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ABSTRACT 
	
Tian, Y.K., Ma, Y.Y., Li, T., Wang, R., Chuai, X.Y. and Chen, W., 2020. Prestack 
seismic inversion based on adaptive mixed-norm constraints. Journal of Seismic 
Exploration, 29: 139-157. 
  
   Prior information plays a critical role in seismic inversion, which is used to reduce the 
ill-posed problem. Most of the inversion methods assume that the noise obeys Gaussian 
distribution. However, due to the diversity of noise in seismic data, it can hardly meet the 
prior hypothesis. In this paper, a seismic prestack inversion method based on adaptive 
mixed-norm constraint is proposed to cope with the different noise distribution, and 
improve the noise suppressing ability of inversion algorithm in prestack seismic data. 
First, the noise analysis of actual shale gas is realized through the forward modeling of 
well logging data. Second, the constraints of the L2 norm and the L4 norm are added to 
the target function. The new algorithm combines the ability of L2 norm on super-Gaussian 
and Gaussian noise, and L4 norm on sub-Gaussian noise. It adaptively regulates the 
weights between L2 norm and L4 norm through Kurtosis. This method improves the 
adaptive ability of the algorithm to sub-Gaussian, Gaussian, and super-Gaussian noise. By 
identifying the types of noise, the adaptive mix-norm inversion method is used to test the 
model, and the prestack simultaneous inversion is carried out in the actual shale gas data. 
The results show that the proposed method can obtain better inversion results compared 
to conventional methods. 
 
KEY WORDS: prestack inversion, mixed-norm, noise suppressing, Kurtosis. 
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INTRODUCTION 
	

Prestack seismic inversion can obtain elastic parameters of subsurface 
medium by utilizing seismic data and drilling data, such as shear wave 
velocity, shear wave velocity ratio, Poisson ratio, and Lamé coefficient, etc. 
The changes of these data are used to predict the subsurface lithology, 
physical property, and gas-bearing properties, etc. However, due to the 
influence of frequency bandwidth and noise, prestack inversion is usually 
difficult to obtain stable and unique results, and usually requires prior 
information to restrain the inversion process. 

 
Prior information is widely distributed, some of which are used to 

reduce the ill-posed nature of inversion, some of which depend on 
geologists' prior knowledge, and some are aimed at improving the 
suppressing effect of inversion algorithm on seismic data noise (Alemie and 
Sacchi, 2011; Yuan, 2017). According to different objects, it can be divided 
into the priori information on the parameters and noise, respectively. Usually, 
these two ways will be applied simultaneously. 

 
Buland and Omre (2003) put forward a prestack inversion method 

based on Bayesian framework, which add the priori hypothesis into the 
inversion process, and assume the elastic parameters accord with the 
characteristics of Gaussian distribution. To some extent, this method 
improved the stability of the inversion process. On the basis of this study, 
Downton (2005) considers that the resolution of Cauchy distribution is better 
than that of Gaussian distribution. Chen and Yin (2007) published a method 
on prestack inversion under the Bayesian framework, which improves the 
stability of the inversion by the covariance matrix. Chen et al. (2007) also 
point out that the result of Huber prior distribution is better than the 
Gaussian prior distribution under the condition of noise. Alemie and Sacchi 
(2011) have studied the inverse problem of multivariable joint Cauchy 
hypothesis. Theune et al. (2010) compared the effect of the parameters prior 
information on the inversion results when assuming Gaussian, Cauchy and 
Laplace distribution respectively, and pointed out that the non-Gaussian 
distribution can better identify the thin layer and protect formation boundary, 
and also indicated that the Laplace distribution of inversion results is more 
stable than Cauchy. Yuan et al. (2012, 2013, 2017) proposed a novel 
stochastic noise removal method. Based on the idea of inversion, the random 
noise attenuation method for edge protection was studied in Bayesian 
framework by using the noise-free signal as the parameter to be inverted, 
Cauchy distribution as a priori distribution, which has achieved good results. 
Saraswat and Sen (2012) used a prior probability density function based on 
the subdivision model to obtain a very high resolution elastic model to 
constrain the prestack inversion. Velis (2005) used the characteristics of the 
spatial continuity of the Markov random field as a constraint to invert the 
seismic data. Tian et al. (2013, 2013b) and Wang et al. (2015) used Markov 
random fields as the constrained priori information parameters to finally 
obtain the inversion results with clear boundary changes, high resolution in 
the vertical direction and reasonable continuity in the horizontal direction. 
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All the above studies assume that the noise is Gaussian distribution, and 
the main research direction is on the discussion of the types of parameter 
distribution. But in fact, the noise distribution is very complicated (Chen et 
al., 2016a,b,c ???; Chen et al., 2017; Chen and Chen, 2017; Chen and Chen 
et al., 2017; Chen and Zhou et al., 2017; Chen and Fomel, 2017), the 
Gaussian distribution cannot describe all the features of the noise. Especially 
for prestack data with low signal-to-noise ratio, the type of noise should be a 
superposition of multiple distributions (Chen and Ma et al., 2017; Chen and 
Huang et al. 2017; Mohammad et al. 2017; Xie et al. 2017). Based on the 
Buland (2003) study, Karimi et al. (2010) discussed the distribution of 
seismic noise and developed a Bayesian AVO inversion based on 
closed-skew Gaussian distribution. Liu et al. (2012) and Li et al. (2015) 
discussed the prestack three-parameter non-Gaussian inversion method 
based on the L1 and L2 mixed-norm. However, due to the 
non-differentiability of L1 norm, the Powell algorithm is needed to solve the 
equation. 

