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ABSTRACT 
 

Ma, Y.Y. and Cao, S.Y., 2019. An improved robust threshold for variational mode 
decomposition based denoising in the frequency-offset domain. Journal of Seismic 
Exploration, 28: 277-305. 

 
We proposed a novel robust denoising method using variational-mode 

decomposition (VMD) and the detrended fluctuation analysis (DFA) in the frequency-
offset (f-x) domain, named robust DFA-VMD. DFA is mainly introduced to solve the 
problem that VMD requires the number of modes to be predefined. The scaling exponent 
obtained by DFA is a robust metric to measure the long-range correlations and can be 
used to adjust the number of intrinsic mode functions (IMFs) automatically. To 
reconstruct the denoised signal, a scaling exponent is also used as a threshold to identify 
and remove the noisy modes. We define a novel robust threshold of random noise in 
seismic data, because the predefined noise boundaries for other time series cannot 
perform perfectly when dealing with seismic data. The proposed robust DFA-VMD is an 
almost parameters-free denoising approach and we apply it in the (f-x) domain for 
seismic denoising. We have verified its performance by comparing it with the results 
from several other methods including (f-x) deconvolution and the conventional DFA-
VMD. Two synthetic examples and three field-data examples revealed the effectiveness 
of the proposed approach in applications to random and coherent noise attenuation. 

 
KEY WORDS: denoising, frequency-offset domain, adaptive filtering, variational mode  
     decomposition (VMD),  detrended fluctuation analysis (DFA). 
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INTRODUCTION 
 

Signal decomposition such as short-time Fourier transform (Allen, 
1977), wavelet transform (Grossmann and Morlet, 1984), and S-transform 
(Stockwell et al., 1996) have been successfully applied in signal denoising. 
Empirical mode decomposition (EMD) developed by Huang et al. (1998) is 
an entirely data-driven method for signal decomposition. It has been widely 
used in seismic attributes analysis (Magrin-Chagnolleau and Baraniuk, 
1999) and noise attenuation (Chen et al., 2014). However, EMD suffers from 
several drawbacks (Mandic et al., 2013). Mode mixing is one of the most 
severe problems of the EMD algorithm (Huang and Wu, 2008). Different 
frequency components are mixed in one or more intrinsic mode functions 
(IMFs), which is the main obstacle to interpret the decompositions. Many 
approaches are introduced to overcome this negative feature, such as 
ensemble EMD (EEMD) (Wu and Huang, 2009) and complete ensemble 
EMD (CEEMD) (Torres et al., 2011). Moreover, it is a crucial challenge to 
explain the meaning of each IMF or determine which IMFs correspond to 
noisy oscillation (Wu and Huang, 2004). The theoretical foundation of 
EMD-based denoising need to be further improved. 

 
Variational Mode Decomposition (VMD) (Dragomiretskiy and Zosso, 

2014) is a recently proposed non-recursive signal decomposition technique 
to analyze non-linear and non-stationary time series. VMD exhibits 
advanced features compared with the classic EMD. Firstly, in contrast to 
EMD, VMD adaptively decomposes a signal into an ensemble of band-
limited IMFs and all modes are extracted concurrently. Each mode resulting 
from VMD is considered almost compact around a corresponding center 
frequency (Upadhyay and Pachori, 2015). In essence, VMD is a 
generalization of the classic Wiener filter into multiple and adaptive bands. 
Secondly, the modes from VMD are less sensitive to noise than those from 
EMD, in which the first two modes always contain more residual noise. 
Thirdly, the VMD has lower computational cost compared with CEEMD. 
These features are helpful to accurately capture components and reconstruct 
the filtered signal. VMD has been successfully used in time-frequency 
analysis (Liu et al., 2016), ground-roll attenuation (Liu et al., 2015) and 
sedimentary pattern characterization (Li et al., 2016) to meet the challenges 
of seismic application. Recently, VMD has been used to attenuate seismic 
random noise (Liu et al., 2017; Yu and Ma, 2018). In spite of its 
considerable success, the selection of predefined parameters for VMD and 
the determination of useful modes are two challenges, which are the 
motivation of our research. 
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The VMD algorithm depends on several essential parameters, in 
which the number of modes to be extracted is one of the most important 
parameters (Dragomiretskiy and Zosso, 2014). The number of modes needs 
to be predefined and its value has a strong influence on the efficiency of 
decomposition. An inappropriate value (underbinning or overbinning) can be 
detected and corrected in post-processing by checking the spectral overlap or 
orthogonality between modes, or by looking at the residuals not accounted 
for by any mode (Dragomiretskiy and Zosso, 2014). Unfortunately, this 
solution is beyond the scope of the VMD algorithm. In the actual application 
of VMD, the number is usually selected based on experience. Consequently, 
an automatic adjustment method needs to be developed to overcome this 
classical limitation. 

