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ABSTRACT

Sheng, G.Q., Tang, X.G., Xie, K. and Xiong, J., 2019. Hydraulic fracturing
microseismic first arrival picking method based on non-subsampled shearlet transform
and higher-order-statistics. Journal of Seismic Exploration, 28: 593-618.

Fast and accurate first arrival picking is the key issue of microseismic data
processing. Traditionally manual picking methods will take a lot of time and reduce the
data processing efficiency, so it is difficult to meet the demand of real-time data
processing for microseismic monitoring. In this paper, we proposed the S-S/ K
(Shearlet-Short time window/Long time window-Kurtosis) algorithm which combined
the shearlet multiscale decomposition with higher-order-statistics (HOS). This algorithm
not only keeps the advantage of non-subsampled shearlet transform in multiscale
analysis, but also maintain strengths of HOS in signal abnormalities detection and
Gaussian noise suppressing. The forward records and real data tests show that compared
with the PAI-S/K and the STA/LTA algorithm, the proposed method can overcome the
influence of noise on the P-phase picking accuracy and obtain a reliable P-phase result
for microseismic monitoring.

KEY WORDS: microseismic monitoring, non-subsampled shearlet transform,
higher-order-statistics, first arrival picking.
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INTRODUCTION

Microseismic monitoring technology is to detect the underground state
by observing and analyzing microseismic monitoring data produced by
hydraulic fracturing, which is of great significance to the high production
for oilfield development (Duncan and Eisner, 2010; Dong et al., 2016;
Maxwell et al., 2010).

The effective signal energy of microseismic monitoring data is
essentially weak and even completely submerged by the noise. However,
satisfactory results cannot be easily obtained when conventional seismic
data processing methods are applied directly, which will consequently
affect the microseismic monitoring quality and precision (Gibbons and
Ringdal, 2006; Karamzadeh et al.,, 2013). Therefore, exploring an
appropriate method to identify weak effective signals is crucial to
microseismic data processing and interpretation.

Fast and precise first arrival picking is the key issue of microseismic
data processing, source location, source mechanism and fracture inversion
(Maeda, 1985; Gou et al., 2011; Hafez et al., 2013; Alvarez et al., 2013).
Nowadays, many scholars and experts have made a lot of research and
progress. STA/LTA (Short-Term Average to Long-Term Average) has been
proposed by Allen (1978). After that, this means has been widely applied to
pick arrivals in many cases. Earle and Shearer (1994) modified Allen’s
algorithm to improve the picking precision for low SNR data. Morita and
Hamaguchi (1984), Sleeman and van Eck (1999) applied auto-regressive
theories to pick arrivals. Picking method based on manifold has been
applied to pick P-phase by two ingredients (Taylor et al., 2011). Anant and
Dowla (1997), Yung and lkelle (1997), Simons et al. (2006) applied
wavelet decomposition to pick arrivals using wavelet transform as a tool.
Van Decar and Crosson (1990), Ait Laasri et al. (2014) proposed arrival
picking methods by cross correlation techniques, which took the first arrival
by calculating cross correlation between reference seismic traces and others.
Vidale (1986), Kulesh et al. (2007) picked arrivals by analyzing
polarization characteristic of P- and S-wave. Wang and Teng (1995),
Gentili and Michelini (2006) presented a picking method using a trained
neural network, respectively. A P-phase picking method was proposed by
Tselentis et al. (2012), which can adopt different picking solutions
according to different situations.

However, any single method such as STA/LTA, AIC (Akaike
information criterion), correlation method (Senkaya and Karsli, 2014) and
others (Dai and Macbeth, 1997. Leonard and Kennett, 1999; Sheng et al.,
2015; Akram et al., 2016; Kim et al., 2017) has not a good recognition
effect because the low signal-to-noise ratio of microseismic signals
seriously affects the accuracy of arrival picking, and even leads to a wrong
picking result. Furthermore, manual picking will take a lot of time and
reduce the data processing efficiency (Leonard, 2000), which cannot meet
the real-time demands of microseismic data processing (Galiana-Merino et
al., 2008). Therefore, how to carry out fast and precise first arrival picking
is important to microseismic data processing.



