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ABSTRACT 
 
He, X.J. and Yue, X.R., 2019. A high-order weighted Runge-Kutta Discontinuous 
Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and 
anisotropic media. Journal of Seismic Exploration, 28: 363-391. 
 
 A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D 
acoustic and elastic wave equations in isotropic and anisotropic media is proposed in this 
paper, which is an extension of the existing first-order and second-order methods to 
higher-order cases. For this method, second-order seismic wave equations are first 
transformed into a first-order hyperbolic system, then local Lax-Friedrichs (LLF) 
numerical flux discontinuous Galerkin formulations for spatial discretization are 
employed, directly leading to a semi discrete ordinary differential equation (ODE) system. 
For time discretization, an implicit diagonal Runge-Kutta method is introduced. To avoid 
solving a large-scale system of linear equations, a two-step explicit iterative process is 
implemented. In addition, a weighting factor is introduced for the iteration to enrich the 
method. The basis functions we use are 1st ~ 5th order polynomials, leading to 2nd- and 6th 
order of spatial accuracy. Numerical properties of the high-order weighted Runge-Kutta 
Discontinuous Galerkin Method are investigated in detail, including numerical error, 
stability criteria and numerical dispersion, which validate the superiority of the high order 
method. The proposed method is then applied to several 2D wave propagation problems 
in isotropic and anisotropic media, including acoustic-elastic interface problems. Results 
illustrate that this method can effectively suppress numerical dispersion and provide 
accurate information on the wave field on coarse mesh. We also compare the proposed 
method with the finite difference method to investigate the computational efficiency. 
 
KEY WORDS: seismic wave equation, high-order, Discontinuous Galerkin Method,  
     DGM, weighted, numerical dispersion. 
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INTRODUCTION 
	
	 During the past several decades, the development of computer 
technology has facilitated huge progress in numerically solving seismic 
wave equations in complex media. Popular numerical algorithms include 
finite-difference method (FDM) (Dablain, 1986; Virieux, 1986; Moczo et al., 
2000; Yang et al., 2006), finite element method (FEM) (Marfurt, 1984), and 
spectral element method (SEM) (Komatitsch and Tromp, 1999; Tong et al., 
2014), etc. Recently, the Discontinuous Galerkin Method (DGM) has 
received extensive attention due to its good properties and wide applications. 
The DGM was first introduced by Reed and Hill (1973) for solving 
first-order hyperbolic neutron transport equations. Later, the method was 
extended for solving hyperbolic conservation problems by employing 
numerical flux formulations and total variation diminishing Runge-Kutta 
time discretization by Cockburn and Shu (1989, 2001), whose work 
formulated the Runge-Kutta DGM into a complete mathematical framework. 
Presently, many kinds of DGMs have been proposed and successfully 
applied to fluid dynamics (Hesthaven and Warburton, 2007), 
electromagnetics (Chen and Liu, 2013), and aeroacoustics (Dumbser and 
Munz, 2005). For more details of these kinds of DGMs, the reader is referred 
to the unified analysis proposed by Arnold et al. (2002). In computational 
seismology, DGMs have undergone rapid development (Riviere and 
Wheeler, 2003; Käser and Dumbser, 2006; Chaljub et al., 2010; Etienne et 
al., 2010; Minisini et al., 2013; Lambrecht et al., 2017). As a well-known 
example, Käser and Dumbser (2006) proposed a high order DGM, in which 
the Riemann flux and a high order derivative time integration method are 
used. This method retains high order accuracy in space and time, and has 
been widely used in complicated wave propagation and ground motion (de la 
Puente et al., 2009; Pelties et al., 2012). 
 

Since DGM can be regarded as a generalization and development of 
FEM to some degree, many advantageous properties of FEM are inherited. 
For example, it is easy to deal with domains consisting of complex 
boundaries for DGM. The stencil of most DGMs is compact, meaning it is 
associated with only this element and its immediate neighbors without 
dependence on any other element. Due to a high degree of locality, DGMs 
can easily process non-conforming meshes and hanging nodes, and can 
achieve high order accuracy simply by increasing the degrees of basis 
functions. Moreover, complete localization means that DGMs avoid solving 
large global mass matrices, making them especially suitable for 
parallelization. 

  
Most of the developed DGMs are associated to explicit time 

discretizations, such as Runge-Kutta schemes (Cockburn and Shu, 1989), 
and the Lax-Wendroff method (Käser and Dumbser, 2006; De Basabe and 
Sen, 2010). Explicit time-stepping methods are widely used for simple 
implementation and parallelization. However, there is a strong restriction on 
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the time step which is known as the Courant-Friedrichs-Lewy (CFL) 
condition. Implicit solvers, such as diagonally implicit Runge-Kutta (Hairer 
et al., 2006; Segawa et al., 2011) and Newton iterative methods (Dolejší et 
al., 2011; Renac et al., 2012), are used in time discretizations because they 
permit the use  of larger time steps. However, the shortcoming for the 
implicit method is the extremely high computational cost induced by solving 
large-scale linear algebraic equations. In order to avoid this, some explicit 
techniques, such as truncated differentiator series method and the 
predictor-corrector method have been proposed (e.g., Yang et al., 2012; 
Wang and Zhou, 2014) to turn implicit methods into explicit methods. In this 
work, implicit diagonal Runge-Kutta formulations for time discretization are 
introduced, then a two-step explicit iterative process is developed to convert 
the implicit method to an explicit one. 

 
Follow the work of He et al. (2015), in which the first and second order 

spatial polynomial interpolations have been considered, here, we consider 
DGMs with high-order interpolations of 2nd- and 6th order of spatial accuracy 
and their numerical properties. First, the second-order scalar wave equations 
are transformed into a first-order hyperbolic system. The numerical approach 
is then presented in detail, including spatial and time discretizations. 
Detailed analyses on numerical error, stability condition and numerical 
dispersion relationship are then discussed. Finally, the high-order weighted 
Runge-Kutta Discontinuous Galerkin Method is employed to simulate a 
selection of wave propagation models. 

