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ABSTRACT 
 
Wang, W. and McMechan, G.A., 2019. 3D isotropic elastic reverse time migration using 
signed magnitudes of elastic data components. Journal of Seismic Exploration, 28: 
221-244. 
 
 Elastic reverse time migration (ERTM) is capable of characterizing subsurface 
properties more completely than its acoustic counterpart. P- and S-waves coexist in 
elastic wavefields, and their separation is required before, or as part of, applying the 
image conditions. Traditional P- and S-wave separation methods based on divergence and 
curl operators don't preserve the elastic vector information, and the associated polarity 
reversals of S-wave images are difficult to handle. Thus a preferable workflow for 
isotropic ERTM should include a vector decomposition of the elastic wavefields and a 
vector-based image condition that directly uses the signed magnitudes of the decomposed 
vector wavefields to produce PP and PS images. We propose a new 3D elastic image 
condition which is a source-normalized crosscorrelation of the signed magnitudes of the 
decomposed wavefields. The image condition is robust and stable for generating 3D PP 
and PS images and their corresponding angle domain common-image gathers (ADCIGs) 
with incident angles calculated from Poynting vectors. Comparisons between the 
proposed image condition and a vector-based dot-product image condition and show that 
the proposed image condition generates PP ADCIGs with a wider range of incident 
angles than existing dot-product image conditions. 
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INTRODUCTION 
 
 Elastodynamic wave equations can simulate seismic wave propagation 
with fewer assumptions than acoustic wave equations, as the former include 
both shear- and compressional wave propagations. 3D elastic migration, 
with multicomponent data as input, provides the foundation for structure 
imaging and elastic parameter estimation. 
 
 Migration of multicomponent data has been attempted in the past, using 
either ray-based or wave-based solutions. Ray-based examples include 
Kirchhoff migration (Kuo and Dai, 1984; Dai and Kuo, 1986; Hokstad, 
2000), where PP- and PS-wave traveltimes are calculated and amplitudes are 
summed along their corresponding traveltime trajectories. The PS separation 
is done implicitly by using P- and S-velocity models to compute the 
corresponding traveltimes. Multicomponent elastic Kirchhoff migration has 
the same limitations as acoustic Kirchhoff migrations; wave phenomena 
cannot be fully described by ray theory if the geology becomes complicated 
(Gray et al., 2001). Wave-based solutions (Chang and McMechan, 1986, 
1994; Whitmore, 1995), on the other hand, reconstruct the wavefields with a 
wave equation (Wapenaar and Haimé, 1990), and have fewer limitations 
than ray-based migrations. Sun and McMechan (2001) separate 
multicomponent data near the surface and use acoustic equations for 
separate PP and PS migrations. Elastic reverse time migration (ERTM) 
utilizes elastic wave equations directly, and constructs the source elastic 
wavefields forward in time and reconstructs the receiver elastic wavefields 
backward in time by using multicomponent seismic data as initial, and 
boundary conditions, respectively. 
 
 Different image conditions are applied in ERTMs. Early attempts include 
the excitation time image condition (Chang and McMechan, 1986), in which 
the image time is calculated by raytracing from the source point. The 
crosscorrelation image condition (Claerbout, 1985) remains the standard 
image condition for acoustic RTMs, but in ERTMs, a 
component-by-component crosscorrelation causes crosstalk between the 
unseparated P- and S-waves leads to artifacts which pose difficulties in 
interpretation. Yan and Sava (2008) apply divergence and curl operators to 
separate the P- and S-waves before applying the crosscorrelation image 
condition and demonstrate improvements in image quality. The polarity 
reversal problem of the PS image is generated by the curl operators and 
needs special treatment/corrections (Du et al., 2012, 2014) to avoid 
destructive interference in post-migration stacking. This phase shift does not 
occur in the proposed algorithm. Rocha et al. (2016) propose an energy 
norm image condition for elastic imaging which constructs a single image 
from all wave modes, thus no wave mode separation or decompositions are 
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needed. However, the P- and S-waves have distinctive properties during 
propagation in different media, and generating PP and PS images separately 
is helpful for interpretation purposes, for example the detection of fluids 
(Stewart, 1990). 
 
