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ABSTRACT

Bai, M., and Wu, J., 2019. Iterative sparse deconvolution using seislet-domain constraint.
Journal of Seismic Exploration, 28: 73-88.

Deconvolution can help improve the resolution of seismic data. We introduce a
deconvolution formulation that can arbitrarily select the resolution level of the seismic
data by defining a simple squeezing factor. Considering the ill-posedness of the
deconvolution problem, some proper regularizations should be added when iteratively
solving the deconvolution-related inverse problem. Traditionally used Fourier-domain
constraint can be effective only when the seismic data contains linear events. We propose
a seislet-domain constraint to regularize the deconvolution problem to deal with the
curved events in seismic data. The seislet transform compressed the seismic data along
structural direction, and thus can obtain the optimal sparsity. We apply the proposed
method to both synthetlc and field data examples and obtain encouraging performance.

KEY WORDS: deconvolution, noise attenuation, seislet transform, sparse inversion,
regularization.

INTRODUCTION

The successful characterization of subsurface hydrocarbon reservoirs
from seismic data highly depends on a clean and high-resolution seismic
image. A lot of methods have been developed to improve the quality of
seismic images. One widely used approach to improve seismic image is to
apply some random noise attenuation approaches to remove the noise (either
generated from the migration artifacts or from the ambient noise on the raw
pre-stack seismic data) (Gan et al., 2016d; Zu et al., 2017a,b; Chen, 2018).
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The simplest denoising method is by stacking the seismic data along
the offset direction (Yang et al., 2015; Xie et al., 2017). By stacking the
useful signals from multiple traces and multiple directions (e.g., offset and
midpoint), the signal is enhanced while influence of noise is mitigated.
Prediction based methods utilize the predictable property of useful signals to
construct prediction filterers to enhance signals and reject noise, for example,
f-x deconvolution (Canales, 1984), non-stationary predictive filtering (Liu et
al., 2012; Liu and Chen, 2013). Sparse transform based approaches first
transform seismic data to a sparse domain, then apply soft thresholding to
the coefficients, finally transform the sparse coefficients back to the time-
space domain. Widely used sparse transforms are Fourier transform (Zhong
et al., 2016), curvelet transform (Zu et al., 2016), seislet transform (Gan et
al., 2015b, 2016a; Wu et al., 2016; Gan et al., 2016b), Radon transform (Xue
et al., 2016, 2017), and different types of wavelet transforms (Liu et al.,
2016¢,b). A recently popular transform is based on the machine learning
engine to train adaptive transform basis in order to better deal with the
complexity in various types of seismic data, which is called the dictionary
learning based sparse transform (Chen, 2017; Siahsar et al., 2017a,b).
Decomposition based approaches decompose the noisy seismic data into
different components and then select the principal components to represent
the useful signals. Empirical mode decomposition and its variations (Chen
and Ma, 2014; Chen, 2016; Chen et al., 2016a, 2017b,d,a), variational mode
decomposition (Liu et al., 2016a, 2017, 2018), singular value decomposition
based approaches (Gan et al, 2015a), morphological component
decomposition based approaches (L1 et al., 2016a,b; Huang et al., 2017,
2018a), regularized non-stationary decomp051tion based approaches (Wu et
al., 2018) are frequently used to extract the extract the useful components in
multi-dimensional seismic data. Rank-reduction based approaches assume
the seismic data to be low-rank after some data rearrangement steps (Bai et
al., 2018). Such methods include the Cadzow filtering (Chen et al., 2016b,c;
Zhang et al., 2017; Siahsar et al., 2017¢), Mean and median filters utilize the
statistical difference between signal and noise to reject the Gaussian white
noise or impulsive noise (Gan et al., 2016¢; Bai and Wu, 2017; Chen et al.,
2017c; Huang et al., 2018b). Instead of proposing a standalone denoising
strategy, Chen and Fomel (2015) proposed a two-step denoising approach
that tries to solve a long-existing problem in almost all denoising approaches:
the signal leakage problem. By proposing a new concept called local
orthogonalization, Chen and Fomel (2015) retrieved the coherent signals
from the removed noise section to guarantee no signal leakage in any
denoising algorithms.

All the published methods have their own pros and cons regarding the
denoising assumptions. Increasing the resolution of seismic data is also of
great importance to seismic data processing. Seismic deconvolution is such
as a process to uncover the subsurface reflectivity structure by removing the
earth response from the data. In this paper, we first introduce a framework in
which the noise attenuation problem and the resolution enhancing problem
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are solved simultaneously (Chen and Jin, 2015). We first review the
convolution model widely used in the traditional seismic deconvolution
literature and then introduce a new inverse problem for simultaneously
removing noise and increasing resolution. Considering the ill-posedness of
the new inverse problem, a proper regularization should be applied.
Traditionally used Fourier-domain sparsity constraint cannot be effective
when the subsurface structure becomes complex (Chen and Jin, 2015; Bai
and Wu, 2018). To deal with the curving reflector structure, we propose to
apply the seislet-domain sparsity constraint to regularize the inverse problem.
The seislet transform compresses the seismic data along the structural
direction and thus can hopefully obtain the optimal sparsity for seismic data
compared with the state-of-the-art algorithms. Bot synthetic and field data
examples are used to demonstrate the superior performance of the proposed
method.