 
 

TRANSFORMATION OF THE SEISMIC WAVE EQUATION 
	

 In a 2D anisotropic elastic medium, the seismic wave equation can be 
written as: 

 

2

1 2 3 42

U C C C C U f
t x x z z x z

ρ
∂ ⎛ ∂ ∂ ∂ ∂ ∂ ∂ ⎞⎛ ⎞ ⎛ ⎞= + + + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

,     (1) 

where ( , )x zρ ρ=  is the density, 1 2( , )TU u u=  is the displacement vector, 
and 1 2( , )Tf f f= is the external force-source vector. Matrices C1, C2, C3, and 
C4 are defined as: 
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where ( , )ijc x z  are elastic constants. Since this paper is a generalization of 
the low-order method to the high-order method, most of these notations and 
variables coincide with He et al. (2014, 2015) in order to facilitate the 
writing. There are six independent elastic constants 11 33 55 13 15 35, , , , ,c c c c c c  for the 
2D full anisotropic medium. For the isotropic elastic medium, we have two 
Lamé constants λ  and µ , with 33 11 13 552 , ,c c c cλ µ λ µ= = + = =  and other 
elastic constants at zero. 
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 We need some manipulations of eq. (1) to turn it into a 1st-order linear 

hyperbolic system. Following the transformation in He et al. (2015, 2019), 

we introduce 1 2( , )TP p p=  and 1 2( , )TQ q q=  satisfied P U
t x

∂ ∂
=

∂ ∂
 and

Q U
t z

∂ ∂
=

∂ ∂
. With the definitions of P and Q, eq. (1) can be rewritten as: 

 

 (2) 

Let  

U
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Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 2 3 4

( ) 0
0
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, 

then eq. (2) is simplified to: 

     ˆ( )W F W f
t

∂
+∇⋅ =

∂
.                 (3) 

The unknown vector to be approximated is W, and ( )F W is the flux vector. 
Since the velocity-stress equation is first-order hyperbolic, we say that 
eq. (3), as well as the algorithm developed below, is also applicable to it.  
 

For the 2D acoustic equation: 
2 ( ) ( )tt xx zzu c u u f t− + =   ,                                 (4) 

eq. (3) has a concise form: 
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where c is the acoustic velocity.  
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NUMERICAL SCHEME 
 
 A fully discrete numerical method consists of spatial discretization and 
time discretization. For the weighted Runge-Kutta Discontinuous Galerkin 
Method, a detailed description has been described in the literature (He et al., 
2015, 2019). Here we present some necessary parts that compose the 
proposed method. 
	
Spatial discretization 
 
 It is assumed that the computational domain 2Ω∈R  is partitioned into 
non-overlapping sub-elements { }iΩ . The approximation space for DGM 
may be discontinuous across element interfaces. In this paper, the scalar test 
function broken space of the DGM is defined as: 

  { }2 ( ) : ( )
ih iV v L v PκΩ= ∈ Ω ∈ Ω , 

where ( )iPκ Ω  is a polynomial space of degree at most κ defined on iΩ . 
Next we derive the weak form of the solution. Here are some usual practices 
for DGM. Multiplying eq. (3) by a time-independent scalar test function v 
and integrating over the sub-element iΩ  gives: 

ˆ( ) d d
i i

Wv v F W V fv V
tΩ Ω

∂⎛ ⎞+ ∇⋅ =⎜ ⎟∂⎝ ⎠∫ ∫ .  (5) 

Using Green’s formula, eq. (5) is recast as: 

     ˆ( ) d ( ) d d
i i i

Wv F W v V vF W n S fv V
tΩ ∂Ω Ω

∂⎛ ⎞− ⋅∇ + ⋅ =⎜ ⎟∂⎝ ⎠∫ ∫ ∫ , (6) 

where i∂Ω  is the boundary of iΩ , and n denotes the unit outward normal 
vector to i∂Ω . Eq. (6) is the weak form of eq. (3). The difference between 
DGM and other numerical methods tells us that W has two possible values: 

intW and extW , which are external and internal limits on i∂Ω . Then the flux 
( )F W n⋅  is replaced by the numerical flux int extˆ ( , , )F W W n . The selection of 

numerical flux is the key to the DG method (LeVeque, 2002). Taking 
efficiency and robustness into account, the standard LLF numerical flux 
(Cockburn and Shu, 1989, 2001) is used here, which reads: 

 
int ext int ext ext int1ˆ ( , , ) ( ) ( ) ( )

2 2
i

C
F W W n F W F W n W W∂Ω⎡ ⎤= + ⋅ − −⎣ ⎦ ,     (7) 

where the numerical viscosity constant 
i

C∂Ω  can be taken as be the largest 

eigenvalue between 
int( )F W n

W
∂

⋅
∂  and 

ext( )F W n
W
∂

⋅
∂ .  
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Let's consider the basis function expansions of W. Suppose { } 1
locl di

l lw =
=  is 

a set of basis functions for DGM, where locd  is the number of local degree 

of freedom (DOF) per element. There are two kinds of basis functions, 

order-complete basis and tensor-product basis (Hu et al., 1999), the number 

of DOF for which is ( 1)( 2)
2locd

κ κ+ +
=  for the order-complete basis and 

2( 1)κ= +locd  for the tensor-product basis. In this study, we use 

order-complete basis, so ( 1)( 2)
2locd

κ κ+ +
= . Here, the Legendre basis 

polynomials are employed for the numerical analysis and the simulations on 

regular quadrilateral mesh. For triangular elements, there are also orthogonal 

basis functions, but the expressions are more complicated. In this study, we 

choose { }| 0α β α β κ≤ + ≤x z  as the basis functions, which are easy to 

calculate for high orders, and the related condition number of the mass 

matrix is within the acceptable range. The numerical solution of eq. (6) could 

be approximated as: 

