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ABSTRACT

Chen, W., Song, H. and Chuai, X.Y., 2019. Fully automatic random noise attenuation
using empirical wavelet transform. Journal of Seismic Exploration, 28: 147-162.

Strong noise in seismic data seriously affects many steps in seismic data
processing and imaging. While most traditional methods depend on carefully tuned input
parameters by human, we are proposing an automatic noise attenuation algorithm to
facilitate a fast preprocessing of massive prestack seismic data. In the proposed algorithm,
the non-stationary seismic data is first adaptively decomposed into empirical components
via empirical wavelet transform (EWT) according to the frequency contents in the data.
Then, the first component is selected to represent the useful signals. This process can be
implemented in a fully automatic way. We compare the decompositions from EWT and
the empirical mode decomposition (EMD) and find that the EWT has a stronger
capability in separating the useful signals and the random noise. We also test the
proposed algorithm in both multi-channel synthetic and field data examples. The results
demonstrate that the new adaptive method can obtain better denoising performance than
the state-of-the-art methods.

KEY WORDS: random noise suppression, empirical wavelet transform,
seismic signal processing, automatic processing, intrinsic mode function.
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INTRODUCTION

Attenuation of random seismic noise is a long-standing problem in
the reflection seismology community. Because of the crucial benefits of
removing random noise to many seismic processing and imaging tasks,
dozens of methods to attenuate seismic noise, also known as denoise, have
been investigated in the literature in the past decades (Chen and Fomel, 2015;
Qu et al., 2015; Gan et al., 2016¢; Zu et al., 2017c; Yang et al., 2018; Li et
al., 2016a,b; Qu et al., 2016; Chen, 2018a).

The simpest denoising method is by stacking the seismic data along
the offset direction (Yang et al., 2015; Zu et al., 2016b). By stacking the
useful signals from multiple traces and multiple directions (e.g., offset and
midpoint), the signal is enhanced while influence of noise is mitigated.
Prediction based methods utilize the predictable property of useful signals to
construct prediction filterers to enhance signals and reject noise, for example,
t-x predictive filtering (Abma and Claerbout, 1995), f-x deconvolution
(Canales, 1984), the polynomial fitting based approach (Liu et al., 2011;
Chen et al., 2018), non-stationary predictive filtering (Liu and Chen, 2013).
Different types of median filters can be used to remove spike-like noise in
seismic data (Gan et al., 2016d; Bai and Wu, 2017; Zu et al., 2017a,b; Zhao
et al., 2018; Xie et al., 2018).

Sparse transform based approaches first transform seismic data to a
sparse domain, then apply soft thresholding to the coefficients, finally
transform the sparse coefficients back to the time-space domain (Chen et al.,
2016a). Widely used sparse transforms are Fourier transform (Zhong et al.,
2016), curvelet transform (Candes et al., 2006; Neelamani et al., 2008; Liu et
al., 2016c¢; Zu et al., 2016a), seislet transform (Fomel and Liu, 2010; Chen et
al., 2014; Gan et al., 2015b, 2016¢c; Liu et al., 2016d; Wu et al., 2016; Bai
and Wu, 2018), Radon transform (Xue et al., 2016b, 2017; Chen, 2018b),
and different types of wavelet transforms (e.g., physical, synchrosqueezing,
etc) (Donoho and Johnstone, 1994; Zhang and Ulrych, 2003; Gao et al.,
2006; Liu et al., 2016e,b). A recently popular transform is based on the
machine learning engine to train adaptive transform basis in order to better
deal with the complexity in various types of seismic data, which is called the
dictionary learning based sparse transform (Chen, 2017; Siahsar et al., 2017,
Wu and Bai, 2018).

Decomposition based approaches decompose the noisy seismic data
into different components and then select the principal components to
represent the useful signals. Empirical mode decomposition (EMD) and its
variations (Chen and Ma, 2014; Chen, 2016; Gan et al., 2016a,b; Chen and
Fomel, 2018), variational mode decomposition (Liu et al., 2016a, 2017),
singular value decomposition based approaches (Bekara and van der Baan,
2007; Gan et al., 2015a; Chen et al., 2016b; Xue et al., 2016a; Zhang et al.,



149

2016; Wang et al., 2017; Zhou et al., 2017; Chen et al., 2017; Zhou et al.,
2018; Bai et al., 2018), regularized non-stationary decomposition based
approaches (Wu et al., 2018; Chen, 2018c) are frequently used to extract the
useful components in multi-dimensional seismic data in the literature.

