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ABSTRACT

Zhou, Y.T. and Chi, Y., 2020. Seismic noise attenuation using an improved variational
mode decomposition method. Journal of Seismic Exploration, 29: 29-47.

Seismic noise suppression is an important step in the seismic imaging community.
We propose a dip-separated denoising method to attenuate spatially incoherent random
noise. The variational mode decomposition (VMD) method is used to decompose the
seismic data into different dip bands. It has a solid theoretical foundation of mathematics
and high calculation efficiency. Besides, compared with the recursive mode
decomposition algorithms, e.g., the EMD and EEMD methods, it has advantages in
solving the mode mixing problem and more powerful anti-noise performance The VMD
method can adaptively decompose a seismic signal into several intrinsic mode functions
(IMF). Decomposing the seismic data into oscillating IMF components is equivalent of
decomposing the seismic data into different dipping components. To automatically define
the optimal number of most oscillating components, we design the Kurtosis method. To
eliminate the errors caused by end effect, we use a waveform matching extension
algorithm to improve the VMD. The singular spectrum analysis (SSA) method is used to
approximate the low-rank components in each separated dip band. In this paper, a
simulated seismic dataset and a real seismic dataset are analyzed by the proposed
algorithm. The results indicate that the proposed algorithm is robust to noise and has high
de-noising precision.

KEY WORDS: random noise suppression, variational mode decomposition,
singular spectrum analysis, intrinsic mode functions.

0963-0651/20/$5,00 © 2020 Geophysical Press Ltd.



30
INTRODUCTION

Random noise attenuation plays an indispensable role in seismic data
processing. The useful signal that is mixed with the ambient random noise is
often neglected and thus may cause confusion between seismic events and
artifacts in the final migrated image (Canales, 1984; Gan et al., 2016d; Wu
and Bai, 2018c). Enhancing the useful signal while attenuating random noise
can help reduce interpretation difficulties and risks for oil & gas detection
(Liu et al., 2012; Chen and Fomel, 2015; Chen et al., 2016b; Chen, 2018a,b;
Wu and Bai, 2018a,b,d; Wang et al., 2018; Bai et al., 2019).

The widely used frequency-space prediction filtering (Canales, 1984)
can achieve good results for linear events but may fail in handling complex
or hyperbolic events (Liu et al., 2012). A mean or median filter (Gan et al.,
2016¢c; Bai and Wu, 2017; Chen et al., 2019) is often used to attenuate
specific types of random noise, e.g., a mean filter is effective in attenuating
Gaussian white noise, and a median filter can remove random spikes with
excellent performance (Chen et al., 2017c). An eigen-image based approach
(Bekara and van der Baan, 2007), sometimes referred to as global singular
value decomposition (SVD), is effective for horizontal-events in seismic
profiles, but cannot be adapted to geologically complicated structures. An
enhanced version of this method turns global SVD to local SVD (Bekara and
van der Baan, 2007), where a dip steering process is performed in each local
processing window to enhance the locally coherent events. The problem
with local SVD is that only one slope component for each processing
window is allowed, and also the optimal size of each processing window is
often difficult to select. Structure-oriented SVD is designed specifically for
seismic data by applying the SVD filtering along the morphological
structure direction of seismic data (Bai et al., 2018b). Matrix completion via
f-x domain singular spectrum analysis (SSA) can handle complex dipping
events well by extracting the first several eigen-components after SVD for
each frequency slice (Chen et al., 2016¢; Xue et al., 2016; Zhang et al., 2016;
Bai et al., 2018b,a; Huang et al., 2017b). The f-x SSA approach is based on a
pre-defined rank of the seismic data. The rank here denotes the number of
linear components in the seismic data. However, for complex seismic data,
the rank is hard to select, and for curved events, the rank tends to be high
and thus will involve a serious rank-mixing problem. Chen and Fomel (2015)
proposed a two-step processing strategy to guarantee no coherent signal is
lost in the removed noise. More advanced and recent denosing methods from
various fields in seismics and micro-seismics include new sparse domain
shrinking (Zhang et al., 2017; Wang et al., 2017; Zu et al., 2017b.c; Bai and
Wu, 2018), e.g., seislet (Fomel and Liu, 2010; Chen et al., 2014; Gan et al.,
2015; Liu et al., 2016c; Gan et al., 2016a,b), EMD-seislet (Chen and Fomel,
2018), curvelet transform (Cand'es et al., 2006; Zu et al., 2016, 2017a),
sparse dictionaries (Siahsar et al., 2017a,b; Chen, 2017; Lv and Bai, 2018),
mathematical morphology (Li et al., 2016a,b; Huang et al., 2017c, 2018),
plane-wave orthogonal polynomial transform (Chen et al., 2018), clustering-
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based method (Chen and Song, 2018), and double least-squares projections
method (Huang et al., 2017a).

