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ABSTRACT 
 
Zhang, L., Han, L.G., Chang, A., Fang, J.W., Zhang, P., Hu, Y. and Liu, Z.G., 2020. 
Seismic data denoising using double sparsity dictionary and alternating direction method 
of multipliers. Journal of Seismic Exploration, 29: 49-71. 
 

Recently, the dictionary learning plays a more and more important role in seismic 
data denoising. Compared with the fixed-basis transform (e.g., Fourier transform, wavelet 
transform, curvelet transform, contourlet transform and shearlet transform), the denoising 
of dictionary learning is better because of adaptive sparse representation of seismic data. 
However, dictionary learning often produces artifacts due to no prior-constraint structural 
information. In this paper, we propose a new denoising approach, which has double 
sparsity and combines the advantage of fixed-basis transform and dictionary learning. The 
whole work-flow of the new denoising approach is as follows. Firstly, we can obtain 
sparse coefficients of seismic data via shearlet transform. Secondly, sparse coefficients 
are divided into some suitable size blocks which are regarded as training sets. Thirdly, the 
alternating direction method of multipliers (ADMM) is used in sparse coding to update 
dictionary coefficients. Then, the data-driven tight frame (DDTF) is used in dictionary 
updating to update dictionary atoms. Again, the ADMM is used to resolve the convex 
optimization problem, and we reshape output blocks to obtain new sparse coefficients. 
Finally, the hard-thresholding and inverse shearlet transform are applied to new sparse 
coefficients to achieve denoising. The synthetic data and field data experiments show that 
the new denoising approach obtain better result than fixed-basis transform and dictionary 
learning. In conclusion, the new denoising approach can attenuate artifacts and improve 
the quality of seismic data denoising. 
 
KEYWORDS: seismic data denoising, shearlet transform, DDTF, ADMM. 
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INTRODUCTION 

 
 In seismic acquisition, the seismic data often suffers random noise due to 

environmental factors (e.g., the warble, defoliation, gentle breeze, geophones 
internal interfere and human speaking). However, the quality of seismic data 
is very important to the subsequent seismic process, such as seismic 
migration, inversion, amplitude-versus-angle analysis, interpolation and 
interpretation (Bunks et al., 1995; Sacchi and Liu, 2005; Hunt et al., 2010; 
Chen et al., 2015). In other words, the seismic data denoising is a necessary 
step in seismic data process. Over the past few decades, there are kinds of 
seismic data denoising approaches applied to random noise attenuation, such 
as principal components analysis (Hagen, 1982), median filter (Liu et al., 
2008), singular value decomposition (Ursin and Zheng, 1985) and sparse 
representation (Liu et al., 2016). Sparse representation is a highly effective 
denoising approach, which extracts the characteristic and grasps the 
information of seismic data via a few sparse coefficients. By analyzing the 
characteristic of sparse coefficients, we can separate the random noise and 
complete the denoising (Wright et al., 2009). Owing to the good 
performance in denoising, Sparse representation becomes more and more 
popular in many fields besides seismic exploration. 

  
 Generally, sparse representation can be divided into two categories: the 

fixed-basis transform and the dictionary learning. The fixed-basis transform, 
as the name suggests, is used to obtain sparse coefficients by a fixed-basis 
function, whereas the dictionary learning is used to obtain sparse coefficients 
by training. Varieties of fixed-basis transforms have been proposed in the 
literature for seismic data denoising and interpolation (Vassiliou and 
Garossino, 1998; Liu and Fomel, 2013; Wu and Castagna, 2017). Gülünay 
(2003) solves the seismic data missing problem by Fourier transform. Xu et 
al. (2010) achieve the high dimension interpolation for seismic data via 
Fourier transform. As the whole time transform, Fourier transform has the 
defect in time-frequency analysis. Although the short-time Fourier transform 
solves this deficiency, the time window can not be adjusted adaptively. In 
order to enhance the accuracy of time-frequency analysis, an adaptive time 
window transform called wavelet is proposed (Gaci, 2014; Liu et al., 2016; 
Anvari et al., 2017). Mousavi and Langston (2016) combine continuous 
wavelet transform with hybrid block thresholding for seismic data denoising. 
Wang et al. (2017) introduce a wavelet family which refers to generalized 
beta wavelets for seismic time-frequency analysis. Wavelet has a perfect 
performance for 1D seismic data but degrades in high dimension. Meanwhile, 
the more complex events are, the more sparse coefficients wavelet produce. 
Therefore, the hyper-wavelet transform is developed on the basis of wavelet 
for the sparse representation of high dimension seismic data (Li and Gao, 
2013; Gan et al., 2015; Cao et al., 2015; Karbalaali et al., 2017; Xue et al., 
2017). Chen et al. (2014) suppress the blending interference noise in the 
seislet domain. Zhuang et al. (2014) use time-frequency peak filtering 
algorithm in the radon domain to attenuate random noise. Zhao et al. (2016) 
realize seismic random noise attenuation by contourlet and time-frequency 
peak filtering algorithm. Yang et al. (2017) propose a seismic data denoising 
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and interpolation approach which relates to curvelet. Liu et al. (2018) apply 
the shearlet to 2D and 3D seismic data interpolation. 