 
To select the IMFs automatically, the detrended fluctuation analysis 

(DFA) (Peng et al., 1994) was used as a threshold to adjust VMD 
automatically. Liu et al (2016) proposed a denoising method named DFA-
VMD to remove white Gaussian noise (WGN) from electrocardiograph 
(ECG) and electrocardiogram (EEG) signal. DFA is a powerful tool to 
measure long-range correlations and fractal scaling properties for non-
stationary time series. It has been successfully applied to different fields 
such as biomedicine (Peng et al., 1995; Bryce and Sprague, 2012), 
meteorology (Ivanova and Ausloos, 1999), economics (Kantelhardt et al., 
2002), and ethnology (Telesca et al., 2007). One significant advantage of 
DFA is that it avoids the spurious detection of apparent long-range 
correlations that are artifacts of non-stationary series (Peng et al., 1995). Li 
et al. (2017) applied DFA-VMD in seismic denoising. DFA can be used to 
characterize different components because the seismic data is a combination 
of harmonic components, while the noise component is random and 
uncorrelated. However, the predefined noise boundaries (Peng et al., 1994) 
for other time series cannot perform perfectly when dealing with seismic 
data. 

 
We propose a novel robust threshold for DFA-VMD denoising in the 

frequency-offset (f-x) domain. DFA is mainly introduced to adjust the 
number of IMFs automatically. To reconstruct the denoised signal, a scaling 
exponent is also used as a threshold to identify and remove the noisy modes. 
We defined a robust threshold of random noise in seismic data and verified it 
using a lot of synthetic-models. The novel threshold is approximately equal 
to the scaling exponent of the upper effective frequency of seismic data. The 
robust DFA-VMD is an almost parameters-free approach, and we apply it on 
constant-frequency slices in the (f-x) domain for seismic denoising. We have 
compared it to several other methods including (f-x) deconvolution and 
conventional DFA-VMD. Two synthetic examples and three field-data 
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examples revealed the excellent performance of the proposed approach in 
applications for random and coherent noise attenuation. 

 
The paper is organized as follows: we first give a brief introduction 

about the VMD and its limitations. Then the VMD and DFA method are 
reviewed. Next, we defined a novel threshold denoising method named 
robust DFA-VMD and verified it using a lot of synthetic-models. Then we 
apply the improved denoising method in the (f-x) domain to remove seismic 
random and coherent noise. Two synthetic examples and three field 
examples are used to verify the superior performance of the proposed 
approach over (f-x) deconvolution and conventional (f-x) DFA-VMD. 

 
 

METHOD 
 

Variational mode decomposition 
  

VMD is an adaptive and non-recursive signal-decomposition 
approach. The aim of VMD is to decompose an input signal f (t) into a 
discrete number of band-limited sub-signals or modes ( )k tµ , where each 
mode is mostly compact around their respective center frequency kw
(Upadhyay and Pachori, 2015). The bandwidth of each mode can be 
estimated by solving the constrained variational optimization problem with 
the following scheme: 

 
1) Compute the related analytic signal for each mode through a Hilbert 
 transform to build a unilateral frequency spectrum. 
 
2) Shift the frequency spectrum of each mode to the baseband by mixing 
 with an exponential tuned to the respective estimated center 
 frequency. 
 
3) The bandwidth of each mode can be estimated through the H1 Gaussian 
 smoothness of the demodulated signal, i.e., the squared 2L -norm of 
 the gradient. 
 

The resulting constrained variational problem can be describe as 
follows (Dragomiretskiy and Zosso, 2014): 
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where α  denotes the balancing parameter of the data-fidelity constraint. 
Eq.(2) is then solved with the alternate direction method of multipliers 
(ADMM) (Hestenes, 1969). All the modes in the frequency and time domain 
are obtained as follows: 
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where ( ) ( )ˆ ˆ, if uω ω , and ( )λ̂ ω  are the Fourier transforms of ( ) ( ), if t u t , and ( )tλ , 
respectively. It is clear that the optimal ( )ˆiu ω  is directly renewed by Wiener 
filtering in the Fourier domain, which makes VMD much more robust to 
sampling and noise. ( )1 •F −  represents the inverse Fourier transform and ( )ℜ •  
denotes the real part of the signal. The modes in the time domain can be 
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obtained as the real part of the inverse Fourier transform of this filtered 
analytic signal. 
 

