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ABSTRACT

Lv, H., 2020. Subsurface characterization using synchrosqueezing transform with
high-order approximations. Journal of Seismic Exploration, 29: 1-14.

Time-frequency analysis methods always play an important role in subsurface
seismic characterization. Due to the advantages in characterizing non-stationary signals,
time-frequency analysis often obtains higher resolution than the competing methods. In
this paper, we present a novel technique for subsurface seismic characterization based on
a synchrosqueezing transform with high-order approximation. The new synchrosqueezing
transform can obtain more accurate instantaneous frequencies by using the higher order
approximations for both amplitude and phase in order to achieve a highly
energy-concentrated time-frequency representation. We use a synthetic example to
demonstrate an excellent time-frequency representation using the proposed method, i.e.,
to extract the time-frequency variation relation. Applications of the proposed method on
two field data sets demonstrate the potential of the new method in detecting
low-frequency anomaly and detecting paleo-channels with a higher time-frequency
resolution. These two geological features are crucial for subsurface characterization since
they are usually related with oil & gas.
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INTRODUCTION

Time-frequency analysis has been gaining importance in seismic
processing and interpretation over the past few years because it is capable of
providing considerable information that includes the subsurface rocks and
reservoirs (Gan et al., 2016¢; Chen and Song, 2018; Liu et al., 2017b; Wang
et al., 2018b; Zhang et al., 2018). Time-frequency (TF) analysis solves the
problems of identifying and quantifying the oscillatory components
presented in the signal, which has been exclusively utilized by the field of
exploration geophysics over the past two decades (Partyka et al., 1998;
Castagna et al., 2003; Chen et al., 2016¢,b; Zu et al., 2016, 2017; Chen et al.,
2017e; Siahsar et al., 2017a; Chen, 2017; Siahsar et al., 2017bc).

Commonly used approaches for time-frequency analysis are typically
short-time Fourier transform (STFT) (Allen, 1977) and continuous wavelet
transform (CWT) (Sinha et al., 2005; Chen et al., 2014a; Liu et al., 2016a).
However, both of them share the same limitation, known as the "Heisenberg
uncertainty principle”, stipulating that one cannot simultaneously
accomplish the best time and frequency resolutions (Liu et al., 2016b).
Several attempts were made to overcome this issue, as for instance the
reassignment method (RM). The main shortcoming with respect to RM is its
non invertibility, which directly results in the difficulty for recovering the
original signal. The empirical mode decomposition (EMD) (Huang et al.,
1998; Chen, 2016; Chen et al., 2017b) algorithm can separate a signal into
locally-constant frequency components, and have been shown to have a high
resolution both in time and frequency with some types of extensions, like
ensemble empirical mode decomposition (EEMD) (Chen et al., 2017d) and
complete ensemble empirical mode de- composition (CEEMD) (Chen et al.,
2016a, 2017a). However, the EMD algorithm is still remaining heuristic
because of the lack of mathematical support.

Subsequently Daubechies et al. (2011) introduced an adaptive signal
analysis tool, called sychrosqueezing transform (SST) which originally
derives from the field of audio signal, it aims at improving the time-scale
representation resulted from CWT and allowing for mode reconstruction
(Chen et al., 2014b; Liu et al., 2016d). Inspired by SST, Thakur and Wu
(2011) proposed an extension of SST to the time-frequency representation
given by STFT, namely STFT-based SST. Despite its remarkable success in
enhancing time-frequency resolution, there are still some disadvantages
associated with its use, especially in dealing with these signals with “fast
varying” instantaneous frequency (Liu et al., 2017a). Recently, some work
has been done on how to combat this problem. Oberlin et al. (2015)
introduced an adaptation of the STFT-based SST to better cope with this
case, known as the second order synchrosqueezing transform, which
achieves a compact time-frequency representation while allowing for mode
retrieval. An alternative technique, called the high-order synchrosqueezing
transform was proposed by Pham and Meignen (2017), which is a new
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generalization of the STFT-based synchrosqueezing transform to compute
more accurate estimates of the instantaneous frequencies.