With empirical mode decomposition (EMD) algorithm, a signal can be
decomposed into series of intrinsic mode functions (IMFs) according to time
domain characteristics of the signal (Huang et al., 1998; Chen et al., 2017b).
It does not need to set any basis functions a pr1or1 and it also has advantages
in dealing with non-stationary and non-linear signals. However, this
algorithm has the mode mixing problem, and it cannot completely extract
the subsurface reflection response from the low SNR and complex seismic
signals (Chen and Ma, 2014; Huang et al., 2017d). For ensemble empirical
mode decomposition (EEMD) algorithm (Chen et al., 2017d), the white
Gaussian noise with uniform distribution is added to original signals, which
makes the original signals have a uniformly distributed decomposition scale.
It can smooth abnormal signals such as pulse and discontinuous signals and
avoid mode mixing effectively. Nevertheless, the introduction of white
Gaussian noise destroys the purity of the original signals (Chen et al., 2016a,
2017a). The basic idea of variational mode decomposition (VMD) is to solve
the L2 norm squared of the gradient of demodulation signal variational
problems. An iterative method is employed to search the optimal solution of
the variational problem to realize signal decomposition. The VMD has a
solid foundation of mathematical and can solve the problem of mode mixing
(Dragomiretskiy and Zosso, 2014; Liu et al., 2016a, 2017, 2016b, 2018). In
comparison with the above methods, the VMD algorithm exhibits two
advantages. Firstly, it has a solid theoretical foundation of mathematics and
high calculation efficiency. Secondly, compared with the recursive mode
decomposition algorithms, e.g., the EMD and EEMD methods, it has
advantages in solving the mode mixing problem and more powerful
anti-noise performance. Whereas, the VMD algorithm still has a drawback
that the mode number needs to be set artificially before decomposition. The
mode number is difficult to estimate when a signal is a complex nonlinear
and non-stationary one. If the mode number is small, multiple components
of the signal may exist in one mode simultaneously. Otherwise, one
component of the signal will exist in multiple modes. Therefore, in
compensating the drawbacks of the VMD method, some subsequent filtering
methods need to be combined with the VMD decomposition in order to
effectively suppress random noise.

Usually, the low-frequency IMFs are complex. The seismic signal is
coupled with random noise in the seismic frequency band. The coupling
relationships between the seismic signal and random noise are complex,
which the low-frequency IMFs have a dense frequency feature. However,
the VMD method can only be used to decompose the signal in a complete
space and it cannot separate the weak seismic signal from such a complex
signal with dense frequency noise. Therefore, the low-frequency random
noise cannot be effectively separated by the VMD algorithm. To overcome
the aforementioned shortcomings, the SSA) algorithm (Vautard et al., 1992;
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Dragomiretskiy and Zosso, 2014; Siahsar et al., 2017c¢) is applied to further
filter the low-frequency noise from the de-noised signal by the VMD
algorithm. SSA method can describe the essential difference of the singular
values between useful components and noise components, and a signal can
be decomposed into an uncorrelated useful signal subspace and a noise
subspace in time domain. Therefore, the low-frequency noise can be filtered
by the SSA algorithm.