1
( )

loc

i

d
i i
l l

l
W c t w∂Ω

=

=∑ ,                (8) 

in which { }
1

( ) locdi
l l
c t

=
 are time dependent coefficients. With eq. (8), we replace v 

with i
lw ʹ in eq. (6), so that eq. (6) reads as 

 1 1

1 1

( ) d ( ) , d

ˆˆ ( ) , ( ) , d d

loc loc

i i

loc loc

i j i

d di i i
i i i il l l
l l l l

l l

d d
i i i j j i
l l l l l l

j l l

c t w ww w V F c t w V
t x z

w F c t w c t w n S fw V

ʹ ʹ
ʹΩ Ω

= =

ʹ ʹΩ ∩Ω Ω
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− ⋅⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑∫ ∫

∑ ∑ ∑∫ ∫
.    (9) 

 In eq. (9) the superscript j denotes the values taken from the adjacent 
element. Note that all integrals appearing in eq. (9) are calculated by means 
of numerical integration. It is suggested that the quadrature rule for the edge 
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integrals should be exact for polynomials of degree at least 2κ+1, and for the 
element integrals it should be exact for polynomials of degree at least 2κ 
(Cockburn and Shu, 1998, 2001). 
 
 
Time discretization 
 

 After spatial discretization, a semi discrete ODE system remains to solve. 

To simplify the expression, a coefficient vector ( )iC t  is introduced to 

represent the coefficients { }
1

( ) locdi
l l
c t

=
. The element superscript i and the time 

term t are both omitted. Then, the semi discrete eq. (9) has a compact 

notation, which reads 

  ( )C L C F
t

∂
= +

∂
,                (10) 

where L is the linear operator with respect to DG spatial discretization and F
denotes the source excitation item. 
  

To relax the CFL stability conditions, the following implicit diagonal 
Runge-Kutta method is used to solve system (10): 

( 1) ( ) ( ) ( )( )
2

n n n ntC C K K+ Δ
= + + ,            (11)  

    
( ) ( ) ( )( ) ( )n n n nK L C r tK F t r t= + Δ + + Δ ,     (11a) 

    
( ) ( ) ( ) ( )( (1 2 ) ) ( (1 ) )n n n n nK L C r tK r tK F t r t= + − Δ + Δ + + − Δ .  (11b) 

where ( )3 3 / 6r = − . 
Obviously, scheme (11) is an implicit scheme. In the Introduction 

section, we have discussed the shortcomings of implicit method, therefore, 
we decide to convert this implicit method into an explicit one. Following the 
techniques proposed by He et al. (2014, 2015, 2019), we use an iteration 
procedure. If the source item is ignored, eq. (11a) implies the following 
iteration process when 1r tLΔ < : 

 ,               (12) 
where the subscript k  denotes the iteration number. Now we will discuss 
the selection of the initial value for ( )nK  in eq. (12). From eq. (11) we know 
that both ( )nK  and ( )nK  are reasonable approximations of ( )( )nL C , so we 

( ) ( ) ( )
1 ( ) ( ), 0,1,2,n n n

k kK r tL K L C k+ = Δ + = K
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can choose ( )( )nL C  as the iterative initial value for ( )nK  and ( )nK .We 
implement a two-step iterations for eq. (12) are implemented in the form: 
 

( ) ( )
0
( ) ( ) ( )
1 0

( ) ( ) ( )
2 1

( )

( ) ( )

( ) ( )

n n

n n n

n n n

K L C
K r tL K L C
K r tL K L C

⎧ =
⎪

= Δ +⎨
⎪ = Δ +⎩

 .             (13) 

 
To enrich the numerical method, we take a weighted combination of ( )

2
nK  

and ( )
1
nK  for the approximation of ( )nK , being: 

 
 ( ) ( ) ( ) ( ) 2 ( ) 2 3 ( )

2 1(1 ) ( ) ( ) ( ) ( )n n n n n nK K K L C r tL C r t L Cη η η= + − = + Δ + Δ .   (14) 
 
Here the weighting factor is [0,1]η∈ . The same process as in eq. (14) is 
then implemented to calculate ( )nK . It is worth mentioning that both ( )( )nL T  
and ( )( )nL C  can be used as the initial value of ( )nK . 
 
 
 
ERROR ANALYSIS, STABILITY CRITERIA AND NUMERICAL 
DISPERSION 
	

 In this section, the numerical errors of the proposed method are initially 
investigated, then Von Neumann analysis is applied to discuss its stability 
and numerical dispersion. 
 
 
Error analysis 
 
 To further illustrate the numerical spatial accuracy of the high-order 
weighted Runge-Kutta Discontinuous Galerkin Method, the 2D 
homogeneous acoustic wave equation in eq. (4) is considered, with the exact 
solution: 
 

  

0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

2 2( , , ) cos 2 cos sin

cos 2 2( , , ) cos 2 cos sin

sin 2 2( , , ) cos 2 cos sin

f fu t x z f t x z
c c

f fp t x z f t x z
c c c

f fq t x z f t x z
c c c

π π
π θ θ

θ π π
π θ θ

θ π π
π θ θ

⎧ ⎛ ⎞
= − −⎜ ⎟⎪

⎝ ⎠⎪
⎪ ⎛ ⎞

= − − −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞
= − − −⎪ ⎜ ⎟

⎝ ⎠⎩

,    (15) 

 
where c is the acoustic velocity, 0θ  denotes the incident direction at time t = 
0, and 0f is the peak frequency. We quote this example from He et al. (2015). 
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The parameter settings for this example are similar to that in He et al. (2015), 
but here we will consider the high-order cases. We set 0 , 1.414x z≤ ≤  km, 

4c = km/s, 0 20f =  Hz, and 0 4θ π= . The time step is set to be 0.1tΔ =  ms such 
that the numerical errors caused by the time discretization can be ignored, 
hence the errors are dominated by the spatial discretization errors. We run 
1000 time iterations for all the simulations. In this numerical test, the value of 
the weight η is found to have little effect on the numerical errors, therefore a 
simplified 1.0η =  is used in the numerical modeling. 