The center frequency kω  of each mode can be obtained as follows, its 
optimization also takes place in Fourier domain: 
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which locates the new kω  at the center of gravity of the corresponding 
mode’s power spectrum. 
  

The VMD algorithm depends on several parameters, especially the 
number of modes to be extracted, K . A larger value of K  possibly results in 
frequency mixing, whereas a lower value decreases the focus of the time-
frequency representation. Usually, the number K  is selected based on 
practical experience. In addition, the main principle of the existing VMD-
based or EMD-based denoising methods is to distinguish and exclude the 
noise-only IMFs. The DFA algorithm is introduced to solve these problems 
in this paper. 

 
 

The robust DFA thresholding 
 

The autocorrelation function determines the dependency of two 
sample points in a time series, and it can measure the correlation between a 
signal and its time-shifted version. The scaling exponent, also known as 
Hurst exponent or self-similarity, is an important way to estimate the 
strength of the autocorrelation, which can indicate long-range correlations, 
mild or wild randomness (Hurst, 1951). Unfortunately, the Hurst-exponent 
calculation causes spurious detection when the signal has non-stationary 
properties. Thus, DFA is developed to estimate the long-range correlations 
for non-stationary time series. 

 
For a given time series ( ){ }, 1,2,...,x t t N= , the DFA involves the 

following steps: 
 

1) The first step of the algorithm is to find the integrated time series ( )y k  by 
removing the average of ( )x t  as follows: 
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2) The integrated series ( )y k  is then divided into a set of non-overlapping 
boxes of equal length n. In each box, a least-squares fitting is applied to 
obtain the local trend ( )ny k . If the order of the polynomial fitting is chosen to 
be  2l = , ( )ny k  can be defined as follows: 
 

( ) 2
n n n ny k a k b k c= + + ,                                                      (7) 

 
3) Next, we detrend the integrated time series by subtracting the local trend 
in each box. The root-mean-square fluctuation function ( )F n  is calculated as 
follows: 

( ) ( ) ( )
2
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1 N
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= ⎡ − ⎤⎣ ⎦∑ ,                                                 (8) 

 
4) If the series ( )x t  is long-range correlated, ( )F n  will increase with the box 
size n. Under such conditions, the fluctuations can be characterized by a 
scaling exponent h  with a power-law: 
 

( ) hF n n∝ ,                                                          (9) 
 
Subsequently, the slope h of the line relating ( )( )log F n  to ( )log n  is 

calculated by linear least-squares regression. It is determined by 
 

( )( ) ( )ln lnF n h n C= +                                                       (10) 
 
The scaling exponent h is a measure for long-range correlations of 

non-stationary signals (Peng et al., 1994). When 0.5 1.0h< < , the signal 
presents persistent long-range power-law correlations such that large 
(compared to the average) fluctuations are followed by large ones. In 
contrast, 0 0.5h< <  is called “anti-correlated”, in which large fluctuations 
are likely to be followed by small ones. For 1.0 h< , the long-range 
correlations exist but do not reveal a power-law form. The most important 
reason which makes the scaling exponent a reliable metric is that the values 

0.5, 1.0h h= =  and h = 1.5 indicate completely uncorrelated white noise, pink 
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noise and Brownian noise, respectively (Peng et al., 1994). The conventional 
DFA-VMD denoising method is theoretically based on these special cases 
and the workflow is shown in Fig. 1. The DFA-VMD denoising method can 
be achieved as follows: 

 
1) Calculate the scaling exponent 0h  of the input data, and obtain the 

expected number J  of useful IMFs according to the following 
equation: 

0

0

0

0
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h
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                                                  (11) 

 
2) Decompose the input data from =1K , and calculate the scaling 

exponent 1: =1,2,3,...Kh K，  of each IMF. Record the real number C
of useful IMFs whose scaling exponents are bigger than the 
threshold θ . 

