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ABSTRACT 
 
Song, L.W., Shi, Y. and Ke, X., 2019. Reverse time migration of TTI media using the 
decomposed wavefield. Journal of Seismic Exploration, 28: 245-256. 
 
 Reverse time migration (RTM) produces complex structure imaging with full 
wavefield information. This is the highest-precision imaging method to date. Compared 
with isotropic media RTM, imaging accuracy is assured by adding anisotropic constraints 
to seismic wavefields. Because of the sharp changes of velocity in the model, seismic 
wavefields generate strong reflection energy which causes noise or even false structure in 
the migration results. The main controlling factors of the anisotropic parameters were 
analyzed in this study by numerical simulation. The Hilbert transform was used to 
decompose the full wavefields in tilted transversely isotropic (TTI) media. The migration 
results were produced by cross-correlation of the decomposed wavefield imaging 
condition. Numerical examples show that the method obtains imaging results with high 
signal-to-noise ratio in TTI media. 
 
KEY WORDS: reverse time migration, tilted transversely isotropic media, 
        seismic wavefields decomposing, pure qP-wave equation. 
 
 
INTRODUCTION 
 

Whitemore (1983) proposed a reverse time migration (RTM) method 
based on the two-way wave equation, which could be used for imaging with 
full wavefields for reflection, refraction and multiple waves. RTM is not 
affected by changes of media velocity, so it is the first choice when dealing 
with complex structural imaging. Based on RTM, a series of methods for 
improving inversion accuracy were developed, such as least-squares reverse 
time migration (Xuan, 2018) and full waveform inversion (Xubao, 2017). 
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 The present study showed that the anisotropy of seismic waves is often 

caused by thin interbeds of either sandy shale or limestone shale, or by 
vertical cracks in large rocks (Thomsen, 1986). When the crack size and 
spacing are less than the seismic wavelength, wave propagation can also be 
described in terms of the equivalent anisotropic media. In order to achieve 
high-precision imaging of complex media, it is necessary to increase the 
anisotropic constraints of the seismic wavefield. 

 
Alkhalifah (1998) proposed the famous acoustic approximation idea 

on the basis of the dispersion relationship, and derived the fourth-order 
quasi-P (qP) wave equation in vertical transversely isotropic (VTI) media. 
Because the equation has the same frequency dispersion relation as the 
elastic wave equation, the characteristics of the qP wavefield are the same. 
Although zero shear-wave velocity is assumed along the axis, false quasi-SV 
(qSV) waves are still present in the wavefields. Zhou (2006) introduced 
auxiliary variables to simplify the qP-wave equation from fourth-order to 
second-order to achieve computationally efficient qP-wave numerical 
simulation. A new stable wave equation has been derived from Hooke’s law 
and acoustic approximation (Duveneck et al., 2011; Zhang et al., 2011) in 
which the energy remains stable during the numerical simulation process. 
Fletcher (2009) derived a tilted transversely isotropic (TTI) media wave 
equation by coordinate transformation and obtained the RTM by introducing 
a stability factor into the coupled qP-wave equation, which enhances its 
adaptability to complex structures. 

 
Another way of eliminating false qSV waves is to set the unstable 

region of the model to elliptical anisotropy, but change the local 
characteristics of the model (Yoon et al., 2010). In order to solve the 
disturbance of false qSV wave in essence, the rapid expansion method 
(Pestana et al., 2010, 2011) is applied to the numerical simulation of a 
seismic wavefield. This leads to a certain approximation when dealing with 
complex TI media. Xu (2014) derived a pure qP-wave equation with 
accurate kinematic characteristics, suitable for complex VTI models. 