 
The continuous 1L  and 2L norm errors between the numerical solution uh 

and the exact solution u are defined as: 

( )
1

, 1,2kk

k k
h hLL

E u u u u d k
Ω

= − = − Ω =∫ K . 

 
 

Table 1．Convergence rates of u in spatial discretization for P1 ~ P5 basis functions. 
 

 
h L2 error order L1 error order DOF CPU(s) 

P5 

3.928E-02 9.150E-06 - 
9.386 
E-06 

- 8.165E+04 9.680E+02 

4.714E-02 2.605E-05 5.738 2.709E-05 5.814 5.670E+04 6.794E+02 
5.238E-02 4.858E-05 5.803 4.995E-05 5.807 4.593E+04 5.456E+02 
7.857E-02 5.362E-04 5.922 5.672E-04 5.992 2.041E+04 2.421E+02 

        

P4 

2.828E-02 2.636E-05 - 2.837E-05 - 1.125E+05 9.870E+02 
3.143E-02 4.427E-05 4.922 4.829E-05 5.050 9.113E+04 8.033E+02 
3.928E-02 1.327E-04 4.920 1.453E-04 4.936 5.832E+04 5.116E+02 
7.857E-02 3.803E-03 4.840 4.217E-03 4.859 1.458E+04 1.290E+02 

        

P3 

1.964E-02 9.676E-05 - 1.066E-04 - 1.555E+05 9.632E+02 
2.357E-02 1.976E-04 3.915 2.169E-04 3.897 1.080E+05 6.682E+02 
3.143E-02 6.040E-04 3.885 6.660E-04 3.899 6.075E+04 3.759E+02 
3.928E-02 1.430E-03 3.861 1.572E-03 3.850 3.888E+04 2.428E+02 

        

P2 

1.179E-02 3.349E-04 - 3.524E-04 - 2.592E+05 1.062E+03 
1.571E-02 8.035E-04 3.042 8.627E-04 3.112 1.458E+05 5.915E+02 
1.964E-02 1.602E-03 3.093 1.765E-03 3.209 9.331E+04 3.798E+02 
3.928E-02 1.676E-02 3.387 2.087E-02 3.564 2.333E+04 9.647E+01 

        

P1 

7.857E-03 5.671E-03 - 6.347E-03 - 2.916E+05 7.323E+02 
1.571E-02 3.893E-02 2.779 4.796E-02 2.918 7.290E+04 1.802E+02 
3.143E-02 3.407E-01 3.129 4.331E-01 3.175 1.823E+04 6.789E+01 
3.928E-02 5.344E-01 2.018 6.788E-01 2.014 1.166E+04 4.365E+01 
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(a) 

 
(b) 

 
(c) 

 
Fig. 1. (a) Numerical errors versus mesh size 1/ h; (b) Numerical errors versus size of 
DOFs; (c) Numerical errors versus CPU times. We consider P1 ~ P5 basis functions for 
spatial discretization. 
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Table 1 shows the L1 and L2 numerical errors and convergence orders in 
relation to mesh size h. The basis functions P1 ~ P5 are considered for spatial 
discretization. Furthermore, the size of DOFs and CPU times are listed for 
simulating these cases, which are measurements of the required storage and 
calculation speed, respectively. From Table 1 it can be observed that the 
proposed method with Pκ elements is convergent and achieves the expected 
(κ+1)-th order of accuracy for 1,2,3,4,5κ = . 
 

In this study we focus on the high-order cases. It can be seen from Table 
1 that the numerical error of the higher order method is much smaller than 
that of the lower order method. To compare the computational efficiency for 
all the cases, we plot the L2 errors varying with grid step size, storage and 
CPU times for different orders in Fig. 1. As can be seen, when the same 
mesh size is used, or given the same amount of storage and CPU times, the 
numerical errors produced by the higher-order method are significantly 
reduced, which fully demonstrates the advantages of the higher order method. 
Therefore, for large-scale modelling, the high-order method can use coarse 
grids, which greatly reduces the amount of storage and calculations, hence 
improves the computational efficiency. 
	
	

Stability conditions 
 
 Stability conditions for the high order weighted Runge-Kutta 
Discontinuous Galerkin Method are considered here. This analysis is based 
on the Von Neumann analysis, which has been presented in detail in He et al. 
(2015, 2019). Here we just present it in the Appendix A, where the 
eigenvalue Λ of the growth matrix for the algorithm in eq. (A-6) has been 
deduced. From the definition of Λ, we know that to keep the scheme stable, 
Λ must satisfy 1Λ ≤  for all eigenvalues, all wave numbers [0, ]kh π∈  and 
for all propagation directions [0,2 ]θ π∈ . Table 2 shows the different 
maximum Courant numbers for Pκ (κ = 1, 2, 3, 4, 5) elements for different 
weights ƞ from 0 to 1. It is observed that the maximum Courant numbers are 
obtained when ƞ is taken to be some intermediate value between 0 and 1. 
 
  
Table 2．Approximate maximum Courant numbers for different weights. 