 

{ }1: , 1,2,3,...KC IMF h Kθ= ≥ =                                         (12) 
 

3) Repeat step 2 until the number of useful IMFs satisfies the 
expectation, i.e., the best K  for VMD can be obtained when C  
equals to the expected number J  as follows: 

 
{ }, 1,2,3,...K K C J K= = = ,                                                (13) 

 
4) Reconstruct the denoised signal S using the useful IMFs as 

follows: 
 

{ },i is IMF i i h θ= = ≥∑                                                  (14) 
 
The DFA algorithm depends on the selection of the box size n, which 

is data dependent 2 / 4l n N+ ≤ ≤  (Peng et al., 1995). However, the ranges 
4 16n≤ ≤  and 16 200n≤ ≤  are the most popular and reliable linear regions 
for h calculation, which was successfully studied in biomedical signal 
processing (Jospin et al., 2007; Leistedt et al., 2007; Leitet et al., 2010). In 
this paper, we apply the DFA with 4 16n≤ ≤ . 
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Fig. 1. The workflow of DFA-VMD method. 
 
 

We first used a synthetic example to show the theoretical fundamental 
of conventional DFA-VMD denoising. Fig. 2 (a) shows a synthetic signal 
that comprises three monochromatic components ( ) ( )cos 20 , cos 60t tπ π , and

( ) [ ]cos 120 , 0 1.0t t sπ ∈ . Their dominant frequencies are 10 Hz, 30 Hz, and 60 
Hz, respectively. Fig. 2(b) is the noisy signal that is contaminated by WGN 
with 1.74 dB SNR. To analyze the influence of K on h, DFA of each IMF 
with changing K is demonstrated in Fig. 3. Although the scaling exponent h  
of each IMF changes with changing K, it decreases with the growing main 
frequency of each IMF. Generally, the front modes are chosen to reconstruct 
the filtered signal for VMD-based denoising. Therefore, a short conclusion 
can be formed-the scaling exponents h of the chosen IMFs are obviously 
greater than the IMFs that are not selected. In other words, the scaling 
exponent h can be used to adjust the modes number and determine the 
valuable IMFs. 
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a)	

	
b)	

 
	

Fig. 2. (a) The synthetic noise-free signal with three frequency components at 10 Hz, 
30 Hz, and 60 Hz. (b) Noisy signal with SNR=1.74 dB, 0 1.02h = . 

 
 

 
 
Fig. 3. DFA of each IMFs with different K from =1K  to =15K . 
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Considering the mode mixing and the calculation of the scaling 
exponent, the threshold for WGN is generally defined as 0.25hθ = +  ( 0.5h =
for WGN) for EEG or ECG signal (Mert and Akan, 2014; Liu et al., 2016). 
The IMFs whose scaling exponents are bigger than θ  are chosen to 
reconstruct the filtered data, and the IMFs with smaller h are considered as 
noise. However, the predefined noise boundaries (Peng et al., 1994) for other 
time series cannot perform perfectly when dealing with seismic data. The 
ECG signal has obvious morphological features in the time domain, and the 
dominant frequency usually is smaller than 1 Hz. Unlike biomedical signals, 
the effective bandwidth of seismic data is about 0-120 Hz. The earth’s 
absorption and attenuation effect is one of the most important factors that 
affect the resolution of seismic survey. Therefore, the useful information in 
seismic data is band-limited, and the special case that h = 0.5 stands for 
WGN is not suitable for seismic denoising. In this paper, we defined a robust 
threshold for random noise in seismic data as θ = 2.5, which is approximately 
equal to the scaling exponent of 120 Hz components (i.e., the upper effective 
frequency of seismic data). 

 
We verified the novel threshold using a lot of synthetic-models. For 

the noisy signal (h0 = 1.02) in Fig. 2(b), if we set =0.75θ , the number of 
IMFs will satisfies the expectation when K = 5 according to the workflow of 
DFA-VMD. The five IMFs and their Fourier spectra are shown in Fig. 4. 
The mode mixing is apparently shown in Fig. 4(b). Although the IMF1 and 
IMF2 can be easily interpreted as 10 Hz and 60 Hz, the 30 Hz component is 
visibly mixed in the first two IMFs. This problem is caused by inappropriate 
K  value and it is consistent with IMFs in the time domain [Fig. 4(a)]. The 
predefined threshold =0.75θ  for WGN in biomedical data cannot perform 
robustly when dealing with seismic data. Fig. 5 provides better 
decomposition using VMD with =2.5 =11Kθ ， . The 10 Hz, 30 Hz and 60 
Hz components are captured exactly by IMF1, IMF2, and IMF3 [Fig. 5(b)]. 
More importantly, the IMFs whose scaling exponents are in 0.75-2.5  still 
contain considerable noise. Fig. 6 shows the denoised outputs using 
conventional DFA-VMD and our proposed robust DFA-VMD. After filtered 
using the robust threshold filtering (SNR = 12.63), the signal-to-noise ratio 
(SNR) improves remarkably compared with denoised signal (SNR = 6.78) 
using conventional DFA-VMD. We further use the synthetic data with 
different 0h  and SNR to test the applicable range of this novel threshold. 
The results are shown in Table 1 (as Appendix), where the numbers in bold 
are the relatively better outputs.  Table 1 shows that our improved threshold 
( =2.5θ ) obtained superior outputs with higher calculation cost, because it 
requires decomposing the input data more times to get enough valuable 
IMFs to reconstruct the filtered signal. 
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a)	