Time-frequency analysis methods can also be used for suppression
random noise in seismic data (Gan et al., 2015, 2016a; Li et al., 2016a,b;
Gan et al., 2016b; Chen et al., 2017c; Zhou et al. ,2017; Wang et al. , 2018a;
Zhou et al., 2018; Chen and Fomel, 2018). The time— frequenoy peak
filtering based methods proposed by Roessgen and Boashash (1994) encode
the analyzed seismic signal as the instantaneous frequency (IF) of an
analytic signal. Then, the TFPF based methods apply the Wigner-Ville
distribution (WVD) (Jeffrey and William, 1999) to estimate the IF of the
analytic signal and suppress seismic random noise. Lin et al. (2015)
combined the matching pursuit and time-frequency digital filtering method
based on an invertible wavelet transform and applied it to evoked potentials.
Liu et al. (2013) introduced the pseudo-WVD (PWVD) instead of the WVD
in the TFPF based methods. The PWVD uses a fixed window to truncate the
analyzed signal into several sections and the truncated signal in each section
is regarded as linear. Nevertheless, the window length of the PWVD is fixed
and does not change with the analyzed signal. Assuming we select a long
window length, we suppress the random noise effectively and obtain an
attenuated valid signal. When we select a short window length, we preserve
the amplitude of the valid signal and obtain ineffective noise attenuation. It
is significant to select frequency peak filtering, and applied the proposed
method for seismic random noise attenuation. Time- frequency analysis
methods can also be used in capture the features hidden in the noisy
microseismic data (Chen, 2018).

In this paper, we investigate the seismic application based on the
high-order synchrosqueezing transform, which can accurately calculate the
instantaneous frequencies of the modes comprising the signal by making full
use of the high order amplitude and phased approximations. Compared with
the conventional time-frequency analysis methods, the proposed
higher-order method not only enables to produce a highly
energy-concentrated time-frequency representation for a wide variety of
multicomponent signals but also to re- cover the original signal with a
reasonably high precision.

In the following section, the fundamental theory for SST is first depicted
in detail and the new method with high-order approximation for both
amplitude and phase components is introduced. Next, the synthetic example
is employed to demonstrate the outstanding performance in sharpening
time-frequency representation over those of traditional time-frequency
analysis methods. Finally, applications on two field data sets further
illustrate the potential of the proposed method in highlighting the subsurface
structural information with high precision, which facilitates the following
seismic interpretation.



THEORY
Synchrosqueezing transform

The high-order synchrosqueezing transform is a new extension of the
conventional synchrosqueezing techniques, which brings the improvement
in term of accuracy of instantaneous frequency extraction (Pham and
Meignen, 2017; Liu et al., 2016¢, 2018b.a).

In the traditional synchrosqueezing techniques, an AM-FM signal is
defined as:

f(r)=A(r)e? ) (1)

where A(7) and ¢(7) are respectively instantaneous amplitude and phase
functions.

The STFT of signal f can be represented by using the following equation:
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where g denotes the window function and g* the complex conjugate of g.
The conventional STFT-based SST is expressed as follows:
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where v is some threshold and 0 stands for the Dirac distribution. wf (t,m) is
the instantaneous frequency estimate at time ¢ and frequency #:
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where R{Z} denotes the real part of complex number Z, and 0; is the partial
derivative with respect to ¢.



HIGH-ORDER SYNCHROSQUEEZING TRANSFORM

The high-order SST defines the instantaneous frequency by using the
high order Taylor expansions of the amplitude and phase, that is to say, the
Taylor expansions of signal fin eq. (1) can be written as:
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where Z(K) (7) represents the k-th derivative of Z at time ¢.
Consequently, eq. (2) can be rewritten as:
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By means of eq. (4), the local instantaneous frequency estimate wy (7,77) can
be obtained as follows:
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The Nth-order local complex instantaneous frequency, W,EA}] at time ¢

and frequency can be expressed by:
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Then the high-order SST is defined by replacing wy (¢, 77) by W,EI‘\}] (t, )
in eq. (3):
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Finally, the original signal can be reconstructed by:
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where d is the compensation factor and ¢ (¢) is an estimate for ¢ (7).

EXAMPLES
Synthetic data

A synthetic signal (Fig. 1) characterized by strong nonlinear sinusoidal
frequency is utilized to evaluate the performance of the proposed method.
Fig. 2 show the time-frequency representations based on STFT, SST and the
proposed method, respectively. It is obvious from Fig. 2 that STFT leads to a
poorer time- frequency map due to its low resolutions in both temporal and
frequency. Some smearing appears in the traditional SST time-frequency
map. The relatively sharp time-frequency representation is achieved by the
proposed method, which is much better than that corresponding to SST. For
a better understanding of the improvements resulted from the proposed
high-order method, we enlarge an area from the top row in Fig. 2 (the red
rectangle) and show them in the bottom row of Fig. 2. It can clearly be
observed that the energy is perfectly concentrated by the use of the
high-order method in comparison with the other methods, which is more
beneficial for us to extracting the instantaneous attributes.