 
ƞ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
P1 0.592 0.668 0.818 1.040 0.982 0.784 0.676 0.610 0.562 0.528 0.5 
P2 0.224 0.232 0.242 0.254 0.270 0.292 0.324 0.32 0.294 0.276 0.262 
P3 0.184 0.191 0.200 0.210 0.223 0.240 0.238 0.214 0.198 0.186 0.176 
P4 0.121 0.126 0.131 0.138 0.146 0.157 0.162 0.146 0.135 0.126 0.120 
P5 0.089 0.092 0.096 0.101 0.106 0.114 0.121 0.109 0.100 0.094 0.089 
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(a)                                 (b) 

 

 (c)                                   (d) 

 

(e) 
 
Fig. 2. Numerical dispersion R as a function of the spatial sampling ratio pS  when

0 ,15 ,30 ,45θ ° ° ° °= . (a) ~ (e) P1 ~ P5 basis functions for spatial discretization. 
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Note that the stability conditions for the heterogeneous media cannot be 

directly determined but could be approximated by using the maximum wave 
velocity c in the homogeneous case. In addition, the basis function used here 
is order-complete basis, not tensor-product basis. If tensor product basis was 
to be used, the size of DOFs for each element would increase, and the 
stability condition would be more rigorous. 
 
	

Dispersion analysis 
 
 Numerical dispersion occurs when the numerical method is used to 
discretize the wave equation. In this subsection, the numerical dispersion 
including the effects of space and time discretizations are investigated. The 
analysis is based on the Von Neumann analysis in Appendix A. 
  

Fig. 2 shows how numerical dispersion R varies with the sampling ratio 
[0, 0.5]pS ∈  for 1P ~ 5P elements. The results for four propagation directions 
0 ,15 ,30 ,45θ ° ° ° °= are presented here. These results are computed with 1.0η =  

and 0.1α = , except for P5 elements where 0.08α =  is used to satisfy its 
stability condition. Figs. 2(a)-(e) show that numerical dispersion is 
significantly decreased as the order of spatial discretization increases, 
especially for κ > 2; in particular, we see that when κ = 5 and Sp = 0.5, the 
dispersion error is less than 5× 10 -6. Meanwhile, it can be observed that for 

element, the numerical dispersion oscillates around 1 for different θ, 
which implies that the waves are delayed or advanced according to different 
propagation directions. However, for elements, the numerical 
dispersion R is slightly greater than 1 for all propagation directions, meaning 
that the waves are slightly advanced. 

  
The anisotropy of the numerical dispersion is displayed in Fig. 3, where 

results for sampling ratios 0.4, 0.45, 0.5PS =  are provided. The parameters 
for the weighting factor and Courant number are the same as in Fig. 2. It can 
be seen from Fig. 3 that numerical dispersion is strongly related to the 
propagation angle θ. However, since the numerical dispersion for high-order 
schemes (especially for κ > 2) is very small, the whole anisotropy is also 
very small. 

 
 

NUMERICAL SIMULATIONS 
 
 In this section, we present some numerical examples to further illustrate 
the correctness and capability of the high-order weighted Runge-Kutta 
Discontinuous Galerkin Method. 
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(a)                              (b) 

 

(c)                              (d) 

 

(e) 

 
 
Fig. 3. Anisotropy curves of numerical dispersion R with the spatial sampling ratio

0.5, 0.45, 0.4pS = . (a) ~ (e) P1 ~ P5 basis functions for spatial discretization. 
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Homogeneous acoustic model 
	

 To investigate the validity of the proposed method in suppressing 
numerical dispersion on a coarse mesh, a 2D homogeneous acoustic model 
with the velocity of c = 3.0 km/s is used. The computational region is 
0 , 10x z≤ ≤  km. The explosive source frequency in eq. (4) is a Ricker 
wavelet: 

    ( ) ( )2 22
0 0 0( ) 5.76 [1 16 0.6 1 ]exp[ 8 0.6 1 ]f t f f ft t= − − − − − ,       (16) 

 
with peak frequency f0 = 24 Hz. The source is located at the center of the 
domain with a receiver at (6 km, 6 km) to observe the waveforms. For this 
example, a 4th-order weighted Runge-Kutta discontinuous Galerkin scheme 
with 0.5η =  is used. A uniform grid spacing of the size 50 m × 50 m with 

3.8tΔ =  ms is selected for computation, resulting in about 2.5 elements per 
minimum wavelength. 
 
 In Fig. 4, the snapshot of the displacement at T = 1.2 s is presented, 
wherein no visible numerical dispersion can be observed. To illustrate the 
precise match between the numerical solution and the analytical solution, we 
present the normalized waveforms at the receiver in Fig. 5. The solid line 
denotes the analytical solution computed by the Cagniard-de Hoop method 
(Aki and Richards, 2002), and the dashed line represents the numerical 
solution computed by the proposed method. Fig. 5 indicates that the 
numerical solution corresponds well with the analytic solution, illustrating 
that the proposed method can provide almost the same result as the analytical 
solution. Additionally, no visible numerical dispersion from the waveforms 
is observed in Fig. 5. The test shows that the proposed method can 
effectively suppress the numerical dispersion on the coarse grid. 

 
 

 
Fig. 4. Snapshot of the seismic wave fields at time T = 1.2 s for the homogeneous 
acoustic medium with a uniform grid spacing of 50 m.	 	  
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Fig. 5. Waveforms of the seismic wave fields at time T = 1.2 s generated by the 4th-order 
weighted Runge-Kutta Discontinuous Galerkin Method (dotted line), and the reference 
solution (solid line) for the homogeneous medium.   
 