 
 
  

b)	

 
 
 
Fig. 4. The IMFs extracted from VMD with 5K = (a) and their Fourier spectra (b). Mode 
mixing caused by inappropriate K  value. 
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a)	

	
	
b)	

	
	

 
Fig. 5. The IMFs extracted from VMD with 11K = (a) and their Fourier spectra (b). 
Mode mixing caused by inappropriate K  value. The 10 Hz, 30 Hz and 60 Hz 
components are captured exactly by IMF1, IMF2, and IMF3. 
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a)	
	

	
b)	
	

	
 
Fig. 6. Comparison of DFA-VMD denoising using different threshold (a) Denoising 
using conventional DFA-VMD with 0.75  5Kθ = =，  (SNR=6.79). (b) Denoising using the 
robust DFA-VMD with 2.5  11Kθ = =，  (SNR=12.63). The original noise-free data (blue), 
the denoised data using DFA-VMD (red), and the difference (green) are provided.  
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versus offset does not display as a superposition of simple harmonics. The 
AR filter is not the optimal choice in this case. We apply the robust DFA-
VMD on constant-frequency slices in the (f-x) domain to overcome the low 
performance of (f-x) deconvolution when processing highly complex 
geologic sections. The scaling exponent h obtained by DFA can also help 
describe the “roughness” of time series. A larger value of h represents a 
smoother time series. Conversely, a small value of h represents more rapid 
fluctuations. IMFs with rapid oscillations in the data means large 
wavenumber components. In that case, f-x DFA-VMD approach can 
suppress noise by subtracting IMFs with lower scaling exponent. The 
proposed approach is implemented in a similar way to (f-x) deconvolution 
using the following scheme: 

 
1) Select a time window and transform the data into the (f-x) domain 

by Fourier transform. In this paper, the length of the time window 
is chosen to be 256 ms. 

2) For every frequency, 
a) separate real and imaginary parts in the spatial sequence, 
b) compute IMF resulting from VMD, 
c) discriminate noisy IMFs and subtract to obtain the filtered  

   real signal, 
d) repeat for the imaginary part,  
e) combine to create the filtered complex signal. 

3) Transform data back to the (f-x) domain. 
4) Repeat for the next time window. 
 
 

SYNTHETIC EXAMPLES 
 

We use a synthetic 2D example to test the proposed denoising 
algorithm. The synthetic data [Fig. 7(a)] contains two horizontal events, two 
hyperbolic events, and a varying-energy event with polarity reversal at 
0.27s. After adding steeply dipping coherent and band-limited random noise 
(the same band as the noise-free data), we obtained the noisy data with 0.2 
dB SNR [Fig. 7(b)]. The f-x deconvolution and conventional  f-x DFA-VMD 
denoising are shown to make a comparison. All three methods in the f-x 
domain are implemented between 0 Hz and 50% (125 Hz) of the Nyquist 
frequency. The -f x  deconvolution uses the length of the autoregressive 
operator as 10. The parameters for VMD are kept at 

5000, 0, 0DC Initα τ= = = = , and 1 07Tol e= −  in all cases considered. Fig. 8 
shows the outputs of different three methods. The denoised section using the 
f-x deconvolution [Fig. 8(a), SNR = 3.5 dB] is not satisfactory and the 
corresponding difference section [Fig. 8(d)] reveals great damage to useful 
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events. The conventional thresholded VMD removes more noise, and retains 
useful energy better [Fig. 8(b), SNR = 4.1 dB] than the f-x deconvolution, 
but the difference section [Fig. 8 (e)] contains a visible leakage of the 
hyperbolic events. Using the robust f-x DFA-VMD, we obtained a much 
cleaner denoised section [Fig. 8(c), SNR = 9.0 dB] with stronger amplitude 
events. In the difference section [Fig. 8(f )], the energy of two hyperbolic 
events are extremely weak and the steeply dipping coherent noise is obvious, 
suggesting the proposed approach remove more noise, and increase the 
preservation of useful signal. The variant energy event at 0.27s is amplitude-
preserved remarkably.  