 
 What calls for special attention is that the nature of the signal is varied in 

form. Using only single fixed-basis is hard to describe different signals well. 
Thus, there is still room for improvement in the sparse representation of 
seismic data. Compared with the fixed-basis, dictionary learning provides 
the adaptive basis to match different signals that it trains the dictionary from 
seismic data itself with an optimization algorithm. A case in point is the 
K-singular value decomposition (KSVD). When KSVD trains the dictionary 
column by column, correlations between data and dictionary are disclosed 
(Aharon et al., 2006). Hou et al. (2018) propose a seismic data denoising and 
interpolation approach via KSVD. Nevertheless, KSVD suffers high 
computational complexity. To accelerate the running speed of dictionary 
learning, some improved algorithms are proposed (Cai et al., 2014; Nalla and 
Chalavadi, 2015; Tong et al., 2016; Chen, 2017). DDTF is one of the 
improved algorithm for KSVD (Zhao and Du, 2017). Owing to striking a 
balance between speed and accuracy, DDTF is relevant in seismic signal 
processing (Yu et al., 2015; Siahsar et al., 2017; Zhao et al., 2017). Liang et 
al. (2014) introduce a seismic data restoration approach via DDTF. Yu et al. 
(2016) combine the DDTF with Monte Carlo to achieve seismic data 
denoising and interpolation. 

 
 However, dictionary learning often produces artifacts due to no 

prior-constraint structural information. The double sparsity dictionary (DSD) 
combines the advantage of fixed-basis transform and dictionary learning, 
which provides the two-level sparsity for model and attenuates artifacts. 
(Rubinstein et al., 2010; Ophir et al., 2011). Zhu et al. (2015) combine the 
KSVD and wavelet to attenuate artifacts of dictionary learning. 

  
 In this paper, we propose a new denoising approach, which combines the 

DDTF with shearlet to form a DSD. The shearlet provides the first sparsity 
layer while DDTF provides the second sparsity layer. So DSD gets the 
benefits of both sparse basis and becomes more robust. In addition, the 
ADMM algorithm is applied to sparse coding and sparsity constraint to be 
more accurate (Ramaswami et al., 2017). Moreover, both the synthetic data 
and field data experiments verify the validity of the proposed approach.  

 
 

THEORY 
 

DSD is based on DDTF and ADMM 
 
   In this section, we will give a brief introduction to DSD, which is based 
on DDTF and ADMM for seismic data denoising. The seismic data 
denoising via DSD can be formulated as the following optimization problem 
(Chen et al., 2016): 

       
⎪⎩

⎪
⎨
⎧

=

≤
Φ− −

IDD

Ta
tsADY

T

k

F

T

AD

0021

,
..,minarg ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 



	
52 

where D , A  and Φ  are matrices standing for dictionary, dictionary 

coefficients and fixed-basis, respectively. Y  is the noise data, ka  is the 

k -th column of A , 0T  is the bound of nonzero entry in ka , I  denotes the 

identity matrix, the symbol F
•  denotes the F  norm (Frobenius norm), 

and 
0

•  indicates 0l  norm (the number of nonzero in the matrix). 

Furthermore, the superscript –1 and T denote the inverse and transpose, 

respectively. 
  