 
Three-layer model 
 
 In this example, a three-layer model with a computational domain of 
0 , 6x z≤ ≤  km is selected. The velocity is 3.0 km/s in the top layer where
0 1.5z≤ ≤ km, 2.0 km/s in the middle layer where1.5 3.3z≤ ≤ km, and 4.0 
km/s in the bottom layer. The source, located at (3 km, 2.655 km), is a 
Ricker wavelet with source function as in eq. (16). The peak frequency is 32 
Hz. Two receivers are also set, located at R1 (3 km, 1.815 km) and R2 (4.2 
km, 4.215 km) to observe the waveforms. The spatial and temporal 
increments selected are 30 m and 1.8tΔ = ms, respectively. For the purpose of 
comparison, this model is also simulated by the commonly used 
FDM-Lax-Wendroff correction (LWC) method (Dablain, 1986). Fig. 6 
shows the snapshots at T = 1.0 s generated by the 4th-order weighted 
Runge-Kutta discontinuous Galerkin scheme with a weighting factor of 

0.5η = and the 4th-order LWC method for the same computational 
parameters. The wave propagation phenomena including reflection and 
transmission can be clearly observed in Fig. 6(a) without visible numerical 
dispersion, whereas the LWC method [Fig. 6(b)] suffers from serious 
numerical dispersion. 
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	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (a)                               (b) 
 
Fig. 6. Snapshots of the seismic wave fields at time T = 1.0 s for the three-layer model 
with a uniform grid spacing of 30 m. (a) 4th-order weighted Runge-Kutta Discontinuous 
Galerkin Method; (b) 4th-order LWC method. 

 

 
(a)                               (b) 

 
Fig. 7. Comparisons of the waveforms for u at two receivers in the three-layer model at 
time T = 1.0 s, generated by the 4th-order weighted Runge-Kutta Discontinuous Galerkin 
Method (30 m × 30 m) and the 4th-order LWC method (8 m × 8 m). (a) R1; (b) R2. 
  

 
In order to eliminate the numerical dispersion and offer an accurate 

view of the wave field, the LWC method is implemented using a finer grid 
( 8x zΔ = Δ =  m). With the finer grid the LWC method produces almost no 
numerical dispersion. The waveforms are shown at the two receivers. From 
Fig. 7 it can be seen that the proposed method can provide almost the same 
solution on a much coarser grid as that of the LWC method on a finer grid. It 
must be noted that although the proposed method produces smaller 
numerical dispersion on the coarse grid, its computation time is much greater 
than the LWC method. For this model, it takes about 3995 seconds for the 
weighted Runge-Kutta Discontinuous Galerkin Method to generate the 
results in Fig. 7 on a coarse grid, whereas it takes only 95 seconds for the 
LWC method to generate the same results on a fine grid. This is a computing 
time gap of approximately 42 times between the two methods. Therefore, 
how to improve the calculation speed of the proposed method is a challenge 
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for future development, and the main issue to be considered by the authors in 
the future. 

 
 

Cave model 
 
 In this example, acoustic wave propagation in a cave is simulated, and 
the cave model is presented in Fig. 8. The computational region is 0 ≤ x, z ≤ 
5.6 km. There is a circular cave with the radius 0.5 km in the background 
medium with the center located at (2.8 km, 4.2 km). The source, located at 
the center of the domain, is a Ricker wavelet with source function as in eq. 
(16). The peak frequency is 30 Hz. The velocity in the homogeneous 
background medium is 4.0 km/s, whereas the velocity in the cave is 1.5 km/s. 
The global grid size is about 40 m, and in the cave the average edge length 
of the triangular mesh is about 15 m. Part of the irregular triangular mesh is 
shown in Fig. 9. For the result shown in this example, a 4th-order scheme 
with 0.5η =  and 0.38tΔ =  ms is used. Snapshots at T = 0.3, 0.4, 0.6 and 
0.7 s for the cave model are illustrated in Fig. 10, where the wave’s arrival, 
reflection and transmission caused by the existence of the cave is clearly 
visible. The snapshots are very clear and have no visible numerical 
dispersion. This model demonstrates that the suggested method can simulate 
wave propagation in complex structures with large velocity contrast. 
 
 

 
 

Fig. 8. Illustration of the cave model. There is a circular cave of radius 0.5 km in the 
background medium with the center located at (2.8 km, 4.2 km).	The source, denoted by S, 
is located at the center of the domain. 

	 	       
 
Isotropic and anisotropic elastic media  
 
 In this example, elastic wave propagation in 2D isotropic and anisotropic 
media is investigated through the consideration of three separate cases. The 
elastic parameters for Cases 1 and 2 are presented in Table 3. For Case 3, 
there is a horizontal interface at the center of the z-direction in the medium, 
with the parameters of the lower and upper layers similar to those of Case 1 
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and Case 2, respectively. The computational region is 0 , 7.5x z≤ ≤ km. The 
source is located at the center of the domain for Case 1 and Case 2, while for 
Case 3 the source coordinate is (3.75 km, 4.125 km). The source function is 
the same as in eq. (16), with a peak frequency of 15 Hz. The computational 
domain is discretized by 22887 triangles with an average edge length of 0.07 
km. The time step is 0.43tΔ = ms and a 4th-order weighted Runge-Kutta 
Discontinuous Galerkin Method scheme with 0.5η =  is implemented. 

 

 

Fig. 9. Irregular mesh for the cave and its surroundings. 

 

    

(a)                         (b) 

 

    

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	         (c)                       (d) 

Fig. 10. Snapshots for the cave model at time (a) T = 0.3 s, (b) T = 0.4 s, (c) T = 0.6 s, and 
(d) T = 0.7 s. 
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Acoustic-elastic interface 
	

 In this example, acoustic-elastic interface problems are examined. In the 
real world, the fluid-solid interface could represent the water layer on a rock 
layer, and is of major importance in marine exploration seismology (Zhang, 
1997; Käser and Dumbser, 2008). Two models are considered here. The first 
model has a plat interface, while the second has a sinusoidal interface. The 
two models and some parameters are illustrated in Fig. 12 (Zhang, 1997). 
The wavelength of the sinusoidal interface is 200 m with an amplitude of 
30m. The source is located at (2 km, 2.3 km) with the same function as in eq. 
(16), and f0 = 20 Hz. The interface is located at z = 2 km. For the first model, 
the computational domain is discretized by 29742 triangles with an average 
edge length of 0.03 km; for the second model, there are 25672 triangles, and 
the length of the grid near the interface is about 0.02 km. The 4th-order 
scheme with 0.5η =  is used with a time step of 0.4 ms. 
 