 
 

a)                                                                             b) 

 
 
Fig. 7. (a) Synthetic clean signal. (b) Noisy section (SNR = 0.2 dB)  

 
 

FIELD EXAMPLES 
 

In this section, we compare the performance of f-x deconvolution, 
conventional f-x DFA-VMD and the robust f-x DFA-VMD using three field-
data sets. All denoising methods in the (f-x) domain use a short-time Fourier 
transform with a sliding temporal window of length 256 ms, and 
Frequencies beyond 80% of the Nyquist frequency are not processed and are 
damped to zero.  



	 293 

  a)                                                 b)                                            c) 

  
   d)                                                 e)                                            f ) 

 
 
Fig. 8. (a) Denoised section using -f x  deconvolution (SNR=3.5 dB), (b) denoised 
section using -f x  DFA-VMD (SNR = 4.1 dB), (c) denoised section using the robust -f x  
DFA-VMD (SNR = 9.0 dB), (d) difference section using -f x  deconvolution, (e) 
difference section using  f-x DFA-VMD, and (f ) difference section using the robust -f x  
DFA-VMD. 

 
 

Data set 1: Shot gather 
 

A shot gather is displayed in Fig. 9(a). The original data contain 
ground-roll and random noise. For the (f-x) deconvolution, the length of the 
autoregressive operator is 10. After using the f-x deconvolution [Fig. 9 (b)], 
only tiny amounts of noise are suppressed and the difference section [Fig. 
9(c)] contains a visible loss of useful reflections at around 0.5 s. Changing 
its predefined parameters does not lead to significantly better outputs in this 
case.  The conventional DFA-VMD provides a much clearer shot gather 
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[Fig. 9 (d)], but the useful events in far-offset are blurred and destroyed 
(marked by the rectangle). The events at around 0.5 s are weak but still 
present in the difference section [Fig. 9 (e)]. The improved thresholded 
VMD [Fig. 9 (f )] performs much better than the previous two techniques on 
this shot gather. There is no noticeable leakage of useful reflectors even in 
far-offset [Fig. 9(g)]. 

 
  a) 

 

   b)                                                       c) 

 

Fig. 9. Data set 1: Shot gather. (a) Original data, (b) denoised section using f-x 
deconvolution, (c) difference section using f-x deconvolution. 
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    d)                                                            e) 

 

     f )                                                           g) 

  

 
Fig. 9. Data set 1: Shot gather. (d) denoised section using f-x DFA-VMD, (e) difference 
section using f-x DFA-VMD, (f ) denoised section using the robust  f-x DFA-VMD, and 
(g) difference section using the robust f-x DFA-VMD. 

 
 

Data set 2: Common midpoint gathers 
 

Next, we consider a moveout-corrected common midpoint (CMP) 
gathers [Fig. 10(a)] that contain a mixture of horizontal events (before 5.0 s), 
hyperbolic events (strongest one at approximately 5.8 s), overwhelmed by 
steeply dipping linear noise, ground-roll, random noise, and coherent noise. 
The f-x deconvolution uses the autoregressive operator as 20.  
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   a) 

 

   b)                                                             c) 

 
 
Fig. 10. Data set 2: A moveout-corrected CMP gathers. (a) Original data, (b) denoised 
section using f-x deconvolution, (c) difference section using f-x deconvolution. 
 

 
The f-x deconvolution [Fig. 10 (b)] enhances the SNR of all coherent 

events including the linear noise and useful reflection, yet suppresses some 
of the random noise as shown in the difference section  [Fig. 10(c)].  The f-x 
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   d)                                                            e) 

 
   f )                                                             g) 

  

Fig. 10. Data set 2: A moveout-corrected CMP gathers. (d) denoised section using the 
robust f-x DFA-VMD, (e) difference section using f-x DFA-VMD, (f ) denoised section 
using the proposed approach, and (g) difference section using the robust f-x DFA-VMD. 

 
 
deconvolution can improve the SNR of all coherent events. This is an 
advantage if we consider the useful events but a disadvantage if we consider 
the linear noise and ground-roll. The conventional f-x DFA-VMD [Figs. 
10(d) and 10(e)] has almost no influence on the near-offset noise. The robust 
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f-x DFA-VMD [Fig. 10(f )] boosts the target reflection compared to the noise 
and suppresses the random- noise. It also removes most linear noise and 
partially ground-roll in this case. No noticeable distortion of useful 
information in the difference section [Fig. 10 (g)]. 