The rest of the paper is organized as follows: in the first section, we
introduce the improved VMD algorithm and the SSA algorithm; in the next
section, we use both synthetic and real seismic data examples to demonstrate
the performance of the proposed combined method, finally, we draw some
key conclusions.

THEORY
The variational mode decomposition method

VMD assumes that f is composed of a given number of modes uj(?).
These modes are called intrinsic mode functions (IMFs). The bandwidth of
each IMF is estimated and the constrained variational problem is given by
Dragomiretskiy and Zosso (2014):

Z
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where /| - /|2 is the L2 norm. 8(¢) is the unit pulse function. j is the
imaginary unit. * is convolution. d; is partial derivative of time ¢. {ug(t)} =
{u1(®), - -+, up(®)} and {wg} = {wy, -, wi} are shorthand notions for the

set of all modes and their center frequencies, respectively. f is the extended
signal.

To solve the constrained variational problem, the augmented Lagrange is
introduced and the non-constrained variational problem is obtained
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where a denotes quadratic penalty factor. A is Lagrange multipliers. (, ) is
the inner product. The saddle point of eq. (2) is the optimal solution of the
original problem, which can be obtained using the alternating direction
method of multipliers (ADMM). All the modes can be obtained from eq. (3)
in the frequency domain through updating each mode uj and its center
frequency wg constantly:
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The new center frequency whtl i placed at the center of gravity of the
corresponding power spectrum of mode, which can be updated by:
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From the above decomposition process, the K must be determined a
priori. However, various algorithms of selecting K are proposed in the
literatures. They suffer from different drawbacks. Because of the difficulty
in selecting K, the performance after VMD is almost always far from being
perfect. In this paper, we use a different way to solve this problem. We can
use a relatively large number of K and removes the most oscillating
components, and leaves less oscillating components dealt with by a
secondary processing step.

However, the number of most oscillating components that are used for
reconstruction still need to be defined in advance. In this paper, we propose
a new strategy to pick the most significant IMFs that can be used for
reconstructing the signals. The new strategy is based on the Kurtosis
calculation. Kurtosis is a way to measure the tailedness” of the decomposed
component, which is defined as:
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E[(x — p)?]
(E[(x —n)?])* | (5)

where E denotes the expectation, u denotes the mean of the series x. In the
proposed method, we assume that the decomposed component (IMF) using
the VMD algorithm has different Kurtosis value. The high kurtosis value
corresponds to more dominant signal component while the low kurtosis
value corresponds to more oscillating noise component. We can define a
kurtosis threshold to select the most significant components for signal
reconstruction. In this paper, we define the Kurtosis value as half of the
maximal kurtosis value.

K(x) =

In this paper, we use the SSA method to further remove the residual
noise in the low-frequency components after VMD decomposition. To
eliminate the errors caused by end effect, we use a waveform matching
extension algorithm to improve the VMD, i.e., to extend to the original time
series around the boundaries so that the extended waveforms best match the
boundary waveforms.

The singular spectrum analysis method
Let the time series of a signal de-noised by the VMD be {h;, i =

12,-,N}, and then it is used to calculate a Hankel matrix with the
expression:

hi hy -  hg
ho  hg -+ hygq
H= . . , .
hr hp+1 - hy , (6)

where L represents window length parameter and 1 < L < N. K is defined a
N — L + 1. The delay value is 1. The matrix H is referred to the trajectory
matrix. The resulting trajectory matrix is then decomposed by means of
singular value decomposition (SVD) and H can be rewritten as:

d
H =Y H; with, H; = /AU, V]
i=1 , (7)

where d = rank(H) and it is the number of eigen-components or modes with
non-zero eigenvalue. A; are the singular values sorted in the descending
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order. Uj and V;j are respectively the associated left and right singular

vectors. The group denoted by {\/A_iU,-ViT} is called the ith eigentriple.
Then the elementary matrices Hj (i=1,2, 3, - -, d) are split into signal and
noise groups. However, the important step is to determine a subset of
eigentriple that encompass the dominant variation in H. This amounts to
approximating matrix H by the summation of the first r elementary
matrices, using the following equation: H = ¥7_, \/TiUiViT , where H is
attributed to signal, and r denotes the number of eigentriples selected for
signal reconstruction, and the residual R = Y& . \/A_L-U,-VLT is taken as
noise.