595

Higher order statistics (HOS) is a new signal analysis and processing
technology developed in recent years, it can provide high order statistical
characteristics of stochastic processes (Yung and lkelle, 1997). PAI-S/K
method was proposed to pick first arrivals by Saragiotis et al. (1999, 2002,
2004), taking the Skewness and Kurtosis functions as characteristic quantity.
Galiana-Merino et al. (2008) proposed a Kurtosis method to pick P-phase
using the stationary wavelet technique, which efficiently provided a good
estimate of the onset picks. Kuperkoch et al. (2010) combined the Akaike
information criterion (AIC) with the PAI-K picking method to pick P-phase,
which showed that the result was better than Allen’s. Ross and Ben-Zion
(2014) used HOS to identify P-waves and S-waves. Liu et al. (2014) applied
the PAI-S/K method to pick arrivals on mining signal, and obtain a
satisfactory picking result. Baillard et al. (2014) improved the first arrival
picking precision by modifying the Kurtosis characteristic function. Sheng
et al. (2015a) and Li et al. (2016) combined wavelet transform and Kurtosis
function to pick first arrivals.

In recent years, shearlet transform has attracted more and more
attention as a new multiscale analysis technique with better performance
(Guo and Labate, 2007). Compared with curvelet transform, contourlet
transform and other multiscale analysis techniques, shearlet transform has
more sensitive directivity and better sparse representation performance
(Kutyniok and Labate, 2009; Guo and Labate, 2010). Because of these
advantages, shearlet transform has been successfully applied to many areas
such as video denoising and medical images enhancement (Anju et al., 2016;
Priya and Jayanthi, 2017; Cao et al., 2017; Moussa and Khlifa, 2018). In
seismic data processing, it has also been widely used. Wang and Li (2013)
used the shearlet and TT transforms to attenuate surface waves, which
showed that the method could suppress surface waves and maintain the
amplitude and phase information of reflection waves. Merouane et al. (2015)
applied 2D shearlet transform to attenuation random noise. Assous and
Elkington (2018) combined shearlet transform with sparse representation to
imprint the downhole image, and the result showed that the method could
get more accurate reconstruction of sharp high-contrast edges. Zhang (2018)
applied 3D shearlet transform on microseismic data to increase the data
SNR, tests show that the method can improve the weak signals to some
extent.

In this paper, a P-phase picking method has been proposed based on
shearlet transform and higher-order-statistics, named the S-S/ K
(Shearlet-Short time window/Long time window-Kurtosis) method. First,
we decompose the microseismic signal by shearlet transform to get the
shearlet coefficients. Then, we apply the S/L Kur (Short time
window/Long time window-Kurtosis) method on the coefficient to get first
arrival time. Tests by synthetic and real data in the Shengli oil field show
that the method proposed in the paper has a better and more accurate
picking result than that of STA/LTA and PAI-S/K methods.
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THE PAI-S/K ALGORITHM

Saragiotis (2002) proposed a first arrival picking method based on
higher order statistic, which is named Phase Arrival Identification—
Skewness/Kurtosis algorithm or PAI-S/K algorithm. The skewness and
Kurtosis of the series are obtained by sliding a time window on the signal.
The Kurtosis and skewness can be calculated as follows (Saragiotis et al.,

2002),
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where {x;} is a discrete real number sequence with finite length M, x is
the mean value of the series {x;}, O, is the standard deviation. The
algorithm is robust and has a certain suppressing effect on Gaussian noise.
Kurtosis function is more sensitive to abnormal signals compared with
skewness (Tselentis et al., 2012). Therefore, the Kurtosis function is more
suitable for detection of effective microseismic signals. The max value of
the Kurtosis is defined as the P-phase picked by this method.

The PAI-S/K algorithm performs well for the signal with high SNR
(Lokajicek and Klima, 2006; Liu et al., 2014). However, for the signal with
low SNR, this algorithm cannot have an accurate result because the P-phase
is hidden in noise and the max value of the kurtosis calculated by noise is
greater than one calculated by effective signal (Nippress et al., 2010).
Therefore, for the microseismic signal, the maximum extremal point of
picking curve usually does not corresponds to the arrival position.
Meanwhile, the actual microseismic data obeys generalized Gaussian
distribution as a whole (Waldon, 1986). If the location of a certain
underground space is fractured, the asymmetry and non-Gauss distribution
characteristics of the microseismic signals within a certain fracture range
are strong. Therefore, effective signals can be identified by analyzing Gauss
and non-Gauss characteristics of signals. However, the effective signals
hidden in noises cannot be recognized and picked up easily because of the
low SNR of the microseismic data, if constant time windows are still used,
local asymmetry and non-Gaussian will often be caused by noise at the
same time (Hu et al., 2012). Therefore, it is necessary to improve the
PAI-S/K algorithm to enhance the picking accuracy for microseismic
monitoring.