   The DSD can be divided into two sections. One is sparse coding and the 
other is dictionary updating. In sparse coding, we input discrete cosine 
transform (DCT) dictionary as D , after that, we overlook the constant and 
rewrite eq. (1) as 
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where !ak  indicates the calculation of eq. (2) and yk denotes the k-th 
column of Y . Different form Chen et al. (2016), we relax the l0 constraint 
problem into l1 constraint problem in eq. (2) (Donoho, 2006) and rewrite it in 
a non-constraint form via Lagrange multiplier method (Bertsekas, 1999). 
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where λ  indicates the regularization parameter to control sparsity (the 
bigger λ  is, the sparser ka~  is) and 

1
•  denotes l1 norm (the same function 

as 
0

•  to produce sparsity). Eq. (3) is a convex optimization problem, so we 
use ADMM to complete sparse coding in this paper. Here, we obtain the 
i -th step iteration referring to Boyd et al. (2011): 
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where β  is an auxiliary variable, µ  denotes penalty parameter and it is 
positive to balance the augmented quadratic term, Λ  is the Lagrange 
multiplier, which is a zero matrix at the beginning of iteration, and ( )•soft  is 
the soft-thresholding function, defined as follows: 
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 At the end of sparse coding, we put all of the updated dictionary 

coefficient vectors column by column to form a matrix A~ . After that, the 
proposed approach goes into dictionary updating. Corresponding to Cai et al. 
(2014), the dictionary updating can be given by: 
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where D~  indicates the calculation of eq. (6), we fix A~  and decompose the 

cost function 
2~
F

T ADY −Φ  as follows: 
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where the symbol ( )•Tr  represents the trace of matrix. That is, eq. (6) is 
equivalent to: 
 
  ( )[ ] IDDtsYADTrD TT

D
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we can solve the eq. (8) referring to Zou et al. (2006). For the optimization 
problem (M , N  are matrices and have the same size): 

  !M = argmax
M

Tr MTN( ), s.t.MTM = I ,	 	 	 	 		 	 	 	 	 	 	 (9) 

if the singular value decomposition of N can be expressed as: 

  TVUN Σ= ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (10) 
 
we will obtain the result of eq. (9): 

  TUVM =
~ ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11) 

 
according to eqs. (9)-(11), the result of eq. (8) becomes: 
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where ( ) TT

VUAY 111
~

Σ=Φ  denotes the singular value decomposition of 
( )TAY ~Φ . When eq. (12) is over, we obtain the updated dictionary D~ . In view 

of the correspondence, we implement eq. (3) once again by using ADMM 
and replace D  with D~ . Similarly, we obtain new dictionary coefficients Â . 
Finally, we apply the hard-thresholding and inverse shearlet transform to 
achieve denoising: 
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where S~ , X~  and hT  stand for new shearlet coefficients, denoising and 
hard-thresholding, respectively. The symbol ( )•hard  is hard-thresholding 
function, defined as follow: 
 

	 	 ( )
⎪⎩

⎪
⎨
⎧

<

≥
=

h

h
h Tx

Txx
Txhard

0

00
0 ,0

,
, .	 	 	 	 	 	 	 	 	 	 	 	 	 (14) 

 
 
Shearlet transform 

 
 In this section, we will roughly show the mathematical background of the 

shearlet transform. Due to its sensitive directivity, we choose shearlet 
transform as Φ  to achieve the excellent denoising. More detail about 
shearlet transform can be found on Easley et al. (2008). 

  
 In the 2-dimension square integrable space, we define a shear matrix N  

and a scale matrix M  as follows (Häuser and Steidl, 2013): 
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where n is the shear parameter and m is the scale parameter. Here, We 
suppose a basis function ψ  and its Fourier form Ψ . Besides, Ψ  conforms 
to: 
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similarly, 1Ψ  is the Fourier form of basis function 1ψ  and 2Ψ  is the 

Fourier form of basis function 2ψ . In particular, 1Ψ  is the Meyer wavelet 

and the interval of 1Ψ  is ]2,
2
1[]

2
1,2[1 ∪−−⊂Ψ .	 While	 2Ψ  is the bump 

function and the interval of 2Ψ  is ]1,1[2 −⊂Ψ 	 (Yi et al., 2009). 

 

 At this time, ψ  becomes the affine system with composite dilation 

( )xjnm ,,ψ 	 by changing scale parameter m, shear parameter n and translation 

parameter j: 

	 	 	 	 	 	 ( ) ( )( ) 2114
3

,, ,,, RjRnRmjxNMmx
nmjnm ∈∈∈−= +−−−

ψψ ,	 	 	 	 	 	 	 (17) 

 

therefore, the sparse representation of seismic data via shearlet transform can 
be expressed as dot product (Kong and Peng, 2015) 
 

	 	 	 	 	 	 jnmYS ,,,ψ= ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 (18) 
 

we use jnm ,,ψ=Φ  to follow the correspondence of letter in this paper: 

   YS Φ= ,	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (19) 
 
where S indicates shearlet coefficients and •  denotes dot product. Fig. 1 
shows the frequency support of the shearlet transform. 
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Fig. 1. The frequency support of the shearlet transform. 