Field data

In this section, we investigate the applicability of the proposed method
for seismic time-frequency analysis. A field data set (Fig. 3) is considered,
which consists of a total of 200 traces, with a sampling interval of 2 ms and
512 samples per trace. This data, analyzed previously by (Chen and Fomel,
2015) and Cheng et al. (2017), is from a land survey.
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Fig. 1. Synthetic signal example.
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Fig. 2. Time-frequency representations. (a) Time-frequency map using STFT.
(b) Time-frequency map using SST. (¢) Time-frequency map using the proposed method.
(d)-(f) Zoomed-in comparison of (a)-(c).

We extract the 30 Hz and 60 Hz frequency slices based on SST and the
proposed methods. The results are shown in Fig. 4. The instantaneous
spectrum from the two methods displays much sparer output and more
distinct spectral features. However, as can be clearly seen, the SST seems to
provide a set of blurred frequency slices and makes the continuity of
spectrum poor, e.g., around 0.3 s and 0.4 s. In contrast, the proposed method
does an excellent job in the two aspects with better continuity and much
clearer results, which is very crucial in highlighting geological
characteristics and extracting stratigraphic information. The two frequency
slices clearly depict two low-frequency shadows, which indicates
hydrocarbon reservoirs.



Trace
50 100 150 200 250 300 350 400 450

0

o~
o
<
o
©
o
oe]
o

~
n

~
o
£

—

1

1.2

Input Data

Fig. 3 Field data example for detecting low-frequency anomaly.
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Fig. 4. Frequency slices. (a) Frequency of 30 Hz using the SST method. (b) Frequency of
30 Hz using the proposed method. (c) Frequency of 60 Hz using the SST method.
(d) Frequency of 60 Hz using the proposed method.



Then, we apply the proposed time-frequency approach to a 3D data
volume. It is flattened using the plane wave painting approach. The field
data is from the Gulf of Mexico (Ebrahimi et al., 2017). It was previously
used in Chen et al. (2017a). The constant time slice is shown in Fig. 5. From
the amplitude slice, there is no obvious channel. However, after extracting
different frequency slices we can observe elegant geological features, e.g.,
the pale-channels. Fig. 6 show four frequency slices corresponding
10Hz-40Hz using the traditional method. Fig. 7 show four frequency slices
corresponding 10 Hz - 40 Hz using the proposed method. It is clear that the
frequency slices from the new method has higher resolution in delineating
the subsurface features, especially for the 30 Hz and 40 Hz slices. It can be
seen clearly that the 30 Hz slice shows the main channel structures. The
10Hz and 20 Hz mainly show random features. When interpreting the
horizon, it is better to utilize multiple frequency slices to have a more
comprehensive understanding about the subsurface geological structure.

Fig. 5. Field data example for paleo-channel detection.
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(c) (d)

Fig. 6. Frequency slices obtained the traditional method. (a) Frequency of 10 Hz.

(b) Frequency of 20 Hz. (¢) Frequency of 30 Hz. (d) Frequency of 40 Hz. Note the paleo-
channels highlighted in the 30 Hz slice.

CONCLUSIONS

In this paper, I have presented a novel approach for seismic
time-frequency analysis and subsurface characterization. The new approach
can obtain higher characterization resolution compared with the
state-of-the-art algorithms. The new time-frequency analysis algorithm
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defines new synchrosqueezing operators based on high approximation for
both amplitude and phase in order to obtain a more energy-concentrated
result. The effective- ness of the proposed method is validated by synthetic
signal and field data set. The field data example demonstrate the practical
applications of the proposed method detecting low-frequency shadows and
paleo-channels when analyzing constant frequency slices.

o W S
: h Ak 4 '

(c) (d)
Fig. 7. Frequency slices obtained the proposed method. (a) Frequency of 10 Hz.

(b) Frequency of 20 Hz. (¢) Frequency of 30 Hz. (d) Frequency of 40 Hz. Note the paleo-
channels highlighted in the 30 Hz slice.
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