In order to highlight the asymmetric and non-Gauss characteristics of
local microseismic signal and overcome the problems above, we can use the
idea of STA/LTA algorithm (Allen, 1978) to pick microseismic signal
arrivals by sliding the long and short time window.
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METHODOLOGY

The STA/LTA algorithm
The STA/LTA algorithm is given as follows

1 k
Ay =SB _ Vot ")
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where x(n) is the signal time series with n sample points, Wsry, Wiry
represents the time window width of the short time and long time window
respectively (Hafez et al., 2009, 2010).

The simple structure provides a high calculation speed of STA/LTA
algorithm. However, this method cannot meet the accuracy requirement for
low SNR signals. Therefore, it is of great significance to improve the
picking precision of microseismic signal in the situation of weak data SNR.

The S/L._Kur algorithm

Based on the STA/LTA algorithm and PAI-S/K algorithm, the
S/L._Kur algorithm (Sheng et al., 2015b) can be defined as follows

j
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where Wgry, W;r4 represents the time window width of the short time and
long time window respectively. Oyrry , Onsry  is the  signal
standard deviation of the short time and long time window respectively.
Finally, we determine the position with the highest slope of the S/L._Kur
curve before the maximum point as the arrival point.
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Weight factor a(])

The signal standard deviation can judge the distance of the amplitude
deviates from the mean value. However, microseismic effective signals are
coupled with strong noises. As a consequence, the monitoring data has a
low SNR in most cases, and noise has great influences on the accurate
picking of microseismic signal from the beginning to the end (Hildyard et
al., 2008). Before the microseismic effective signal arrived, the standard
deviation of the background noise in the long and short time window has
nearly the same value, so the ratio of the standard deviation in the long and
short window tends to be 1. Once the microseismic event occurs and
effective signal arrives, the increment of the standard deviation in the short
time window is much greater than that of long time window, and the ratio
of the standard deviation of the signal in the long and short window greatly
increased. Therefore, weight factor () is introduced to increase the
sensitive of the first arrival picking method.

Time window selection

The selection of time window is very important for S/L._Kur algorithm.
Because this method is based onthe statistical characteristics between
signal and noise to pick P-wave arrivals, the length of time window should
not have too much difference. First of all, the length of long time window
should not be too large. If not, it can not only increase the unnecessary
calculation, but also bring information redundancy to decrease the accuracy;
secondly, short time window needs to be moderate. A too long or too short
short-time window will cause losing statistical effects of effective signal, so
that the signal cannot be effectively distinguished and identified. Therefore,
in actual practice, short-time window is selected within 30-100 ms, the best
difference between long and short time window is 5-10 ms (Sheng et al.,
2015Db).

Non-subsampled shearlet transform

Shearlet transform has more sensitive directivity and better sparse
representation performance, so that it can capture signal contour
information more effectively. Because of its outstanding characteristics,
shearlet transform (Guo and Labate, 2007) shows a good development
space and prospect.

To improve the shearlet transform effect and overcome spectrum
aliasing (Kong and Liu, 2013) phenomenon, Easley et al. (2008) proposed
the NSST (non-subsampled shearlet transform), which mapped the standard
shear wave filter from the pseudo-polarized lattice coordinate system to the
Carle coordinate system. NSP (non-subsampled Laplacian pyramid) is
multiscale decomposition process and SF (shearlet filter) is local directional
process, which can carry out multi-directional decompose with / stages
(Liang et al., 2017).
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Fig. 1. A real microseismic monitoring data in the Sichuan area and its time-frequency
spectrum. (a) The real microseismic data in the Sichuan area of China. (b) The first trace
signal of (a). (c) The time-frequency spectrum of (b) obtained by S-transform.

Fig. 1 is a real microseismic signal in the Sichuan area and its
time-frequency spectrum obtained by S-transform (Sheng et al., 2015a).
From Fig. 1, we know that compared with noise, the effective microseismic
signal has a lower frequency. So we can take advantage of the shearlet
transform in multiscale decomposition to separate effective signals from
noise and then pick the P-phase on the decomposed signal.