 Recently, P- and S-wave vector decomposition (Ma and Zhu, 2003; 
Zhang et al., 2007; Wang et al., 2015, 2016b; Zhu, 2017; Wang et al., 2018) 
is gaining popularity. Vector decomposition preserves the amplitude and 
phase in the input elastic wavefield and retains the same physical magnitude 
and units, and thus is considered to be more accurate than using divergence 
and curl operators which change the phase and amplitude of the input 
wavefield. 
  
 Wang et al. (2016) and Du et al. (2017) obtain decomposed elastic 
vectors from a source and receiver wavefield and use a dot product type of 
crosscorrelation image condition to generate images. The dot product, 
however, leads to image amplitude changes as a function of the open angle 
between the incident and reflected (converted) waves, causing difficulties in 
AVA analysis. Du et al. (2017) also propose to crosscorrelate P-wave stresses 
as an alternative to construct PP images. Wang and McMechan (2015, 2016) 
use the signed magnitude ratio to construct images by a 2D (or 3D) 
excitation amplitude image condition. This image condition applies Poynting 
vectors (Červený, 2001) calculated from decomposed P- and S-waves to 
obtain angle-domain common-image gathers (ADCIGs). The excitation 
amplitude image condition (Nguyen and McMechan, 2013; Wang and 
McMechan, 2015) features a significant reduction in the source wavefield 
storage and the I/O burden, but it requires sophisticated improvements to 
include multipathing (Jin et al., 2015), which is common in complicated 
models. In this paper, we extend the previous excitation amplitude based 
elastic image condition to a more robust source-normalized 
magnitude-crosscorrelation type image condition and apply it to 3D ERTMs. 
 
 P- and S-wave vector decomposition is also possible in anisotropic 
wavefields (Cheng and Fomel, 2014; Wang et al., 2018). However, we limit 
the scope of this initial elastic paper to isotropic media, as a main goal is the 
proof of concept. The paper is organized as follows; first the methodology 
for obtaining decomposed P- and S-wave vectors is described. Then we 
illustrate the procedure for implementing the 3D source-normalized 
magnitude-crosscorrelation elastic image condition. To limit the scope, only 
PP and PS images are generated and analyzed in this paper. The proposed 
3D ERTM procedure is successfully tested on a single-layer model and a 
portion of the SEG/EAGE Overthrust model (Aminzadeh et al., 1994).  
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METHODOLOGY 
 
 The procedure of 3D source-normalized magnitude-crosscorrelation 
ERTM is similar to that of the 2D excitation amplitude ERTM image 
condition Wang and McMechan (2015). In ERTMs, the source wavefield is 
extrapolated before the receiver wavefield extrapolation. Both elastic 
wavefield extrapolations involve P- and S-wavefield decompositions. The 
decomposed P- and S-wave particle-velocities and stresses are used to obtain 
their propagation directions and reflection polarities. In the following 
subsections, the procedures are explained and illustrated in detail. 
 
 
3D elastic wavefield extrapolation and PS decomposition 
 
 We use the 3D stress-particle-velocity formulation proposed by 
Madariaga (1976) and Virieux (1984), which includes the general Hooke's 
law 
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where τ is stress and 𝑣 is particle-velocity, and the subscripts indicate x-, y- 
or z-coordinates. 
 
 The stress-particle-velocity formulation extrapolates 3D isotropic elastic 
wavefields with coupled P- and S-waves; if they are not separated either 
before extrapolation, or as part of the image condition, they will be 
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superimposed as 'crosstalk' artifacts in the migrated images. Instead of using 
divergence and curl operators, which produce scalar and vector 
pseudo-potentials rather than particle vector components (Aki and Richards, 
1980; Yan and Sava, 2008), we decompose the wavefields while preserving 
their vector amplitude and phase. This can be achieved by calculating an 
auxiliary P-wave stress τ௣ which is a scalar wavefield similar to pressure in 
the acoustic wave equation, while solving the complete stress- 
particle-velocity formulation in eqs. (1) and (2). The calculation for P-wave 
stress has a scalar form (Xiao and Leaney, 2010) 
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Then the horizontal and vertical particle-velocity components of P-waves, 
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This gives a complete description of the vector P-wavefield; the S-wavefield 
can be obtained by subtracting the P-wavefield from the complete wavefield, 
component-by-component 
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where 𝑣௫
௦ , 𝑣௬

௦  and 𝑣௭
௦  are the x-, y- and z-direction particle-velocity 

components of the S-waves.  
 