 
 
Now, we can summarize the whole work-flow of the proposed approach 

as follows: 
  

Algorithm: DSD is based on DDTF and ADMM 
Input:  

noise data Y  
ADMM parameters λ , µ , Λ , β  ( λ  and µ  should be tuned, Λ  

and β  are zero matrices at the beginning) 
  original dictionary D  
  hard-thresholding hT  ( hT  should be tuned)    
Output: 

updated dictionary D~  
new shearlet coefficients S~  

  denoising X~  
Step: 
1: Obtain shearlet coefficients S  via eq. (23). 
2: Choose the appropriate window in shearlet coefficients of each layer to 
get training sets wS .  
3: Complete sparse coding via eq. (8) and get updated dictionary 
coefficients A~ .  
4: Complete dictionary updating via eq.  (16)  and get updated 
dictionary D~ . 
5: Obtain new dictionary coefficients Â  by solving eq. (8) again. 
6: Apply eq. (17) and reshape new training sets wS

~  to get denoising X~ . 
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  The choice of parameters depends on experience. Here, we will 

introduce how we choose. There are two inner loops in the proposed 

approach: step 3 and step 5. For step 3, we prefer to set up a fast iteration. It 

means i  should be small. So λ  and µ  are both 1 in step 3 for all tests. 

For step 5, we want to obtain a high-accuracy output. Thus we use the 

variable λ  and µ  in step 5 for all tests: ( )( )
10

inf 1 T
k

T yD−Φ
=λ , ( )( )

10
inf Tiβ

µ = . 

Where ( )•inf  denotes the sum of the absolute value of the maximum row. 

Then hT  drops 90% small shearlet coefficients in all tests. And we choose 

DCT as the original dictionary. 
 
 
RESULTS AND EXAMPLES 
  
  In this section, we apply the proposed approach on synthetic data and 
field data to test the performance. As a comparison, we also test the 
performance of shearlet transform, DDTF, DSD-H (the only difference with 
the proposed approach is that DSD-H uses hard-thresholding to solve eq. (2) 
while the proposed approach uses ADMM to solve eq. (3)) and illustrate 
every result in details. To quantify the performance, we define the 
signal-to-noise ratio (SNR) as follow: 
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where X  indicates the clean data. Inspired by Tang et al. (2012), we use the 
appropriate window ( 88×  in all tests) in data to acquire training sets applied 
in all examples to improve the robustness of dictionary. 
 
 

Synthetic data 
 
   The synthetic data is shown in Fig. 2(a), which contains 100 traces, 256 
time samples per trace and the temporal interval is 0.001 s. We add the 
Gaussian white noise to synthetic data, and the result is shown in Fig. 2(b). 
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 (a)                                (b) 

 
Fig. 2. Synthetic data: (a) Clean synthetic data; (b) Noise synthetic data. 
	 	  

 
According to Fig. 2 above, we can see the synthetic data is composed of 

three high energy events. The Gaussian white noise disturbs events but we 
still can identify them. We apply shearlet transform, DDTF, DSD-H, the 
proposed approach on Fig. 2(b) and obtain the denoising shown in Fig. 3.	
	

 
 (a)                                (b) 

 
  (c)                                (d) 

 
Fig. 3. Synthetic data denoising: (a) Shearlet transform denoising; (b) DDTF denoising;  
(c) DSD-H denoising; (d) The proposed approach denoising. 
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 In Fig. 3, shearlet transform remains some spot noise. It is noteworthy 
that the shearlet transform strongly weakens three high energy events. The 
DDTF still remains much random noise. Furthermore, the DDTF produces 
some artifacts although it slightly weakens three high energy events. The 
DSD-H suffers a little artifacts and attenuates much random noise. What is 
more, DSD-H protects three high energy events well. The proposed approach 
has little noise and artifacts. Similarly, the proposed approach hardly 
damages three high energy events. Overall, the proposed approach has the 
best performance in four methods. Table 1 shows the SNR of synthetic data 
denoising in Fig. 3. 

 
 
Table 1. The SNR of synthetic data denoising in Fig. 3. 
 