Selection of eigentriples r is the kernel of signal extraction. If r is small,
part of the useful signal will be lost, and if r is large, noise will be introduced.
In this paper, the singular value difference spectrum is introduced to select r.
When the signal is decomposed, singular values are arranged in a
descending order and a matrix S = { A, \/A_z, \/A_d} is formed.

Let b; = \/Z —JAipq1 (i=12,---,d—-1) , and vector
B ={by,!,,-!bs_1}, called the singular value difference spectrum, is
formed to describe the variation of every adjacent singular values. We
propose to use the sharp peak max(bj) = by, 1=1,2,- .d — 1, to represent the
boundary between signal and noise. That is to say, we use the first r
components to reconstruct the signal.

Hybrid improved VMD and SSA method

The hybrid method is detailed as follows:

[E—

Transform seismic data from t — x domain to f — x domain.

2. For each frequency slice in the f — x domain, use VMD to decompose
the seismic data into different IMFs.

(a) Calculate the kurtosis metrics for each VMD components and define the
number of most oscillating components.

(b) Treat the most oscillating components (that corresponds to the highest
frequency/wavenumber) as noise and reject it.

(c) For the rest components, construct Hankel matrices for each component.

(d) Apply SSA filtering introduced in the last subsection for each Hankel
matrix.

3. Reconstruct the frequency slice use the SSA filtered IMFs.

4. Transform seismic data from f-x domain to t-x domain.
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EXAMPLES

In this section, we will use two examples to demonstrate the
performance of the proposed method in separating useful reflection signals
and ambient random noise. To quantitatively compare the de-noising
performance, we use the signal-to-noise ratio (SNR) metric defined below:

|do —d[5 @)

where d, is the clean data, and d is the noisy or de-noised data. Both d, and
d are vectorized data (1D vector).

The first synthetic example is a synthetic example, as shown from Figs.
1 to 5. Fig. 1(a) shows the clean data. The noisy data is shown in Fig. 1(b).
The SNR of the noisy data is 3.14 dB. Figs. 1(c) and 1(d) shows two zoomed
sections from the clean and noisy data. The zooming areas are indicated by
the black frameboxes. Fig. 2 shows the comparison between different
de-noised data. To compare the performance with the state-of-the-art
de-noising algorithms, we use the f-x deconvolution method (Canales, 1984)
and the sparsity-based transform-domain thresholding method, i.e., the
K-SVD based sparse dictionary learning method (Rubinstein et al., 2008).
Figs. 2(a)-(b) correspond to the de-noised data and Figs. 2(c)-(d) correspond
to the zoomed data. It is very clear that the result from the proposed method
is much cleaner and closer to the exact solution shown in Fig. 1(a). The
SNRs for the f-x deconvolution method, the traditional sparsity-based
transform-domain thresholding method, and the proposed method are 6.75
dB, 8.34 dB, and 14.76 dB, respectively. Fig. 3 shows a comparison between
the noise rejection performance. The noise rejection performance is defined
as the difference between noisy data and the de-noised data using different
methods (Fig. 4). Note that the proposed method removes obviously more
noise than the traditional sparsity-based transform-domain thresholding
method. Here, it is worth mentioning that for the sake for losing useful
reflection energy, we use a relatively conservative number of IMFs and rank.
Because of the unsatisfactory sparsifing performance, we need to use a
relatively high threshold value for the traditional sparsity-based
transform-domain thresholding method, which results a much weaker
removal of noise. Fig. 5a shows a comparison of trace-by-trace amplitude
for different data. The proposed method appears to be the closest to the clean
data. In a better comparison way, we plot the trace-by-trace error for the
three methods in Fig. 5b, where we can see that the f-x deconvolution
method causes the largest error and the proposed method causes the smallest
error.
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Fig. 1. Synthetic example. (a) Clean data. (b) Noisy data. (c) and (d) Zoomed areas from
the frame boxes.
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Fig. 2. Synthetic example. (a) Denoised data using the f-x deconvolution method.