 
Cross-correlation imaging is often used in RTM since it avoids the 

problem of numerical instability caused by the calculation of reflection 
coefficients, but the result includes low-frequency noise. Liu (2010) 
proposed a filtering method to effectively suppress low-frequency noise in 
the wave number domain. Considering the spatial location relationship of the 
observation system, Yoon (2006) made use of the Poynting vector to 
improve the image quality. Fei (2015) obtained the up-going and 
down-going wavefields by decomposing full seismic wavefields, then 
screening the required wavefields to image (e.g., the down-going source 
wavefield and the up-going receiver wavefield). This method is effective but 
it needs to save all the wavefield data at each time step, so the calculation 
efficiency is very low. Shen (2015) proposed a seismic wavefield 
decomposition method based on the Hilbert transform, which reduces 
computer storage requirements. 
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In the present study, the seismic wavefield of TTI media was obtained 
by using the pure qP-wave equation, studying the main factors that 
determine the Thomsen parameters, and analyzing the noise-generation 
principle of RTM imaging results. The RTM results for the TTI media model 
were obtained by cross-correlating the imaging condition of the decomposed 
seismic wavefields. The numerical results show that the proposed method 
effectively suppresses noise and false images. 
 
 
THEORY 
 
Finite difference scheme for pure qP-wave equation 

 
Early TTI media for RTM used the coupled qP-wave equation. Due to 

the difference in auxiliary functions, the wave equation form differs slightly. 
Considering such factors as the amount of calculation, computer storage, 
qSV-wavefield interference and wavefield stability, Xu (2014) proposed 
using the pure qP-wave equation to study seismic wavefield characteristics 
in VTI media. On this basis, the pure qP-wave equation of the TTI media is 
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where ν is the phase velocity of the qP wave along the axis of 

symmetry; u is the wave field; ε and δ are the Thomsen parameters; 
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zx nnN =  is the rotated unit vector; and (
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z ) is the rotated space 

coordinate, in which the symbol ~  is the rotation operator. Applying the 

rotation matrix, we obtain the spatial differential: 
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where θ is the dip angle; and 
~
N  is calculated from 
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Using the finite difference numerical method, eq. (1) takes the 

following form: 
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(4) 

 
where k is the time step, and an, bm, cn and dm are the finite difference 
coefficients. 
 
 
Imaging condition 
 

The cross-correlation imaging condition is represented by    

  dtttzxRtzxSzxI
t

),,(),,(),( max
0

max

−= ∫
 

,         
         

(5) 

where I(x,z) is the image; S(x,z,t) is the source wavefield; 

),,( max ttzxR −  is the receiver wavefield; and tmax is the maximum seismic 

recording time. 

Because the two-way wave equation is used, the source wavefield has 

up-going Su and down-going Sd. Similarly, the receiver wavefield has 

up-going Ru and down-going Rd. Then eq. (5) takes the form 
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When the full wavefield imaging gives four cross-correlation results, it 

is well established that dtRS uu∫  and dtRS dd∫  lead to low-frequency noise in 

the full wavefield cross-correlation images. The physical meaning of the 

other two terms are shown in Fig. 1, in which the solid ray is the true image 

for RTM, and the dashed line indicates a false image. Therefore, the 

equation for imaging conditions should be  

  dtRSzxI
t

ud∫=
max

0

),(  .               
        

(7) 

 
 
Fig. 1. Solid ray creates true image, dashed ray creates false image. Su is up-going source 
wavefield, Sd is down-going source wavefield, Ru is up-going receiver wavefield, and Rd 
is down-going receiver wavefield 
 
 

The seismic wavefield decomposition obtained by eq. (8), proposed by 
Shen (2015): 
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where Hz is the Hilbert transform operator in the vertical direction, and Ht is 
the Hilbert transform operator in the time direction. 

 
EXAMPLES 
 
Pure qP-wavefield simulation base by finite difference method 

 
For TTI media, the kinematic properties of the qP wavefield depend on 

the velocity along the axis of symmetry, the symmetry axis angle θ, and the 
Thomsen parameters ε and δ. The physical meaning of each parameter was 
studied by simulation. In the homogeneous TTI media test models, the 
distance between grids was 10 m and the velocity was 3000 m/s. The source 
wavelet for these examples was a Ricker wavelet of 20 Hz dominant 
frequency; time sampling rate was 1 ms. Snapshots of the seismic wavefield 
are shown in Fig. 2. 

 
The wave front is a circle in Fig. 2a due to equal velocities in all 

directions,  equivalent to the seismic wavefield in an isotropic medium. 
Figs. 2b, 2c show that the seismic wavefield propagation velocity is least in 
the vertical direction and greatest in the horizontal direction. The two dashed 
lines in Figs. 2d, 2e show the fastest seismic wavefield propagation. As the 
Thomsen parameters ε and δ increase, the anisotropic characteristics are 
more obvious; the wavefield is determined by ε and δ in Fig. 2f. The 
wavefield snapshot for a non-zero angle of symmetry axis is shown in Fig. 
2g. 