Although there are many existing denoising approaches, no
approaches are completely automatic so far. The traditional methods reply
on more or less input parameters that requires heuristic knowledge and thus
are not convenient to apply. In this paper, we propose a fully automatic
denoising algorithm based on the empirical wavelet transform (EWT) (Gilles,
2013). The EWT method can also adaptively decompose a signal containing
many frequency components into corresponding frequency signals as EMD
or EEMD does, but the modes generated from the raw signal can be
reasonably interpreted. It is worth mentioning that the EWT has been
applied in time-frequency analysis in many fields, including the seismic data
analysis field (Liu et al.,, 2016b). However, it has never been applied to
denoise seismic data so far. Here, we are reporting a successful application
of the adaptive signal decomposition technique to automatic seismic noise
attenuation. We will show in details how the method works and how the
denoising performance looks like using several realistic examples.

METHOD

We denote the analyzed signal as s (t). In the time domain, wavelet
sets {yjj } are defined by mother wavelet function yy y with mean value
zero, scale factor v (v > 0) and shift factor u (u > 0).

We consider a normalized Fourier axis with period 2n, and make
discussions in consideration of Fourier frequency domain as ® € [0, «] in
order to satisfy the Shannon theorem.

Next, we disperse the Fourier frequency domain [0, m] into N
continuous subintervals, so we get N + 1 discontinuity points and denote the
nth one as wp+1, the first one as o = 0 and the last one as wN = n. Then we

can get the nth subinterval as dy; = [®n—1,0p]. It is clear that U Nn 1dn =
[0,]. If we center on discontinuity point ®p, a transitional zone denoted as
T, whose width is 2t can be defined.

Empirical wavelet is defined as a band-pass filter on the domain dj.
In addition, for the half of the width of the transition zone t,, we generally
have 1, = yop, and 0 < y < 1. Similar to the structure strategy of
Littlewood-Paley wavelet and Meyer wavelet (Gilles, 2013), for Vn > 0, we
can define the empirical scale function as:
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q;n(w)< €os [% (2’71111 (|w|_(1_7)wn))]a
(1=79)wn <|w [ < (1 +7)wn
0, else "

and empirical wavelet as:

(1, (1+7)wn < w] < (1 =7)wnta
cos % (2%‘;+1 (lw| = (1 =7) Wn+1)):| ;
D (w) 4 (L= wnp1 < w [ <A+ 7)wnm
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In the above two equations, B (x) is 0 or 1, and generally we have
B(z) =" (35 — 84z + 70z* — 202°) 3)

How to divide the Fourier spectrum is of vital importance in EWT,
which is directly related to the adaptivity of the decomposition of the
original signal. Here we imitate the classical wavelet transform theory to
define the EWT, so the detailed coefficients are defined by the inner product
of empirical wavelet and original signal:

W (n,t) = (s,p) = /s (T) Up, (T —t)dT "

W&(n,t) in eq. (4) can also be expressed as cp(t) and the summation of cy(t)
reconstructs the original signal s(t). In an EMD-like format, we have

s(t) =) cnlt)
i=1 , (5)
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where c,(f) denotes the nth component and is also called intrinsic mode

function (IMF). N denotes the number of components. Different component
after EWT decomposition usually correspond to different frequency bands.
The first component, i.e., c(¢) is usually corresponding to the most

distinct/dominant frequency band, which indicates the frequency band of the
reflection signals.

The beauty of the EWT method is that the decomposition process is
fully automatic. Although EMD has a similar advantage of being adaptive, it
is remained as empirical. Because of the lack of mathematical support, the
modes in EMD are not flexibly controlled.

An example of the EWT decomposition is shown in Figs. 1-4. Fig. 1
shows a single-trace synthetic example. In Fig. 1, (a) denotes a clean seismic
trace and (b) denotes a noisy seismic trace, with a signal-to-noise ratio (SNR)
equal to 0.32 dB. The definition of SNR 1is defined as

Hdclean H%

enoised — dH%

1da , (6)

where d.;,, denotes the exact solution, i.e., the clean data, and d ., ;504
denotes the denoised data.
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Fig. 1. Single-trace example. (a) Clean seismic trace. (b) Noisy seismic trace.
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Fig. 2 shows the decomposed results using EWT. (a)-(e) denote the
first to fifth components, respectively. It is clear that first component mainly
represents the useful signals. Fig. 3 shows the decomposed results using
EMD. (a)-(h) denote the first to eighth components. It is obvious that most
decomposed components are irregular and do not show clear morphological
structure of the useful signals. In EMD method, in order to preserve
sufficient useful signals, we usually remove only the first component, which
stands for the high-frequency oscillating information. Fig. 4 provides a
comparison between two methods. The clean data is also shown as a
reference. It is clear that the denoised data (shown in ¢) is much smoother
and cleaner than that from the EMD method (shown in e). It is encouraging
that the EWT method recovers the Ricker waveform very well due to the use
of wavelet basis function. The SNRs of the denoised results using EWT and
EMD are 5.32 dB and 4.13 dB, respectively.
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Fig. 2. Decomposed results using EWT. (a)-(e): First to fifth components.
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Fig. 3. Decomposed results using EMD. (a)- (h): First to eighth components.
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Fig. 4. Comparison of signal-and-noise separation performance. (a) Clean data. (b) Noisy
data. (c) Denoised data using EWT. (d) Noise from the EWT method. (e) Denoised data
using EMD. (f) Noise from the EMD method.