 An example of elastic wavefield decomposition is shown in Fig. 1, 
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where an explosive source and a rotational source in the x-z plane are placed 
at the center of a homogeneous model with propagation velocities VP = 2.5 
km/s, VS = 1.6 km/s, and ρ = 2.1 kg/cm3. The first row (Figs. 1a - 1c) are 
the x-, y- and z-components of the original elastic wavefield snapshot; the 
second (Figs. 1d - 1f ) and the third (Figs. 1g - 1i) rows are the corresponding 
decomposed components of the P- and the S-waves with vector components 
preserved.  

 

 

Fig. 1. An elastic wavefield decomposition example in a homogeneous model. (a)-(c) are 
the X-, Y- and Z-components of the original particle-velocity components; (d)-(f) are the 
X-, Y- and Z-components of the decomposed P-wave particle-velocity components; (g)-(i) 
are the X-, Y- and Z-components of the decomposed S-wave particle-velocity 
components. 

 

3D source-normalized magnitude-crosscorrelation ERTM image 
condition 
 

 During the source wavefield extrapolation, the decomposed P-wavefield 

needs to be stored as time series snapshots, which includes the 
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particle-velocities (𝑣(௦௥௖)௫
௣ , 𝑣(௦௥௖)௬

௣ , 𝑣(௦௥௖)௭
௣ }) and the P-wave stress τp. The 

vector magnitudes of the particle-velocities of the source and receiver 

wavefields are crosscorrelated in the image condition, and both 

particle-velocities and stresses of each wavefield are input to obtain 

Poynting vectors (Červený, 2001). 

 

𝑠௝
௣= − τp𝑣௝

௣
,                        (6) 

where 𝑠௝
௣ are the P-wave Poynting vector components, and 𝑣௝

௣  are the 

components of the decomposed P-wave particle-velocity, for j = x, y, z. In 

this paper, we are interested in the PP and PS images, in which the incident 

wavefields are P-waves only; thus the S-wave Poynting vectors are not 

required to be calculated, although this has been done by Wang et al. 

(2016b). 

 

 The reverse-time receiver extrapolation follows the source extrapolation, 
during which the image condition is applied. We use the signed-magnitude 
crosscorrelation to construct the image. During application of the image 
condition, the signs of the reflections (of both PP and PS) are calculated as a 
function of position, incident angle and azimuth angle. 
 
 The signs of both PP and PS reflections can be determined from the 
principle that the incident and the reflected waves have the same polarity for 
a negative reflection coefficient, and opposite polarity for a positive 
reflection coefficient (Aki and Richards, 1980). For 3D models, the 
calculation for the signs of the reflections is more complicated. We assume 
only P-waves are present in the source wavefield, so theoretically, the 
reflections are all either PP or PSV, and the particle-velocity directions, 
propagation directions, and reflector normal are all in the same plane, for a 
reflection at a grid point. The azimuth angle is obtained from  

 

ø = atan2[𝑠(௦௥௖)௬
௣ , 𝑠(௦௥௖)௫

௣ ]   ,               (7) 
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where 𝑠(௦௥௖)௫
௣  and 𝑠(௦௥௖)௬

௣  are the x- and y-components of the P-wave 

Poynting vectors [eq. (6)] calculated from the source wavefield at each grid 

point and image time. For PP reflections, the incident and reflection angles 

are the same in an isotropic medium. The incident angle θ can then be solved 

from the vector dot product geometrical relation (Du et al., 2017; 

Shabelansky, 2017; Zhu, 2017) as 
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where the 𝐒෨௦௥௖
୮  and 𝐒෨௥௘௖