(b) Denoised data using the traditional sparsity-based transform-domain thresholding
method. (c¢) Denoised data using the proposed method. (d)-(f) Zoomed areas from the
frame boxes.
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Fig. 3. Synthetic example. (a) Removed noise using the f-x deconvolution method.
(b) Removed noise using the traditional sparsity-based transform-domain thresholding
method. (¢) Removed noise using the proposed method.
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Fig. 4. Synthetic example. (a) Denoising error using the f-x deconvolution method.
(b) Denoising error using the traditional sparsity-based transform-domain thresholding
method. (c) Denoising error using the proposed method.

Fig. 5. Amplitude and error comparison. (a) Trace-by-trace amplitude comparison.
(b) Error comparison. Note that the proposed method obtains the least error.
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Fig. 6. Field data example.

The next field data example is shown in Fig. 6, which is a post-stack data.
Fig. 7 shows the denoised results using four different methods. In this
example, we also compare the performance of the proposed method with the
that of the traditional SSA filter. Fig. 8 shows the corresponding noise
sections. For this example, it seems that all four methods obtain much
improved results and the performance of different methods is quite similar.
In order to compare the performance in detail and more fairly, we plot the
F-K spectra of different denoised results. The F-K spectrum of the raw data
is shown in Fig. 9. The F-K spectra corresponding to different methods are
shown in Fig. 10. Comparing the F-K spectra of different methods and F-K
spectrum of the raw data, it is easy to find that both f-x deconvolution
method and the proposed method preserve the useful signals well, but the f-x
deconvolution method has some residual spectrum energy around the edges
(large wavenumber components). It is obvious that the SSA method and
sparsity-based thresholding methods cause significant damages to useful
signals. We also plot a comparison of the average spectrum of all the traces
for different data (Fig. 11). The red line corresponds to f-x deconvolution
method. The pink line corresponds to the SSA method. The blue line
corresponds to the sparsity-based thresholding method. The yellow line
corresponds to the proposed method. It is quite obvious that the energy
preservation of the proposed method in the signal frequency band (20-60 Hz)
is quite successful. The proposed method mitigates more high-frequency
noise than f-x deconvolution method, which confirms the observation from
Fig. 10. In this example, the proposed method preserves more useful energy
than the other three methods in the spectrum. This field data further confirms
the superior performance of the presented algorithm.
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Fig. 7. Denoised data of the field data example using (a) f-x deconvolution method,
(b) SSA filter, (c) sparsity-based thresholding method, and (d) the proposed method.
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Fig. 8. Removed noise of the field data example using (a) f-x deconvolution method,
(b) SSA filter, (c) sparsity-based thresholding method, and (d) the proposed method.
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Fig. 10. F-K spectrum comparison of the denoised data in the field data example using
(a) f-x deconvolution method, (b) SSA filter, (c) sparsity-based thresholding method, and
(d) the proposed method.
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Fig. 11. Comparisons of the average spectrum of all the traces. The black line denotes the
average spectrum of raw data. The red line corresponds to f-x deconvolution method
method. The pink line corresponds to the SSA method. The blue line corresponds to the
sparsity-based thresholding method. The yellow line corresponds to the proposed method.
It is clear that the proposed method better preserves the signal energy in the seismic
frequency band.

CONCLUSIONS

Under the influence of intensive noise and strong interference, the
low-frequency weak seismic signal is difficult to extract completely. The
traditional low-rank approximation method assumes the seismic event to be
linear and is of low rank. However, for complicated seismic data, this
assumption is seldom met. We have proposed a dip-separated filtering
strategy to improve the low-rank approximation. The variational mode
decomposition (VMD) can be used to decompose the seismic data into
different dipping components, each can be better characterized by a
low-rank approximation method. We have used both synthetic and field data
examples to demonstrate the superior performance of the proposed method
compared with the frequency-domain prediction based method and the
traditional sparse-transform based method.
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