Method Noise data (dB) Denoising (dB) 
Shearlet transform 3.0000 12.3398 

DDTF 3.0000 15.2621 
DSD-H 3.0000 17.1172 

The proposed approach 3.0000 20.3204 
 
 

 
 (a)                                 (b) 

 
  (c)                                  (d) 

 
Fig. 4. The discard of synthetic data: (a) The discard of shearlet transform; (b) The 
discard of DDTF; (c) The discard of DSD-H; (d) The discard of the proposed approach. 
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   As is evident from Table 1, the proposed approach has the best 
performance compared with shearlet transform, DDTF, DSD-H. Fig. 4 
shows the discard of synthetic data by four methods. 
  
  As is clearly seen from Fig. 4, four methods complete denoising with 
varying degrees of damaging three high energy events while the proposed 
approach has the least damage. Fig. 5 is the dictionary of synthetic data. 
Subjected to the space of paper, we only present the finest shearlet 
coefficients dictionary in all examples. 
 

       
 (a)                    (b)                    (c) 

 
Fig. 5. Synthetic data dictionary: (a) DDTF dictionary; (b) DSD-H dictionary (the finest 
shearlet coefficients); (c) The proposed approach dictionary (the finest shearlet 
coefficients). 
 
 

 We note down the SNR for every iteration and show it in Fig. 6(a). With 
the increases of iteration, the growth rate of SNR gradually decreases and it 
increases hardly in 12 times. Moreover, to make the test results more 
convincing, four methods are applied in noise synthetic data which range in 
SNR from 1 to 6, and we show the SNR of denoising in Fig. 6(b). We can 
see the proposed approach has the best performance throughout. 

 

 
(a)                                     (b) 

 
Fig. 6. Synthetic data SNR curve: (a) The SNR of different iterations; (b) The SNR of 
four methods. 
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Complex data 

 
 The proposed approach has a good performance in synthetic data, but it 

is too simple and unknown in field data. For consequent tests, we choose 
more complex data and field data. The Complex data is shown in Fig. 7(a), 
which contains 120 traces, 256 time samples per trace and the temporal 
interval is 0.001 s. We add the Gaussian white noise to complex data, and 
the result is shown in Fig. 7(b). 

 

 
   (a)                                    (b) 

 
Fig. 7. Complex data: (a) Clean complex data; (b) Noise complex data. 

 
 
 
 As can be seen from Fig. 7, the complex data is composed of very 

complex events with different energies. Influenced by Gaussian white noise, 
the low energy events are disrupted. Similarly, we apply shearlet transform, 
DDTF, DSD-H, the proposed approach on Fig. 7(b). Afterwards, the 
denoising of complex data by four methods is shown in Fig. 8. 

 
 In Fig. 8, shearlet transform causes the attenuation of low energy events. 

Furthermore, there is much spot noise in the shearlet transform. DDTF saves 
the low energy events well. Nevertheless, its denoising remains the most 
random noise among four methods, especially for artifacts. Compared with 
shearlet transform and DDTF, DSD-H has a better performance. The random 
noise and artifacts are less, and the low energy events are protected better. It 
is obvious that the most random noise is removed by applying the proposed 
approach. Moreover, low energy events are kept well and artifacts hardly 
exist in the denoising. In conclusion, the proposed approach has the best 
performance in four methods. Table 3 shows the SNR of complex data 
denoising in Fig. 8. 

 
 



	
62 

 
 (a)                                  (b) 

 

 
(c)                                  (d) 

 
Fig. 8. Complex data denoising: (a) Shearlet transform denoising;  (b) DDTF denoising; 
(c) DSD-H denoising; (d) The proposed approach denoising. 
 

 
 

Table 3. The SNR of complex data denoising in Fig. 8. 
 

Method Noise data (dB) Denoising (dB) 
Shearlet transform 3.0000 6.5939 

DDTF 3.0000 8.1835 
DSD-H 3.0000 10.9353 

The proposed approach 3.0000 13.7304 
 
 
 As is evident from Table 3, we can come to the conclusion which is the 

same as the synthetic data test. Fig. 9 demonstrates the discard of complex 
data by shearlet transform, DDTF, DSD-H and the proposed approach. 
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 (a)                                   (b) 

 
 (c)                                   (d) 

 
Fig. 9. The discard of complex data: (a) The discard of shearlet transform; (b) The discard 
of DDTF; (c) The discard of DSD-H; (d) The discard of the proposed approach. 
 