୮  are the normalized decomposed P-wave Poynting 

vectors of the source and the receiver wavefields, respectively. During the 

normalization, a threshold is applied to the magnitudes of the Poynting 

vectors, which are used as denominators for normalization, to prevent 

division by zero. This scheme is applied to both elastic image conditions 

which are compared in the Synthetic Tests section. |∙|  represents the 

magnitude of the vector argument. As proposed by Du et al. (2014), the 

reflector normal direction 𝒏ሬሬ⃗  can be obtained from 
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Similarly, the reflector dip direction 𝒅ሬሬ⃗  can be calculated from 

  

𝒅ሬሬ⃗ =𝐒෨௦௥௖
୮  + 𝐒෨௥௘௖

୮
.                    (10) 

 

 To stabilize the Poynting vectors in complex wavefields, we apply a 

median filter to the calculated propagation directions in the space domain 

(Jin et al., 2014). 

  

 The polarity of a PP reflection can be observed through its particle 
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motion normal to the reflector (Fig. 2a). To determine if the polarity of the 

PP reflection changes at a grid point, the recorded source P-wave 

particle-velocity vector 𝐕௦௥௖
୮  can be projected to the reflector normal 

direction 𝒏ሬሬ⃗ , to give the projected vector 𝐕෡௦௥௖
୮ . Then the decomposed P-wave 

particle-velocity components of the receiver wavefield  𝐕௥௘௖
୮  can also be 

projected to the reflector normal direction 𝒏ሬሬ⃗  to give 𝐕෡௥௘௖
୮ . The sign of PP 

reflection at each grid point can be obtained from 

 

sgn௣௣(𝑥, 𝑦, z, 𝑡, θ, ø)= ቊ
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୮
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୮ (𝑥, 𝑦, z, 𝑡) < 0,

−1, if  𝐕෡௦௥௖
୮ (𝑥, 𝑦, z, 𝑡) ∙ 𝐕෡௥௘௖

୮ (𝑥, 𝑦, z, 𝑡) > 0.
     (11) 

 

where the θ and ø are incident and azimuth angles calculated from the 

Poynting vectors as discussed above. 

 

 The polarity change of a PS reflection is determined from its particle 

motion parallel to the reflector (Fig. 2b) (Aki and Richards, 1980). Similar to 

the procedure to get PP reflection signs, we project the recorded source 

P-wave particle-velocity components 𝐕௦௥௖
୮  and the receiver S-wave 

particle-velocity components 𝐕௥௘௖
ୱ  on the reflector r to get their projections 

𝐕ෙ௦௥௖
୮  and 𝐕ෙ௥௘௖

ୱ , and the sign of the PS reflection can be obtained using 

 

sgn௣௦(𝑥, 𝑦, z, 𝑡, θ, ø)= ቊ
+1, if  𝐕ෙ௦௥௖

୮
(𝑥, 𝑦, z, 𝑡) ∙ 𝐕ෙ௥௘௖

ୱ (𝑥, 𝑦, z, 𝑡) < 0,

−1, if 𝐕ෙ௦௥௖
୮ (𝑥, 𝑦, z, 𝑡) ∙ 𝐕ෙ௥௘௖

ୱ (𝑥, 𝑦, z, 𝑡) > 0.
    (12) 

 
 This is different from the polarity correction strategy proposed by Du et 
al. (2012, 2014), in which the polarity reversal problem is brought by the 
curl operators, while in our approach, the elastic components are preserved 
after decomposition, as no curl operators are involved, and the polarity 
doesn't need to be corrected. Eq. (12) is designed to find the sign of PS 
reflection coefficients from the relations between the polarizations and their 
propagation directions. 
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Fig. 2. Kinematic example of (a) PP and (b) PS reflection particle-velocities and 
corresponding polarities (3D). 