 

Up-going and down-going wave decomposition in TTI media 
A graben model was designed to verify the effect of seismic wavefield 

decomposition in TTI media. The model parameters are shown in Figs. 3a-d. 
The source was located in the center of the model. Fig. 4a shows the source 
wavefield snapshot at 600 ms, which contains information of the up-going 
and down-going wavefields. Due to the constraints of the anisotropic 
parameters, the wavefield snapshot does not exhibit spatial symmetry. The 
seismic wavefields based on eq. (8) decomposition are shown in Figs. 3b and 
3c. Numerical experiments show that the Hilbert transform effectively 
decomposed the seismic wavefields in TTI media. 
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   (a) 

    
    (b)           (c) 

    
    (d)        (e) 

    
    (f )        (g) 
 
Fig. 2. Wavefield snapshots at 300 ms for parameters. 
(a) 0,0,0 === εδθ o ; (b) 2.0,0,0 === εδθ o ; (c) 5.0,0,0 === εδθ o ; (d) 0,2.0,0 === εδθ o ; 
(e) 0,5.0,0 === εδθ o ; (f ) 5.0,2.0,0 === εδθ o ; (g) 5.0,2.0,45 === εδθ o  
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      (a)             (b)  
 

    
      (c)            (d)  
 
Fig. 3. TTI media model. (a) qP wave velocity along symmetry axis; (b) angle of 
symmetry axis;  (c) ε;  (d) δ. 
 
 

   
     (a)          (b) 
 

         
           (c) 

  
Fig. 4. Decomposed up-going and down-going wavefield for TTI media: (a) full 
wavefield; (b) down-going wavefield; (c) up-going wavefield 
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Cross-correlation imaging conditions of wavefield decomposition in TTI 
media 

 
The cross-correlation imaging conditions of the full wavefields and the 

decomposed wavefields were tested using a layered-structure model with 
embedded high seismic-speed salt dunes (Fig. 5). Six surface shots were 
located between 0 and 6 km. Source interval was 300 m; receivers were 
evenly distributed on the ground surface. Seismic records had 5000 time 
steps; time interval was 1 ms. 

 
 

  
      (a)           (b) 
 

  
     (c)            (d) 
 
Fig. 5. TTI media model: (a) qP wave velocity along symmetry axis; (b) angle of 
symmetry axis;  (c) ε;  (d) δ. 
 
 
 Fig. 6 shows the RTM result obtained for full-wavefield cross-correlation 
imaging. The large amount of low-frequency noise results from the 
excessive energy of the low-frequency noise, which has affected the quality 
of the imaging results. 
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Fig. 6. Reverse-time migration result. 

 

 
Based on correlation imaging conditions for decomposed seismic 

wavefields, four results were obtained (Fig. 7) which were not treated for 
noise suppression. Fig. 7a is the image obtained using the down-going 
source wavefields and up-going receiver wavefields. This contains the 
structural information; the other three images, Figs. 7b-d, all show noise 
interference. It is also very obvious that the signal-to-noise ratio of Fig. 7a is 
an improvement on Fig. 6. 

 
CONCLUSION 
 

Increasing the anisotropy constraints accurately describes the kinematic 
characteristics of a seismic wavefield and provides strong support for 
subsequent RTM. Our study shows that wavefield decomposition of TTI 
media is achieved using the Hilbert transform. Since RTM imaging artifacts 
are eliminated by cross-correlation imaging conditions of wavefield 
decomposition in TTI media, we obtain an image with a high signal-to-noise 
ratio. 
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              (a)           (b) 
 

   
              (c)           (d) 
 
 
Fig. 7. Reverse-time migration results based on decomposed wavefields: (a) down-going 
source wave and up-going receiver wave; (b) up-going source wave and down-going 
receiver wave; (c) up-going source wavefields and up-going receiver wave; 
(d) down-going source wave and down-going receiver wave. 
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