THEORY

Deconvolution formulation

In the case that no random noise involved, the convolution model
for post-stack seismic data can be expressed as:

d=Wr |, (1)

where d denotes seismic data, note that the multi-dimensional seismic
data has been reshaped into 1D vector in the formulation, W is the
wavelet convolution operator and r is the subsurface reflectivity.

Suppose we can enhance the resolution of the seismic data by
squeezing the wavelet, we can use the similar convolution model to
denote the synthesized process:

ds = W,r | (2)

where d; denotes the squeezed seismic data, Wi is the convolution
operator that is composed of the squeezed wavelet Ws (t) = w()\t).

ws(t)and W(t) denote the squeezed and the original wavelets, respectively.
A (> 1) is the squeezing factor. Usually we choose A = 4 to balance the
resolution enhancement and the interpretation difficulty.

In our formulation, the generalized deconvolution aims to obtain
the data as if the real seismic wavelet is the squeezed wavelet, we can
combine eqs. (1) and (2) and formulate the following equation:
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_ ~1
d=WWd, | (3)

where WS ! denotes the deconvolution operator that is composed of the
squeezed wavelet. The squeezed version of the original source wavelet.
The squeezing process acts as the simplest form of the wavelet shaping
step.

In reality, there is much random noise in the seismic data. Although,
taking random noise into account, all egs. (1), (2), and (3) will be
modified, we can generally modify eq. (3) to summarize all the changes

d=WW;,'d, +n , (4)

where n denotes the random noise vector, which is unknown. Eq. (4) can
be formulated into a classic form of inverse problem:

Fm+n=d |, (5)
-1

where ¥ =WW," denotes the forward operator, m = dg denotes the

model, and d denotes the observed data. We now turn to solving inverse

problem (5).

Inversion by shaping regularization

The shaping regularization Fomel (2007) can offer us much
freedom in solving the inverse problem (5). The unknown m in eq. (5)
can be recovered iteratively using the nonlinear shaping regularization:

m,; = Sm, + B(d — Fm,)] ’ (6)
where operator § shapes the estimated model into the space of more
admissible models at each iteration Fomel (2007) and B is the backward
operator that provides an inverse mapping from data space to model space.
Daubechies et al. (2004) proved that, if S is a sparse domain nonlinear
thresholding operator, B = FT, where F” is the adjoint operator of F,
iteration (6) converges to the solution of eq. (7) with a L, regularization
term:

mniln | Fm—d |5+ || A” m | (7)
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where p is a controlling factor and A~! denotes a sparsity-promoting
transform.

The nonlinear operators S and B can be chosen as any combination
of operators that can make the iteration converge. For example, S can be a
coherency-promoting operator (Chen et al., 2014), or piecewise-constant
layering constraint operator (Fomel, 2008). Thus, the shaping
regularization framework is very flexible in solving inverse problem (5).
The connections between linear shaping regularization (when S and B are
both linear operators) and the Tikhonov regularization can be found in
detail in Fomel (2007). More details about the nonlinear shaping
regularization can be found in Fomel (2008).

In this paper, we adopt the shaping regularization framework 6 to
solve the inverse problem. The shaping operator S is chosen as a
transform domain thresholding operator. In order to set the optimal
threshold, during each iteration, we set the threshold as the minimum of
the p% largest coefficients. be introduced in detail in the next section. The
backward operator B is chosen as the pseudo-inverse of F, as suggested in
Daubechies et al. (2008). However, the sparsity in the transform domain
plays an important role in the final result. The Fourier-domain sparsity
constraint is usually used for sparsity constraint, e.g., in (Abma and Kabir,
2006). However, we propose to use the seislet-domain sparsity constraint
to regularize the inverse problem. In the next section, we will briefly
introduce the seislet transform.

Brief review of the seislet transform

The seislet transform is based on the second-generate wavelet
transform, which is defined with the help of the wavelet-lifting scheme
(Sweldens, 1995) combined with local plane-wave destruction. The
wavelet-lifting utilizes predictability of even traces from odd traces of 2D
seismic data and finds a difference r between them, which can be
expressed as:

I':O—P[e] (8)

b

where P is the prediction operator. A coarse approximation ¢ of the data
can be achieved by updating the even component:

c:e—i—U[r] , (9)

where U is the updating operator.
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The digital wavelet transform can be inverted by reversing the
lifting-scheme operations as follows:

e:c—U[r] (10)

b

o=r+Ple] (11)

The forward transform starts with the finest scale (the original
sampling) and goes to the coarsest scale. The inverse transfrom starts with
the coarsest scale and goes back to the finest scale. At the start of forward
transform, e and o corresponds to the even and odd traces of the data
domain. At the start of the inverse transform, ¢ and r will have just one
trace of the coarsest scale of the seislet domain.