 
 
 With knowledge of the signs of a PP or a PS reflection, we use the 
magnitude of the receiver (reflected) P- or S-waves crosscorrelated with the 
source (incident) magnitude to obtain an image, and then it is source 
normalized to represent the reflectivity (Sheriff and Geldart, 1995) at each 
image point. 
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I௣௣(𝑥, 𝑦, z)=
∑ sgn௣௣(𝑥, 𝑦, z, 𝑡)|𝐕௥௘௖

୮ (𝑥, 𝑦, z, 𝑡)||𝐕௦௥௖
୮ (𝑥, 𝑦, z, 𝑡)|்

௧ୀ଴

∑ |𝐕௦௥௖
୮ (𝑥, 𝑦, z, 𝑡)|

ଶ்
௧ୀ଴

, 

 (13) 

I௣௦(𝑥, 𝑦, z)=
∑ sgn௣௦(𝑥, 𝑦, z, 𝑡)|𝐕௥௘௖

ୱ (𝑥, 𝑦, z, 𝑡)||𝐕௦௥௖
୮ (𝑥, 𝑦, z, 𝑡)|்

௧ୀ଴

∑ |𝐕௦௥௖
୮ (𝑥, 𝑦, z, 𝑡)|

ଶ்
௧ୀ଴

, 

 
where  Ipp and  Ips are PP and PS images.  The incident angle θ and
azimuth angle ø are hidden for simplicity, but need to be included in 
the evaluation of eq. (13). 

 
  The differences and relations between the proposed image condition 
and the dot product image condition (Wang et al., 2016a;  Du et al., 
2017) can be found in Appendix A. 
 
 
SYNTHETIC TESTS 
 
 The proposed image condition is first tested on a flat layered elastic 
model (Fig. 3). The upper layer has VP = 2.5 km/s, Vs = 1.6 km/s and ρ = 
2.1 g/cm3; the lower layer has VP = 2.8 km/s, Vs = 1.7 km/s and ρ = 2.2 
g/cm3. The wavefields are extrapolated with an eighth-order in space, 
second-order in time, stress-particle-velocity, staggered-grid, finite- 
difference solution [eqs. (1) and (2)]. Convolutional perfectly matched layer 
(CPML) absorbing boundary conditions (Komatitsch and Martin, 2007) are 
used on all six grid edges to reduce unwanted reflections. The model (Fig. 3) 
has 5 m grid spacing in the x- y- and z-directions. Eight explosive sources 
with a 15 Hz Ricker wavelet are initiated and migrated one after another. 
The sources are evenly spaced on the surface along a circle with the center at 
(x, y) = (0.25, 0.25) km and radius = 0.02 km; 100 × 100 receivers are 
evenly spaced along the surface (z = 0.0 km) from (x, y) = (0.0, 0.0) km to 
(0.5, 0.5) km, with 5 m spacing in both x- and y-directions; the time sample 
increment is 0.5 ms. Each source is recorded by all receivers. 
 
 We use smoothed velocity and density models for ERTM, and apply the 
proposed 3D ERTM image condition. The migrated and stacked PP and PS 
images are shown in Figs. 4a and 4b. The PS image (Fig. 4b) has higher 
resolution and wider illumination than the PP image (Fig. 4a) because 
S-waves have shorter wavelengths and smaller reflection angles than the 
P-waves. The PP reflection angle in Fig. 4a is larger than the PS reflection 
angle in Fig. 4b. So the PS migrated images can get closer to the model edge, 
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and the horizontal shape of the PS illumination follows the rectangular shape 
of the receiver array. The PP horizontal illumination is smaller and more 
rounded than the PS because of its smaller incident angle aperture. Note that 
both the PP and PS images are single component [eq. (13)] and, because the 
PS image has consistent polarities across the source position, they will stack 
constructively, which is an essential advantage over using curl operators.  
 

 
 
Fig. 3. Two-layer model; the red spots are eight sources, evenly placed on the surface 
along a circle with the center at (x, y) = (0.25, 0.25) km and radius = 0.02 km. The PP 
and PS ADCIGs are obtained beneath the surface position (0.25, 0.25) km as marked by 
the blue arrow. 
 