 
  

Data set 3: Stacked section 
 
The third example uses the stacked field-data from Alaska 

(Geological Survey, 1981), which was used previously by Han (2015). The 
post-stack section is shown in Fig. 11(a) and a deeper zoomed section (the 
time interval is 3.8-5.2 s and trace number is 250-400) is shown in Fig. 
11(b). Random and coherent noise still exist after stacking. Some crossing 
artifacts are shown in the deep section, probably caused by previous data 
processing. We apply three approaches with the same parameters as for the 
previous example. 

 
 

   a)                                                                    b) 

  
 

Fig. 11. Data set 3: (a) a stacked section from Alaska, (b) the zoomed section from time 
3.8-5.2 s and trace number is 250-400 (marked by the rectangle). Random noise, coherent 
noise, and some crossing artifacts are still exist after stacking.  
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All of the three methods make the events cleaner and improve the 
quality of the input data especially at the deeper part. The f-x deconvolution 
attenuates some of the random-noise but leaves the crossing artifacts 
unaffected [Fig. 12 (a)]. When checking the noise section in Fig. 12(d), we 
found a considerable leakage of useful reflection information especially the 
events before 3.0 s. The denoised section after the use of conventional DFA-
VMD is shown in Fig. 12(b). From the noise section in Fig. 12(e), we can 
see that the denoising method using threshold =0.75θ  only eliminates a small 
amount of the random noise yet decreases the leakage of useful reflectors. 
This is because the seismic data cannot be decomposed suitably with 
inappropriate K value. The best output is given by our method (Fig. 12(c)), 
which removes more random noise and the crossing artifacts. It is also 
characterized by significant preservation of the useful signal [Fig. 12(f)]. 

 
  a)                                              b)                                               c) 

          
d)                                                  e)                                                 f ) 

   
 
Fig. 12. Data set 3: A stacked section. (a) denoised section using -f x  deconvolution, (b) 
denoised section using -f x  DFA-VMD, (c) denoised section using the robust -f x  DFA-
VMD, (d) difference section using -f x  deconvolution, (e) difference section using -f x  
DFA-VMD, and (f) difference section using the robust -f x  DFA-VMD. 
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Fig. 13 shows the same zoomed parts as Fig. 11(b) of three denoising 
outputs. The zoomed section clearly shows that a lot of crossing artifacts 
interfere with the useful signal in this deeper section. The f-x deconvolution 
[Fig. 13(a)] and conventional threshold method [Fig. 13(b)] are only valid 
for random-noise in the deep part. The filtered sections are nearly no 
changes compared to the unprocessed data. Our robust thresholding method 
[Fig. 13(c)] is able to remove the crossing artifacts leading to a superior 
result over the first two techniques. When checking the difference sections, 
the f-x deconvolution partially removes useful energy [Fig. 13(d)]. There is 
no apparent useful information in the difference section after using VMD 
based denoising [Figs. 13(e) and 13(f )]. 

 
 

a)                                                b)                                            c) 

  
d)                                               e)                                             f ) 

  

 
Fig. 13. Comparison of three denoising method in the zoomed section (a) Denoised 
section using f-x deconvolution, (b) denoised section using  f-x DFA-VMD, (c) denoised 
section using the robust f-x DFA-VMD, (d) noise section using f-x deconvolution, (e) 
noise section using  f-x DFA-VMD, and (f ) noise section using the robust f-x DFA-VMD. 
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DISCUSSION 
  

As is known, VMD is a novel decomposition technique that can non-
recursively decompose time series into an ensemble of band-limited IMFs. 
The modes from VMD are less sensitive to noise than those from EMD, in 
which the first two modes always contain more residual noise. Furthermore, 
VMD has lower computational cost than the CEEMD-based methods. These 
features are helpful to accurately capture components and reconstruct the 
filtered signal. However, the number of modes resulting from VMD is 
required to be predefined and its value has expected influence on the 
efficiency of VMD. Both overbinning and underbinning have impact on the 
nature of the detected modes. In practice, prior information about the 
expected number of modes is rarely available. DFA is a powerful tool to 
solve this problem. 