The above prediction and update operators can be defined, for
example, as follows:

Ple], = (P [ex1] + PL [ex]) /2

: (12)
and
Ultly = (P ] + P ) /4 a3
P(+) P(_) . .
where * k and * k£ are operators that predict a trace from its left and

right neighbors, correspondingly, by shifting seismic events according to
their local slopes. This scheme is analogous to CDF biorthogonal
wavelets (Cohen et al., 1992). The predictions need to operate at different
scales, which means different separation distances between traces. Taken
through different scales, eqs. (8)-(13) provide a simple definition for the
2D seislet transform. More accurate versions are based on other schemes
for the digital wavelet transform (Liu et al., 2009).

EXAMPLES

We use two synthetic examples to demonstrate the performance of
different methods, one being relatively simple and one being relatively
complex. The first example is the well-known wedge model, as shown in
Fig. 1a. The data after deconvolution using the Fourier-domain sparsity
constraint is shown in Fig. 1b. The data after deconvolution using the
seislet domain sparsity constraint is shown in Fig. 1c. It is obvious that
the strong noise has been removed effectively and the resolution has been
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enhanced greatly, and more importantly, the two deconvolved data are
almost the same. We can get an initial conclusion that for relatively
simple structure (i.e., linear events), the Fourier method and the seislet
method can obtain similar results. We estimated the wavelet by stacking
part of the data along the spatial dimension. The estimated wavelet is
shown in Fig. 2a. The squeezed wavelet using a squeezing factor A = 4 is
shown in Fig. 2b. Fig. 3 shows a single-trace comparison between the
original data and the data using different approaches. The comparison
further confirms that the two methods are very close in this example.
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Fig. 1. The first synthetic data example (the wedge model). (a) Noisy data.
(b) Deconvolved data using the Fourier-domain sparsity constraint.
(c) Deconvolved data using the seislet-domain sparsity constraint.
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Fig. 2. The first synthetic data example (the wedge model). (a) Estimated wavelet and
(b) the squeezed wavelet.
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Fig. 3. Single-trace comparison of the first synthetic data example.
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The second example is a slightly different model but is more
complex. The model is shown in Fig. 4a. As can be seen in Fig. 4a, there
is a curving event in the current model. The Fourier-domain method
removes a lot of curving energy, as can be seen in Fig. 4b. The proposed
method, however, preserves the curving event well, as seen in Fig. 4c. We
also show a spectrum comparison in Fig. 5. It is obvious that the
deconvolved data both have wider spectrum than the raw data. Besides,
the proposed seislet constraint preserves the curving signal energy much
better than the Fourier-domain constraint.
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Fig. 4. The second synthetic data example. (a) Noisy data. (b) Deconvolved data using
the Fourier-domain sparsity constraint. (¢) Deconvolved data using the seislet-domain
sparsity constraint.
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Fig. 5. Spectrum comparison of the second synthetic data example. (a) Noisy data.

(b) Deconvolved data using the Fourier-domain sparsity constraint. (¢) Deconvolved data
using the seislet-domain sparsity constraint. Note the spectrum whitening and the well
preserved signal energy in the spectrum using the proposed method.

Fig. 6 shows a single-trace comparison between the original data
and the data using different approaches, which clearly demonstrates that
the blue line (corresponding to the Fourier method) and the green line
(corresponding to the seislet method) deviate a lot.

The next example is a land post-stack seismic section, as shown in
Fig. 7a. The deconvolved results using the two methods are shown in Figs.
7b and 7c, respectively. It is clear that the Fourier-domain constraint
method removes a lot of details of the data while the proposed seislet-
domain constraint preserves the curving details very well. Although there
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seems to be an amplitude banding issue in the result, the proposed method
1s more convincing, as inferred from the synthetic test. For a better
comparison, we zoomed three sections from different data in Fig. 7 and
show them in Fig. 8. It is salient that the results from the Fourier-domain
constraint contain almost flat events while the curving events are
maintained well using the seislet-domain constraint.
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Fig. 6. Single-trace comparison of the second synthetic data example.
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Fig. 7. The field data example. (a) Field data. (b) Deconvolved data using the Fourier

domain sparsity constraint. (¢) Deconvolved data using the seislet-domain sparsity
constraint.
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Fig. 8. The field data example (zoomed comparison). (a) Field data. (b) Deconvolved data

using the Fourier-domain sparsity constraint. (¢) Deconvolved data using the seislet
domain sparsity constraint.

CONCLUSIONS

We have proposed a novel regularization method for constraining
iterative deconvolution. The regularization is applied using the shaping
regularization framework and a seislet domain sparsity constraint.
Compared with the Fourier-domain sparsity constraint, the seislet-domain
constraint can help the inversion preserve curving reflection events. The
wedge model shows that in structurally simple data, the proposed method
can obtain the similar performance as the Fourier-domain constraint
method. However, for more complicated data, the proposed method
outperforms the traditional method. The field data example further

demonstrates the superior performance of the seislet-domain constraint to
the traditional Fourier-domain constraint.
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