EXAMPLES

In this section, we mainly focus on investigating the performance of
the proposed method when applied to multi-channel seismic data and
comparing the performance from the pro- posed method with some
state-of-the-art methods. Fig. 5 shows the synthetic example. The synthetic
data 1s very realistic, because it contains several typical morphological
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structures that are common in seismic data, e.g., the crossing and curving
events, faults, and discontinuities. Fig. 6 shows a comparison of denoised
data using four different methods. Fig. 6a shows the result from the FX
method. For the FX method, we use a prediction filter of 6 points length. Fig.
6b shows the result from the SSA method. To deal with the complicated
structure, we use a rank equal to 10. For the proposed method, as mentioned
previously, we do not specify any parameters. From the denoised results, it
is straightforward to conclude that both FX and SSA methods damage a lot
of the edges. It is clear that the discontinuities in Fig. 5 are smeared a lot.
Since FX and SSA methods are both based on the spatial coherency of the
seismic events, they will inevitably make the denoised data spatially
smoothed. However, the proposed method seems to obtain a successful
preservation of the edges.

Cloan data

Time (s)

Time (s)

Fig. 5. Synthetic example. (a) Clean data. (b) Noisy data.

To compare the denoising performance, it is useful to compare the
removed noise. The removed noise is calculated by subtracting the denoised
data (each subfigure in Fig. 6) from the noisy data (in Fig. 5b). Ideally, the
removed noise should only contain random noise. If there is spatially
coherent energy in the removed noise, it indicates that the denoising method
damages some useful energy. We show the removed noise corresponding to
four different methods in Fig. 7. Fig. 7a corresponds to the FX method,
which contains significant coherent energy. Fig. 7b shows the noise from the
SSA method, which also contains a lot of coherent energy, especially those
edge positions. Fig. 7c, however, does not contain any coherent energy.
From this comparison, we conclude that only the proposed method among
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the four aforementioned methods can preserve all the useful signals. To
make a quantitative comparison, we calculate the SNRs corresponding to the
FX, SSA, and the proposed methods as 14.87 dB, 13.36 dB, and 15.37 dB,
respectively. Note that the SNR of the noisy data (shown in Fig. 5b) is 7.49
dB. We find that the proposed method obtains the largest SNR improvement.
It is also worth mentioning that both FX and SSA methods are tuned
carefully to ensure the best performance to be presented.

Time (s)

Time (s)

Time (s)

10 20 30 40 0 (2]

Fig. 6. Comparison of the denoised data for the synthetic example. (a) Denoised data
using FX method. (b) Denoised data using SSA method. (c¢) Denoised data using the
proposed method.
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Fig. 7. Comparison of the removed noise for the synthetic example. (a) Removed noise
using FX method. (b) Removed noise using SSA method. (¢) Removed noise using the
proposed method.

To further examine the performance, our proposed method is applied
to a post-stack field seismic data set, which consists of 219 traces and 1251
samples with a sample interval of 4 ms, as shown in Fig. 8. The data set
mainly includes discontinuous events, nonstationary events, and faults. In
other words, the non-linear and non-stationary signals in this data set are
widespread. From Fig. 8, it is obvious that the useful signal is blurred by
noise. The signal is no longer mapped to a superposition of simple
harmonics but rather a superposition of non-linear and non-stationary ones.
The performance of this example is shown in Fig. 8. In Fig. 8, the left panel
denotes the raw field data, the middle panel denotes the denoised data using
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the proposed method, the right panel denotes the removed noise. Note that
for processing such complicated field data, it is exciting that we do not
specify any parameters for the proposed method. Thus, the automatic benefit
is the best advantage of the proposed method, which is exceptionally
important when dealing with massive seismic data.

Real data example
T ot | SR 3 )

Fig. 8. Field data example. Left: noisy data. Middle: denoised data. Right: removed
noise.

CONCLUSIONS

We have introduced a simple and adaptive denoising algorithm based
on the empirical wavelet transform (EWT). The EWT has a stronger
mathematical background than the empirical mode decomposition (EMD)
method and also has a better signal-and-noise separability. In the proposed
method, single-trace seismic data is first decomposed into different modes.
Then, the first decomposed component is selected to represent the useful
reflection signals. The method is free of input parameters and thus is very
easy to apply. We demonstrate through both synthetic and field data
examples, that the proposed method can preserve spatial edges and does not
damage useful signals when applied to denoise multi-channel seismic data.
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