 
 We obtain PP and PS ADCIGs at the surface center (x, y) = (0.25, 0.25) 
km (also marked in Fig. 3 with the blue arrow). The data for each of the 
eight sources are migrated and the ADCIGs collapse to one point at the 
depth of the migrated image. The PP (Fig. 5a) and PS (Fig. 5b) ADCIG 
slices are shown in polar coordinates at the image depth (obtained by 
picking the maximum value within a depth window). The incident angles are 
indicated from the circle center (0°) to the outer circle (60°); the azimuth 
angles range from −180°  to +180°  (counterclockwise). The image 
positions on the polar plots (Fig. 5) indicate the incident and azimuth angles 
of the reflections. The images from the eight sources are easily identified on 
the polar plots as they have the same incident angles and different azimuth 
angles.  
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Fig. 4. (a) PP and PS stacked images obtained using 3D ERTM for eight sources using 
the vector image condition. 
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Fig. 5. (a) PP and (b) PS ADCIG slices in a polar coordinate system at surface position 
(0.25, 0.25) km (the maximum values within a depth window centered at z = 0.25 km are 
plotted).  Notice the eight sources can be identified on the ADCIGs as they have the 
same incident angles and different azimuth angles. 
 
 
 In the second test, we construct a 3D elastic example using the 
SEG/EAGE 3-D Overthrust model (http://geodus1.ta.tudelft.nl/seage3dm/), 
which is an acoustic model containing only the P-velocity (VP). To make the 
model elastic, we approximate VS by dividing the VP by 2 at each grid point.  
The density is set to be a constant 2.4 g/cm3. Fig. 6a shows three orthogonal 
slices through the VP volume containing the portion of the model used for 
this example; the size of this reduced volume (in grid points) is 151 × 151 ×
 140, and the spatial interval of the model is dx = dy = dz = 25 m. 256 
sources are evenly placed in a square defined by x from 1.125 km to 2.625 
km, y from 1.125 km to 2.652 km, and z = 0.025 km. The sources are 15 Hz 
Ricker wavelets with 0.1 km intervals in both x- and y-directions. 151 × 
151 receivers are evenly placed over the surface with a spacing of 25 m. The 
direct waves in the generated seismograms are removed. 
 
 Two image conditions are used and compared in this test. In addition to 
the proposed image condition, a vector based dot-product image condition 
(Du et al., 2017) is also applied to provide benchmark results. The explicit 
forms and analytical comparisons between the two image conditions can be 
found in Appendix A. For both RTMs, we use the same smoothed velocity 
and density models (Fig. 6b). The migrated images using the dot-product 
image condition and the proposed image condition are shown in Figs. 7 and 
8, respectively. Both images have (low amplitude) gaps where the steep dips 
and normal incidence coincide, as expected, because the steep dips are not 
well illuminated. Although both images are source normalized, the image 
amplitudes in Fig. 8 are stronger than in Fig. 7 because the proposed image 
condition allow wider incident angle information to be stacked (see the 
ADCIG comparisons below). 
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Fig. 6. (a) a portion of the Overthrust model (P-wave velocity) and (b) the smoothed 
model for ERTM. 
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Fig. 7. Migrated (a) PP image and (b) PS image using the dot-product image condition. 
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Fig. 8. Migrated (a) PP image and (b) PS image using the proposed image condition. The 
image amplitudes are stronger than those in Fig. 7. 
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 Figs. 9 and 10 show the PP (upper row) and PS (lower row) ADCIGs 
using the dot-product and the proposed image conditions, respectively. Both 
sets of ADCIGs are extracted below the same surface location (x, y) = (1.35, 
1.85) km. For viewing purposes, the azimuths of the ADCIGs are evenly 
binned into six bins from 0° to 360° around its surface position. Each bin 
contains the stacked ADCIGs over 30°  of azimuth angle and their 
corresponding mirror azimuth, which are 180° apart from them (see the 
shaded area in the first row of Figs. 9 and 10). 0° azimuth corresponds to 
the positive x axis in Fig. 6, and 90° azimuth corresponds to the positive y 
axis. The incident angles are collected from 0° to 50°, and the signs of 
incident angles are determined relatively by their corresponding azimuth 
angles as indicated in Figs. 9 and 10. The events in the ADCIGs are flat over 
incident angles because smoothed velocity and density models are used for 
the ERTM. The migrated images from both image conditions (Figs. 7 and 8) 
and their corresponding ADCIGs (Figs. 9 and 10) have good correspondence 
to the geological structures in the model.  
 