Based on Fig. 1, we can conclude that in order to efficiently implement
the method proposed in this paper, microseismic signal energy should have
a different frequency range than the noise.
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The S-S/L._K algorithm

According to the shearlet transform and S/L._Kur theories, the S-S/L._ K
algorithm is demonstrated in Fig. 2. At the beginning, the shearlet transform
is applied to decompose the microseismic data and obtain the shearlet
coefficients. Then the time-frequency analysis of microseismic data such as
S-transform is carried out to determine the effective signal frequency bands,
so that the scales of shearlet coefficients of the effective signal can be
determined. After decomposing the microseismic data by shearlet transform,
the noise will be distributed in any direction, while effective signals will
occur in some specific directions. Therefore, effective signals are strongly
correlated in the same direction between adjacent scale layers (Cheng et al.,
2017). Based on this, we can determine the directional components of
shearlet coefficients where the effective signal located. Finally, by
substituting the signal based on the directional components of the shearlet
coefficients scale where effective signal located, the S/L._Kur picking
method is used to pick arrivals. Procedures of the S-S/L._K algorithm are
demonstrated as follows:

(1) Processing begin: Load microseismic monitoring data x(#).

(2) Decomposition: Decompose the signal x(n) by shearlet transform and
obtain the shearlet coefficients.

(3)Determine the scale where effective signal located: Carry out
time-frequency analysis to obtain the frequency bands of effective
signals. As shown in Fig. 1, microseismic signals and noises have a
certain frequency range. Since the effective signals are highly correlated
within the unified monitoring range, band ranges of the effective signal
frequency are roughly the same under the same observation system.
Therefore, signals with high signal-to-noise ratio and good quality can
be selected for time-frequency analysis such as S-transform, to obtain a
rough effective signal range. Then, the approximate scale of an effective
signal can be obtained according to the frequency relation corresponding
to the coefficients derived from shearlet decomposition. In this way, we
can avoid processing every scale and improve the processing efficiency.
And then, determine the coefficient scales according to the frequency of
the effective signal.

(4) Determine the direction of the effective signal: Compute the correlation
of adjacent scale layers obtained by procedure (3) under specific
directions, and determine the directions according to the maximum
correlation. Calculation procedure is as follows:

Correlation(k):U(j,k)*U(j+l,k) , (6)
where U is the coefficients obtained by procedure (3), j, £ represents the
scale and direction number, respectively (Dong et al., 2018).

(5) Apply the S/LL_Kur picking method to pick P-phase: Substitute the
signal by U(k) obtained by procedure (4) and the S/ Kur picking
method is used to pick the P-phase.
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Fig. 2. The S-S/L_K algorithm procedure.

TESTS BY FORWARD RECORDS
Picking results with Gaussian noise

The signal shown in Fig. 3 is obtained from forward modeling of
two-dimensional staggered grid finite difference wave equation. The main
frequency of the signal is 20 Hz, and the source depth is 1600 m.

It is well known that SNR has great influence on the accuracy of
P-phase picking. Therefore, Gaussian noise with SNR=-1 dB (Fig. 4), -5 dB
(Fig.7), -10 dB (Fig. 9) and -20 dB (Fig. 11) was added to the signal
respectively to test the validity of the algorithm. Fig. 6, Fig. 8, Fig. 10 and
Fig. 12 is the picking result by S-S/L._K algorithm, PAI-K algorithm and
STA/LTA algorithm corresponding to Fig. 4, Fig. 7, Fig. 9, and Fig. 11,
respectively. The SNR in this paper is defined as follows

g
S/N = IOIOgIO(j) (7)

where o, 0, represents the standard deviation of the original signal and
the added noise respectively. Shearlet transform with scale 5 is used to
decompose the simulated microseismic signal. The coefficient structure of
shearlet transform is shown in Table 1.
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Fig. 3. Forward modeling signal with arrival time 940 ms. (a) Modeling forward record.
(b) The 1st trace of (a).

Table 1. Coefficient structure of shearlet transform.

Layer Scale Direction
number
Coarse C{1} 1
C{2} 6
Detail C{3} 6
C{4} 10
Fine C{5} 10
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Fig. 11. Forward modeling signal with SNR = -20 dB and the signal after decomposing.
(a) Modeling forward record. (b) Signal after decomposing. (c) The Ist trace of (b).

