CMG.
2. Apply a pseudo-NMO with a rough NMO velocity.

3. Apply the first median filter with a fixed window length along the offset
direction in CMG.

4. Apply median filtering with variable window length along the offset
direction in CMG. :

5. Apply inverse normal moveout.
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Fig. 5. (a) Removed noise using median filter after imperfect flattening. (b) Removed noise using
median filter with variable window length after imperfect flattening. (c) Local correlation between
removed noise and denoised data corresponding to (a). (d) Local correlation between removed noise
and denoised data corresponding to (b).

EXAMPLE

In this section, we use two examples to demonstrate the speedup and
effectiveness of the proposed method. We compare the deblending performance
in both data and image domains. The first example is a numerically blended
synthetic example. Fig. 6 is a comparison of different data sets. Fig. 6a show
the unblended data in common midpoint domain. Fig. 6b shows the blended
data, which is highly corrupted by the intense blending interference. Fig. 6¢
shows the deblended result using the proposed method and Fig. 6d shows the
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deblended data using the traditional median filtering based approach. It is salient
that both deblending methods are very successful. All the blending interference
are rejected while all useful signals are preserved very well. Note that to obtain
such similar performance, it takes 248 seconds for the traditional method and
it takes only 21 seconds for the proposed method. It is worth noting that most
of the computation time is due to the NMO based velocity analysis.

Data (Orignal) Data (Blended)

4 6
Midpoint (km)

4 6
Midpoint (km)

(a) (b)

Data (Deblended) Data (Deblended)

4 6 4 6
Midpoint (km) Midpoint (km)

(c) (d)

Fig.' 6. Comparison of CMP gathers. (a) Original unblended CMP gathers. (b) Blended CMP

gathers. (c) Deblended CMP gathers using PNMO-MF. (d) Deblended CMP gathers using
CNMO-MF.

Then we evaluate the denoising performance by checking the noise cubes
of different methods. The noise cubes are the difference between deblended data
and removed noise. The noise cubes corresponding to different methods are



466 BAI & WU

shown in Figs. 7a (PNMO-MF) and 7b (CNMO-MF), respectively. Figs. 7c and
7d show their corresponding local correlation cubes. It seems that both methods
obtain very small local correlation, indicating that both methods obtain
successful performance. We also plot a comparison of the average spectrum of
all the traces for different data in Fig. 8. The black line denotes the average
spectrum of clean data. The red line corresponds to blended data. The pink line
corresponds to PNMO-MF method. The blue line corresponds to the
CNMO-MF method. It is worth mentioning that the frequency band of the noise
is the same as the useful signal. Deblending removes a large portion of the noise
energy in the spectrum. Deblended data by two methods are almost the same in
the spectrum.
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Fig. 7. (a) Noise cube using PNMO-MF. (b) Noise cube using CNMO-MF. (c) Local correlation

between deblended data and removed noise using PNMO-MF. (d) Local correlation between
deblended data and removed noise using CNMO-MF.
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Fig. 8. Comparisons of the average spectrum of all the traces. The black line denotes the average
spectrum of clean data. The red line corresponds to blended data. The pink line corresponds to
PNMO-MF method. The blue line corresponds to the CNMO-MF method. Note that the frequency
band of the noise is the same as the useful signal. Deblending removes a large portion of the noise
energy in the spectrum. Deblended data by two methods are almost the same.

We further compare the migrated images of different datasets and show
the results in Fig. 9. Fig. 9a shows the migrated image of unblended data using
prestack Kirchhoff time migration (PSKTM) method. Fig. 9b shows the
migrated image of blended data using PSKTM method. It can be seen from Fig.
9b that the blending interference causes extremely strong migration artifacts in
the final image. Figs. 9c and 9d demonstrate the migrated images of the
deblended data using the proposed and traditional methods, respectively. The
migrated images in Figs. 9c and 9d are almost the same, and are much cleaner
than the migrated image from blended data. This test demonstrates that the
proposed method can obtain a similar deblending result and a corresponding
migration image as the traditional method, but at a very low cost.
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Fig. 9. Comparison of migration results. (a) Migrated result of unblended data. (b) Migrated result
of blended data. (c) Migrated result of deblended data using PNMO-MF. (d) Migrated result of
deblended data using CNMO-MF.

We then use a numerically blended field data set to further demonstrate
the performance. Fig. 10 shows the original seismic record and blended seismic
record in shot-offset domain. In order to apply the median filtering method, we
first transform the data from shot domain to midpoint domain, and the blended
data in the common midpoint domain is shown in Fig. 11. It is obvious that the
blended data is extremely noisy due to the strong crosstalk caused by
simultaneous shooting. Fig. 12 shows a comparison of deblended data using two
methods in common midpoint domain. Fig. 13 shows a comparison of two
deblended data in common shot domain, which confirms that both the deblending
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Fig. 10. (a) Gulf of Mexico dataset. (b) Blended data in time-shot-offset (TSO) domain.
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methods are very successful. While both methods obtain almost the same
performance, the proposed method obtains a computational speedup of more
than 10 times. The detailed comparison of computing time is provided in the
second row of Table 1. Fig. 14 shows the migration results of different data
sets. Figs. 14a-14d correspond to the unblended data, blended data, deblended
data using the proposed method, and deblended data using the traditional
method, respectively. We also zoom a portion from the migration images of
different data sets and show them in Fig. 15 for better comparison. The
migrated images of two deblended data are both very close to that of the
unblended data and contains much less artifacts than that of the blended data.

Table 1. Comparison of computational time between traditional and proposed deblending framework.
In this comparison, two NMO velocity analysis are applied in the traditional approach.

Test Synthetic example Field data example
Time of traditional framework (s) 248 837
Time of proposed framework (s) 21 65

Half-0ffset (km)

Time (s)

8 9 10 11 12 13 14 15 1
Midpoint (km) Half-0Offset (km)

Fig. 11. (a) Blended data in time-midpoint-offset (TMO) domain.
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Fig. 12. (a) Deblended data in time-midpoint-offset (TMO) domain using PNMO-MF. (b) Deblended
data in time-midpoint-offset (TMO) domain using CNMO-MF.
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Fig. 13. (a) Deblended data in time-shot-offset (TSO) domain using PNMO-MF. (b) Deblended data
in time-shot-offset (TSO) domain using CNMO-MF.
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Fig. 14. Comparison of migration results. (a) Migrated result of unblended data. (b) Migrated result
of blended data. (c) Migrated result of deblended data using PNMO-MF. (d) Migrated result of
deblended data using CNMO-MF.
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Fig. 15. Zoomed comparison of migration results. (a) Migrated result of unblended data. (b)

Migrated result of blended data. (c) Migrated result of deblended data using PNMO- MF. (d)
Migrated result of deblended data using CNMO-MF.

CONCLUSIONS

We have outlined an efficient deblending framework that is based on a
median filter that has a spatially variable filtering window length. The traditional
widely used deblending method that is based on the standard median filtering
requires two or three times of velocity scanning and NMO corrections, which
is very computationally expensive. Considering the massive field data recorded
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from the simultaneous source acquisition, the proposed fast deblending
framework can be more practical in efficiently obtaining deblended clean dataset
from raw seismic records that are corrupted by intense blending interference.
The synthetic and field data examples show that the proposed deblending
framework can obtain a similar deblending result compared with the traditional
approach but can obtain more than 10 times efficiency improvement. The
comparison between migrated results of unblended data, blended data,
deblending data using different approaches, further confirms the superior
performance of the proposed workflow.
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