 

 
Fig. 9. (a) PP and (b) PS ADCIGs extracted at (x, y) = (1.35, 1.85) km plotted in six pie 
shaped azimuth angle bins from 0° to 360° in increments of 30°, using the dot-product 
image condition. Areas marked with arrows in the PP ADCIGs indicate the attenuation 
effect of cos (ψ); compare with Fig. 10. 
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 The amplitudes of the PP ADCIGs in the dot-product image condition 
diminish as the open angle approaches 90° (indicated by the black arrows 
in Fig. 9) because a multiplication of cos(ψ) is implicit in the dot-product 
image condition, where ψ is the angle between the incident and reflected 
particle velocity vectors. For PP reflections, cos(ψ) approaches 0 as the open 
angle 2θ approaches 90° . This problem is avoided using the proposed 
image condition (see the marked areas in Fig. 10), which replaces cos(ψ) 
with a sgn (-1 or 1) function, and thus gives wider angle apertures than the 
former (see Appendix A for detailed analysis). The amplitudes in the PS 
ADCIGs are also changed, but do not diminish at 2θ = 90° because the 
S-wave particle velocity vector is perpendicular to its propagation direction, 
and ψ is not the same as the open angle between the incident P- and 
converted S-waves. 
 
 
 

 

 
Fig. 10. (a) PP and (b) PS ADCIGs extracted at (x, y) = (1.35, 1.85) km plotted in six pie 
shaped azimuth angle bins from 0° to 360° in increments of 30°, using the proposed 
image condition. Compare the areas marked with arrows with those in Fig. 9; the 
proposed image condition generates PP ADCIGs with wider open angles than in the 
dot-product image condition, because the cos (ψ) is not present in the proposed image 
condition. 
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DISCUSSION 
 
 The proposed source-normalized magnitude-crosscorrelation elastic 
image conditions have several important differences from the 
source-normalized crosscorrelation image condition in acoustic RTMs 
(Kaelin and Guitton, 2006). First, the magnitudes of the elastic 
particle-velocity vectors are used instead of amplitudes in acoustic 
wavefields. Second, for acoustic RTMs, only a single τ௣  component 
amplitude needs to be stored during the source wavefield extrapolation, 
while in the proposed image condition for elastic RTM, all the P-wave 
particle-velocity and stress components are required at each grid point to 
build the final image. Third, because the magnitudes of the particle-velocity 
vectors are always positive, to get accurate reflectivity information, signs of 
the reflections (both PP and PS) need to be determined as a part of the image 
condition. The output of the ERTM contains approximate angle-dependent 
reflectivity information; to increase the accuracy of the reflectivity, 
compensations for transmission and attenuation losses (Deng and 
McMechan, 2007, 2008) are also necessary. 
 
 In the above examples, we store the source wavefield in disk as the 
models are small. However, for big 3D models, the wavefield storage and 
I/O burden may become costly. One solution is to store the boundaries or 
checkpoints during the source wavefield extrapolation (Nguyen and 
McMechan, 2015), and to reconstruct the source wavefield during the 
receiver wavefield extrapolation. 
 
 The accuracy of Poynting vectors decreases as the model becomes 
complicated and wavefronts interfere with each other. Common solutions 
include increased smoothing of the velocity model, and precalculating the 
dip angles of the subsurface structures to provide additional information in 
constructing ADCIGs (Zhang and McMechan, 2011). Some gaps at 
near-normal incident angles which are caused by ambiguities in the azimuth 
angle calculations, may appear in the PP ADCIGs. We use linear 
interpolation to fill the gaps for better viewing in Figs. 9 and 10.  
 
 Compared with the excitation amplitude type image condition (Wang 
and McMechan, 2015, 2016), the crosscorrelation type image condition 
involves substantially more wavefield storage and a large I/O burden, and 
thus is more computationally expensive; the main benefit is that 
multipathing can be handled efficiently and correctly. 
 