 

      
(a)                                   (b) 

 
Fig. 12. Illustrations of the acoustic-elastic interface model. (a): horizontal interface; 
(b): sinusoidal interface. 
 

 
Fig. 13 shows the wave-field snapshots of the displacement vector 

1 2( , )u u at T = 0.5 s, 0.8 s and 1.1 s for Model 1. The direct and reflected 
acoustic waves are clearly visible in the fluid domain. In the solid domain, 
the transmitted P-wave with the converted S-wave can be clearly observed. 
In contrast, Fig. 14 shows the wave-field snapshots for the sinusoidal 
acoustic-elastic interface. In addition to the visible wave phenomena in 
Fig.13, a series of scattering waves are visible in Fig. 14 due to the 
sinusoidal tomography. The snapshots are clear without visible numerical 
dispersion. The results show that the weighted Runge-Kutta Discontinuous 
Galerkin Method performs well for complicated wave propagation 
phenomena in acoustic-elastic interface problems. 
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Fig. 13. Snapshots for the displacements 1 2( , )u u  in the horizontal acoustic-elastic 
interface model at time T = 0.5 s, T = 0.8 s and T = 1.1 s. (a) and (d) are the snapshots for 
T = 0.5 s; (b) and (e) are the snapshots for T = 0.8 s: (c) and (f) are the snapshots for 
T = 1.1 s. 
 

 
Fig. 14. Snapshots for the displacements 1 2( , )u u 	 in the sinusoidal acoustic-elastic 
interface model at time T = 0.5 s, T = 0.8 s and T = 1.1 s. (a) and (d) are the snapshots for 
T = 0.5 s; (b) and (e) are the snapshots for T = 0.8 s: (c) and (f) are the snapshots for 
T = 1.1 s.	
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CONCLUSION 
 
 A high-order weighted Runge-Kutta Discontinuous Galerkin Method for 
solving 2D seismic wave equations is proposed in this paper, which extends 
the existing first-order and second-order methods (He et al., 2015) to 
higher-order cases. This method combines the DG spatial discretization and 
the semi-implicit solver, with the goal of improving the CFL stability 
conditions of the DGM and permitting the use of a larger time step. 
 

The analyses illustrated that the proposed method achieves the expected 
(κ+1)-th order of spatial accuracy with Pκ basis functions for spatial 
discretization. Additionally, results indicated that using coarse meshes with a 
high order method for wave simulations produces smaller errors and retains 
high accuracy, thus increasing the computational efficiency. It was also 
demonstrated that the proposed method can effectively suppress numerical 
dispersion; in particular, when κ = 5 and Sp = 0.5, the dispersion error is less 
than 5× 10 -6, which means that the numerical dispersion is quite small. 
Meanwhile, the anisotropy of the numerical dispersion was very small. 

 
Seismic wavefield simulations demonstrated that the new method can 

effectively suppress numerical dispersion and provide accurate solutions on 
a coarse mesh in isotropic and anisotropic media. Additionally, the 
simulation of a cave model with strong velocity contrast confirmed the 
validity when applied to complex geological structures on irregular meshes. 
Results for a rough acoustic-elastic interface indicated that the proposed 
method performs excellently when applied to fluid-solid interface problems 
without additional or special treatments. Therefore, in the authors’ view, this 
new method is a significant development in wave propagation modeling, 
particularly with regard to simulations in complex media and geometries. 
Although the new method produces smaller numerical dispersion on the 
coarse grid, its computational speed is much slower than the FDM. 
Therefore, computational improvements will be investigated in future 
research. 
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APPENDIX A 
 
VON NEUMANN ANALYSIS 
 
 Here we apply the Von Neumann analysis for the high order weighted 
Runge-Kutta Discontinuous Galerkin Method to discuss its stability and 
numerical dispersion. The whole analysis process is completely similar to 
that for the low-order case, which has been presented in detail in He et al. 
(2015, 2019). Here, we outline this analysis to make the paper more 
complete. Note that in the following analysis the high-order space basis 
functions are used. 
 
 We focus on the 2D acoustic wave equation for an isotropic media. 
Furthermore, we suppose that the medium is unbounded and source-free. 
These hypotheses have been widely used by Hu et al. (1999), Ainsworth et al. 
(2006), De Basabe et al. (2008), De Basabe and Sen (2010). We recall that 
the flux F(W) is linear, then we rewrite it as:  
 
  1 2( ) ( , )F W AW AW= ,  
 
where 

      

2

1

0 0
1 0 0
0 0 0

c
A

⎡ ⎤−
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. 

We divide the domain into rectangular element 1 1[ , ] [ , ]nm
n n m mE x x z z+ += × , 

with each side of length h. Let T
1 2( ) ( , , , )

loc

nm nm nm nm
dt C C C= KC , then eq. (9) or (10) 

can be written as (Hu et al., 1999): 
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,      (A-1) 

where the explicit forms of these matrices are shown in Appendix B. 
 