 
 Fig. 9 shows the damage of complex data denoising for four methods. 

Like the synthetic data test, the proposed approach has the least damage. 
Fig.10 is the dictionary of complex data. 

 
 

       
(a)                    (b)                    (c) 

 
Fig. 10. Complex data dictionary: (a) DDTF dictionary; (b) DSD-H dictionary (the finest 
shearlet coefficients); (c) The proposed approach dictionary (the finest shearlet 
coefficients). 
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 Similarly, we show the denoising SNR of different iterations and 
different initial SNR in Fig. 11 to make the test results more persuasive. Also, 
we can come to the conclusion which is same as the synthetic data test. The 
difference is the growth rate of SNR increases hardly in 15 times for 
complex data. 

 

 
 
                             (a) 
 

 
  (b)     

 
 
Fig. 11. Complex data SNR curve: (a) The SNR of different iterations; (b) The SNR of 
four methods. 
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Fig. 12. Field data. 

 
 
 

Field data 
 
 The field data is a plot of a huge field data, and we show it in Fig. 12, 

which contains 180 traces, 2000 time samples per trace and the temporal 
interval is 0.001 s. 

 
 The field data contains random noise but we do not know the intensity. 
Due to the unknown intensity of random noise, we make a rule to the stop 
the iteration. When the relative error of adjacent iteration less than 10%, the 
iteration is stopped. Similarly, we apply shearlet transform, DDTF, DSD-H, 
the proposed approach on Fig. 12 and the denoising is shown in Fig. 13. 

 
 As we can see in Fig. 13, shearlet transform weaken the energy of events. 

In addition, much random noise is remained. Compared with shearlet 
transform, DDTF remains less random noise and more energy of events. The 
DSD-H has almost the same performance with the proposed approach in that 
they both attenuate much random noise. However, the proposed approach 
saves low energy events better than DSD-H. All in all, the proposed 
approach has the best performance in four methods. The same as synthetic 
data and complex data tests, we show the discard of field data in Fig. 14, 
although it is hard to see the damage of events. We also present the 
dictionary of field data in Fig. 15. 
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(a) 

 
(b) 

 
(c) 

                                    
(d) 

 
Fig. 13. Field data denoising: (a) Shearlet transform denoising; (b) DDTF denoising; 
(c) DSD-H denoising; (d) The proposed approach denoising. 



	
67 

 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

 
Fig. 14. The discard of field data: (a) The discard of shearlet transform; (b) The discard of 
DDTF; (c) The discard of DSD-H; (d) The discard of the proposed approach. 
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   (a)                        (b)                        (c) 
 
Fig. 15. Field data dictionary: (a) DDTF dictionary; (b) DSD-H dictionary (the finest 
shearlet coefficients); (c) The proposed approach dictionary (the finest shearlet 
coefficients). 

 
 
 
CONCLUSIONS 

 
 In this paper, a novel seismic data denoising approach, based on DDTF 

and ADMM with double sparsity, is presented. Starting from shearlet 
transform, we can obtain shearlet coefficients of noise data. To improve the 
robustness of dictionary, we choose the appropriate window in the shearlet 
coefficients of each layer to get training sets. The ADMM is used in sparse 
coding to update dictionary coefficients. And then, we update the dictionary 
atoms in the framework of DDTF. In view of the correspondence, the 
ADMM is used again to get new training sets. Next, we reshape new training 
sets to obtain new shearlet coefficients. Finally, we apply the 
hard-thresholding and inverse shearlet transform to achieve denoising. In the 
section of examples and results, the proposed approach achieves 
state-of-the-art results compared to shearlet transform, DDTF, DSD-H. 
Regardless of synthetic or field data, simple or complex model, the proposed 
approach has an outstanding performance. 

  
 However, there are some drawbacks in the proposed approach, such as 

computational time and parameter tuning. As many dictionary learning 
methods, the proposed approach suffers from time-consuming. Although it is 
faster than KSVD, the proposed approach is slower than DDTF. A probably 
solution is to find a more effective algorithm to train the dictionary. 
Moreover, the multiscale and multidirection of shearlet transform cause 
fussy parameter tuning. The more decomposition level of shearlet transform 
is, the more fussy parameter tuning is. To balance the SNR of denoising and 
the decomposition level of shearlet transform is a worth research. Therefore, 
our future work will focus on the computational time and parameter tuning 
to improve the proposed approach.  
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