 The proposed image condition uses the relation between P- and S-wave 
directions and their corresponding polarization directions, which is valid in 
isotropic media. In anisotropic media, the relation is more complicated 
(Wang et al., 2016a), and an extension of this image condition to anisotropic 
ERTM needs further investigations. 
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CONCLUSIONS 
 
 A source-normalized magnitude-crosscorrelation image condition using 
signed magnitudes of elastic components is proposed and implemented in 
3D ERTMs. P- and S-waves are decomposed in the vector domain during 
both source and receiver wavefield extrapolation. Propagation directions for 
P- and S-waves are efficiently calculated using Poynting vectors with the 
decomposed P- and S-wave vectors as input, and make the process of 
generating ADCIGs much cheaper compared with other existing methods 
that involve extracting propagation directions from wavefronts. 
Comparisons with an existing vector-based dot-product image condition 
show PP ADCIGs with wider incident angles than the existing dot-product 
elastic image condition. 
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APPENDIX A 
 
RELATIONS AND DIFFERENCES BETWEEN THE PROPOSED AND 
THE DOT-PRODUCT IMAGE CONDITIONS 
 
 Both the proposed image condition and the vector dot product image 
condition (Wang et al., 2016a; Zhu, 2017; Du et al., 2017) involve 
projections from vector wavefields to scalar images; the latter image 
condition applies a dot product, whereas our image condition calculates the 
signed magnitudes from the wavefields. 
 
 To make the comparison vivid, we modify the proposed image condition 
(13), which is a source-normalized crosscorrelation image condition, to be a 
crosscorrelation type image condition without source normalization as 
follows 
 

I௣௣(𝑥, 𝑦, z)= ∑ sgn௣௣(𝑥, 𝑦, z, 𝑡)|𝐕௥௘௖
୮ (𝑥, 𝑦, z, 𝑡)||𝐕௦௥௖

୮ (𝑥, 𝑦, z, 𝑡)|,்
௧ୀ଴    (A-1) 

and 

I௣௦(𝑥, 𝑦, z)= ∑ sgn௣௦(𝑥, 𝑦, z, 𝑡)|𝐕௥௘௖
ୱ (𝑥, 𝑦, z, 𝑡)||𝐕௦௥௖

୮ (𝑥, 𝑦, z, 𝑡)|்
௧ୀ଴ .   (A-2) 

The non-normalized dot product image conditions can be written as 

I௣௣(𝑥, 𝑦, z)= ∑ 𝐕௥௘௖
୮ (𝑥, 𝑦, z, 𝑡) ∙ 𝐕௦௥௖

୮ (𝑥, 𝑦, z, 𝑡),்
௧ୀ଴        (A-3) 
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and 

I௣௦(𝑥, 𝑦, z)= ∑ 𝐕௥௘௖
ୱ (𝑥, 𝑦, z, 𝑡) ∙ 𝐕௦௥௖

୮ (𝑥, 𝑦, z, 𝑡)்
௧ୀ଴ ,      (A-4) 

 
where 𝐕௥௘௖  and 𝐕௦௥௖  are the decomposed (P or S) receiver and source 
vector wavefields. Recall that 
 

𝐕௥௘௖ . 𝐕௦௥௖ = |𝐕௥௘௖|. |𝐕௦௥௖|cos (ψ),              (A-5) 

 

where ψ is the angle between the incident and reflected particle velocity 

vectors, and the cos (ψ) causes an image amplitude change which is not 

related to the subsurface properties. 

  

 A solution proposed by Du et al. (2017) is to correct the image 

amplitudes by dividing the I௣௣ and I௣௦ by [cos(ψ) + εଶ] [eq. (13) in Du et 

al. (2017)] where εଶ is a small number that prevents division by zero. This 

correction is valid if the calculation of ψ is robust and accurate, but the 

correction accuracy decreases as ψ approaches 90°. 

 

 There is no need for amplitude correction in the proposed image 

condition, and ψ doesn't need to be accurate as it is only used for sign 

determination. The only difference between image conditions (A-1) and 

(A-2) and image conditions (A-3) and (A-4), is that cos(ψ) is replaced by a 

sgn function in (A-1) and (A-2) that is pre-calculated in eqs. (12). 

 

 