 
The core of the proposed DFA-VMD approach is that the scaling 

exponent of the input data can be used to adjust the number for VMD 
automatically. The relationship between the number of IMFs and the scaling 
exponent for seismic data is obtained from a lot of synthetic-models and 
field examples. A completely robust scaling exponent makes VMD an 
almost parameters-free denoising approach. However, DFA-VMD requires 
to decompose the signal repeatedly, which increase the computational cost. 
Many extensions to DFA, such as multifractal DFA (Kantelhardt et al., 
2002), multivariate DFA (Xiong and Shang, 2017), are developed to give a 
deeper insight into time series in higher dimensions. Therefore, a criterion 
for more accurate computation of scaling exponents or other automated 
techniques to ease the selection of the IMFs should be also devised. The 
authors guess that it is possible to research a simpler and clearer relationship 
between the number K  and frequency characteristic of input data. A short 
conclusion can be drawn from our examples that the useful IMFs with 
seismic effective frequency bands have much bigger scaling exponents, 
because signals with low dominant frequency have less fluctuation and more 
gentle trends. The IMFs whose scaling exponents are between two 
thresholds ( 0.5 2.5θ≤ ≤ ) are beyond the effective bands of seismic data and 
contain a lot of random noise. The new threshold 2.5θ =  is approximately 
equal to the scaling exponent of the upper effective frequency of seismic 
data. Although the above conclusion has been well proved by a large number 
of examples, we are still working on a strict mathematical theory to explain 
the relationship between the scaling exponents and the number of IMFs. 

 
In field-data example, the number K  is different for each trace but the 

number of valuable modes is almost the same, suggesting similar noise 
density. It should be mentioned that DFA only improve the parameters 
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selection, rather than the decomposition algorithm itself. The VMD 
algorithm also depends on several other parameters, such as the balancing 
parameter of the data-fidelity constraint α  , the step on the recursion that 
updates the Lagrangian multipliers τ  , the tolerance of the convergence 
criterion Tol , the number of DC  components, and the initialization of center 
frequencies Init . These parameters are beyond the scope of this paper but 
easier to be predefined than the numberK . 

 
 

CONCLUSIONS 
 

We propose a robust DFA-VMD denoising method and apply it in the 
(f-x) domain for seismic denoising. The VMD depends on several predefined 
parameters. The number of IMFs is extremely crucial and its value has 
serious influence on the efficiency of VMD. DFA is a powerful tool to solve 
this problem. The scaling exponent obtained by DFA can also help to 
identify and remove the noisy IMFs. To ease the application of VMD based 
denoising in practice, we proposed a more robust threshold according to the 
effective frequency of seismic data, because the threshold for other time 
series denoising cannot perform perfectly when dealing with seismic data. 
The proposed approach is an almost parameters-free denoising approach, 
which decreases the difficult of preferences and provides a theory 
fundamental for VMD-based denoising. We apply it in the (f-x) domain to 
remove the random and coherent noise in seismic data. Using two synthetic 
examples and three field examples, we illustrated the superior performance 
of the method we proposed over (f-x) deconvolution and conventional DFA-
VMD.  
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APPENDIX 

Table 1. Comparison of the DFA-VMD denoising with different threshold (The rest 
parameters for VMD are kept at 5000, 0, 0DC Initα τ= = = = , and 1 07Tol e= −  in all cases 
considered). 
 

SNR(dB) -4.67 -1.53 0.48 1.76 6.55 

0h  0.76 0.83 0.91 1.09 1.37 

θ  2.5 0.75 2.5 0.75 2.5 0.75 2.5 0.75 2.5 0.75 

1K =  2.81 2.81 2.42 2.42 3.31 3.31 4.08 4.08 7.91 7.91 

2K =  2.81 2.81 2.41 2.41 3.39 3.39 4.08 4.08 7.86 7.86 

3K =  2.80 2.80 2.40 2.40 3.22 3.22 4.06 4.06 12.18 9.53 

4K =  4.24 2.76 4.55 4.37 6.49 3.24 6.80 8.34 12.16 9.51 

5K =  4.23 2.77 4.55 4.37 6.52 7.80 6.86 8.32 13.35 9.48 

6K =  N/A N/A 4.56 4.37 6.52 7.81 6.89 8.51 13.35 9.47 

7K =  N/A N/A 7.32 4.22 6.55 7.88 6.89 8.48 13.35 12.25 

8K =  N/A N/A 7.32 4.26 10.47 7.88 12.16 8.43 13.34 12.26 

9K =  N/A N/A 7.33 4.25 10.49 7.79 12.16 6.06 13.36 12.25 

10K =  N/A N/A N/A N/A N/A N/A 12.17 6.32 15.30 12.25 

11K =  N/A N/A N/A N/A N/A N/A 12.18 6.22 15.31 9.24 

12K =  N/A N/A N/A N/A N/A N/A N/A N/A 17.25 9.34 

13K =  N/A N/A N/A N/A N/A N/A N/A N/A 17.26 9.32 

 