We assume that the solution is a plane wave in the form  
 
 ( ) ( )exp[i( cos sin )]nm t t k nh k mhθ θ= +C C   , 
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where k denotes the wave number and θ denotes the propagation angle. By 
substituting the wave expression into eq. (A-1), we get 

 

1 i cos i cos
0 1 1

i sin i sin
0 1 1

(t) 2 e e )

2 e e ) (t)

k h k h

k h k h

t h

h

θ θ

θ θ

− −
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∂ ⎡= − +⎢∂ ⎣

⎤+ + ⎥⎦

( +

( +

C Q N N N

M M M C
.  (A-2) 

We introduce a variable S to simplify the right hand side of eq. (A-2), which 
is written as: 

	 	
(t) (t)
t

∂
=

∂

C SC
  

,                 (A-3) 

where 

  1 i cos i cos i sin i sin
0 1 1 0 1 1

2 2e e ) e e )k h k h k h k h

h h
θ θ θ θ− − −

− + − +
⎡ ⎤= − + + +⎢ ⎥⎣ ⎦
( + ( +S Q N N N M M M

 
. 

Then, we discretize eq. (A-3) using the time discretization scheme discussed 

above. After some algebra, we obtain: 

  1
1 1 2( )

2
n ntI G GG+ Δ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
C C

 
,            (A-4) 

where 2 2 3
1 ( )G r t r tη= + Δ + ΔS S S ,	 2 1(1 2 )G I r tG= + − Δ .	 	

 
Next, we let 0 ien n tω− Δ=C C , where ω is the numerical angular 

frequency, and 0C  is an constant vector. Thus, eq. (A-4) could be written 
as: 

i 0 0
1 1 2e ( )

2
t t G GGω− Δ Δ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
C I C

 
.          (A-5) 

Taking Λ be an eigenvalue of the matrix on the right-hand side of eq. (A-5), 
we have 
 
  ie tω− Δ = Λ   .                 (A-6) 
 
 In general, Λ and ω are complex numbers. Λ relates to the numerical 
stability and ω relates to the numerical dispersion. We denote ir iω ω ω= +  and

iirΛ = Λ + Λ , in which the superscripts i and r correspond to the real part and 
imaginary part, respectively. rω and iω  are related to the numerical 
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dispersion and numerical dissipation, respectively. With the decompositions 
of Λ and ω into eq. (A-6), we get: 

 ( )i( i ) i
ii = e e (e ) e cos( ) isin( )r i i irt t tt

r r rt tω ω ω ωω ω ω− + Δ Δ Δ− ΔΛ + Λ = = Δ − Δ   .  

Solving for r tω Δ , we then get: 

  iarctan( )r
r

tω
Λ

Δ = −
Λ   

. 

The numerical dispersion R is defined as the ratio of numerical velocity numc  
and physical velocity c. If we adopt the definition of the spatial sampling 
ratio proposed by Moczo et al. (2000): / (2 )pS h khλ π= = , then we get: 
 

    

num

2
r r r

p

c t tR
c ck kh S

ω ω ω
α πα
Δ Δ

= = = = .  

 
 
	
APPENDIX B 
 
 
THE MATRIX EXPRESSIONS IN EQ. (A-1) 
 

 Hu et al. (1999) gave detailed expressions for the matrices used in 

eq. (A-1) in the 2D case. The time-independent polynomial basis functions, 

denoted as { ( , ) 0,1, , 1}l locw x z l d= −K , are defined on the reference element

[ 1,1] [ 1,1]E = − × − . For example, for the Legendre basis functions, 

{ ( , ) 0,1, , 1}l locw x z l d= −K  are: 

 
2 23 1 3 11, , , , , ,

2 2 2 2
x z xz x z⎧ ⎫− −⎨ ⎬

⎩ ⎭
K

           

 
locd is the total number of the basis functions in element E. The entries of the 

matrices in eq. (A-1) are: 
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31
1 111

0 1 1

1 1

1 1 1

} (1, ) (1, )d ( 1, ) ( 1, )d
2 2

{ } d d

LL
ij l l l l

l
l

A C IA C I
w y w y y w y w y y

wA w x y
x

αβ αβ

αβ

ʹ ʹ− −

ʹ

− −

− ++ ⎧ ⎫⎧ ⎫
= − − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∂
−

∂

∫ ∫

∫ ∫

{N
 

1
11

1 1
} (1, ) ( 1, )d

2
L

ij l l

A C I
w y w y y

αβ

ʹ+ −

−⎧ ⎫
= −⎨ ⎬
⎩ ⎭

∫{N , 

3
11

1 1
} (1, ) ( 1, )d

2
L

ij l l

A C I
w y w y y

αβ

ʹ− −

− −⎧ ⎫
= −⎨ ⎬
⎩ ⎭

∫{N , 

2 4
1 12 2

0 1 1

1 1

2 1 1

} ( ,1) ( ,1)d ( , 1) ( , 1)d
2 2

{ } d d

L L
ij l l l l

l
l

A C I A C I
w x w x y w x w x y

wA w x y
y

αβ αβ

αβ

ʹ ʹ− −

ʹ

− −

+ − +⎧ ⎫ ⎧ ⎫
= − − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∂
−

∂

∫ ∫

∫ ∫

{M
, 

2
12

1 1
} ( ,1) ( , 1)dx

2
L

ij l l

A C I
w x w x

αβ

ʹ+ −

−⎧ ⎫
= −⎨ ⎬
⎩ ⎭

∫{M ,  

4
12

1 1
} ( , 1) ( ,1)dx

2
L

ij l l

A C I
w x w x

αβ

ʹ− −

− −⎧ ⎫
= −⎨ ⎬
⎩ ⎭

∫{M , 

where 

  
1 if =
0 otherwiseαβ

α β
δ

⎧
= ⎨
⎩

 

 
and , ; , 0,1, 1; , 0,1, , 1loci ml j ml m l l dα β α βʹ ʹ= + = + = − = −K K , in which locd  is 
the number of the basis function set defined on the reference rectangular 
element, and m is the number of the unknown variables in W .  

 

 

 

	

	