From Fig. 6, Fig. 8, Fig. 10 and Fig. 12, we can conclude that the PAI-K
algorithm and STA/LTA algorithm obtain obvious wrong results for the
signal with SNR from -5 dB to -20 dB. Compared with the two algorithms
mentioned earlier, the picking curve of the S-S/L._K algorithm is not only
much smoother but also jumps more clearly, especially has higher accuracy
even for the signal with a poor SNR.
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Fig. 12. Picking curve of the 1st trace of Fig. 11(a) by S-S/L__K algorithm, PAI-K
algorithm and STA/LTA algorithm. (a) Picking curve by S-S/L._K algorithm.
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Picking results with correlated noise

Fig. 13(a) is a real microseismic monitoring data with a total of 8§
receivers in Shengli oil field. Every signal length is 3500 ms and the sample
interval is 1 ms. Then, the noises separated from another set of real
monitoring data are added to every signal of Fig. 13(a) to test the
application effect of the algorithm in the presence of strong correlated
noises. Fig. 13 is the shearlet decomposing details of the signal. And Fig. 14
is the picking result by S-S/L._K algorithm, PAI-K algorithm and STA/LTA
algorithm corresponding to Fig. 13, respectively.
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Fig. 13. Shearlet decomposing details of the 5th trace of Fig. 13(b). (a) Real monitoring
data in the Shengli oil field. (b) Real monitoring data added with correlated noise.

(c) The signal after decomposing. (d) The 5th trace signal of Fig.13(c) after
decomposing.
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Fig. 14. Picking curve of the signal of Fig. 13(d) by S-S/L_K algorithm, PAI-K
algorithm and STA/LTA algorithm. (a) Picking curve by S-S/L__K algorithm. (b)
Picking curve by PAI-K algorithm. (c) Picking curve by STA/LTA algorithm.

From Fig. 14, we can see that compared with the S-S/L._K algorithm,
both of the other algorithms obtain obviously wrong picking results while
the S-S/L._K algorithm still has reliable picking accuracy in the presence of
strong correlated noises.
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REAL DATA PROCESSING

Fig. 15 is a real microseismic monitoring data with a total of 7 receivers
in the Shengli oil field. Every signal length is 2000 ms and the sample
interval is 0.5 ms. The S-S/L._K algorithm is applied on this data to test the
application effect of the algorithm in actual practice, meanwhile the
STA/LTA algorithm is used for comparison.
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Fig. 15. Picking result of real data in the Shengli oil field by S-S/L._K algorithm and
STA/LTA algorithm. (a) Real monitoring data in the Shengli oil field. (b) The signal of
Fig. 15(a) after decomposing. (c) Picking curve of the 1st trace of Fig. 15(a) by S-S/ K
algorithm.
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Fig. 15. Picking result of real data in the Shengli oil field by S-S/L._K algorithm and
STA/LTA algorithm. (d) Picking result of all traces by S-S/L._K algorithm.

(e) Magnification of picking result shown in (c). (f) Picking result of all traces by
STA/LTA algorithm.

From Fig. 15, we can see that the picking result by S-S/L._K algorithm
is very accurate and fits very well with the real monitoring data. The final
picking sample almost distributed between 952 and 968. However,
compared with the S-S/L._K algorithm, the STA/LTA algorithm has a poor
picking result with a picking sample distribution between 480-2800.
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CONCLUSION

In this paper, we have developed the PAI-S/K algorithm and combined
the shearlet multiscale decomposition with HOS, and finally formed the
S-S/L_K algorithm. In order to verify the algorithm presented in this paper,
lots of tests have been carried out. First, Gaussian noise with SNR = -1 dB,
-5 dB, -10 dB and -20 dB was added to the forward modeling signal,
respectively, to test the validity of the algorithm, and then, in order to better
simulate the actual situation, a group of correlated noises was added.
Meanwhile the PAI-K and STA/LTA algorithms are used for comparison.
Tests by forward modeling signal show that compared with the PAI-K and
STA/LTA picking methods, the S-S/L._K algorithm can obtain a more
accurate and satisfactory result. This algorithm not only keeps the
advantage of non-subsampled shearlet transform in multiscale analysis, but
also keeps the advantage of HOS in signal anomalies detection and
Gaussian noise suppressing. Finally, the S-S/L_K algorithm was applied to
real microseismic monitoring data in the Shengli oil field, with the
STA/LTA picking result for comparison. The synthetic examples and real
data tests show that our proposed method can overcome the influence of
noise on the P-phase picking accuracy and obtain a reliable P-phase result
for microseismic monitoring.
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