 
In this paper, an adaptive prestack seismic inversion method with 

mixed-norm constraints is proposed to suppress the prestack seismic data 
noise and improve the validity of the inversion results. The traditional L2 
norm has good performance under the conditions of Gaussian and 
super-Gaussian environments. But the inversion algorithm based on L4 norm 
has better performance in sub-Gaussian environment. In this paper, by 
analyzing the seismic data noise type of the actual shale gas, the forward 
modeling is carried out based on the logging data. Based on the 
identification of noise types, this paper uses the Fatti equation as the 
inversion equation, and adds the Gaussian and Laplace distribution noise to 
the forward seismic data to test inversion results. Finally, the prestack 
simultaneous inversion in the actual shale gas work area verifies the 
feasibility of the inversion method and the noise suppression effect. 

 
 

Prestack simultaneous inversion 
	

Prestack simultaneous inversion is based on the equation proposed by 
Zoeppritz (1919), which accurately reflects the relationship between 
amplitude changing with angle of incidence and physical parameters at the 
interface location. However, due to the complexity of the mathematical 
relationship between the parameters, it has not been given due attention for a 
long time since it was proposed. Therefore, the approximate equation of the 
Zoeppritz equation is most commonly used for simultaneous prestack 
inversion. Our study is based on the approximate equation proposed by Fatti 
et al. (1994): 
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where PI  is the longitudinal wave impedance, IS is the shear wave 

impedance, 
p

p

I
IΔ  is the normal-incidence P-wave reflectivity and 

S

S

I
IΔ  is the 

normal-incidence S-wave reflectivity. 
 
By applying the Fatti equation, simultaneous inversion can be 

performed on multiple gathers dataset, and then three data bodies, P-wave 
impedance, S-wave impedance and density, can be simultaneously obtained. 

 
Fig. 1 shows the flow of simultaneous inversion in this paper. The 

angular gathers are calculated by CRP gathers data of the total reflection 
points. The initial low frequency model is established by using drilling data, 
horizon, and fault interpretation results. Time-depth calibration and wavelet 
extraction are obtained by using well data and sub-angle overlay data 
volumes. At last, prestack simultaneous inversion can be done by using 
sub-angle data stack, initial low-frequency model and wavelet. The direct 
results of simultaneous prestack inversion are P-wave impedance, S-wave 
impedance, and density. Using these three elastic parameters, we can obtain 
the S-wave velocity ratio, Lame coefficient, bulk modulus, shear modulus, 
and Poisson's ratio, etc. The lithology, physical properties and 
hydrocarbon-bearing prediction of reservoir are completed by using elastic 
parameters and petrophysical templates. 

 
 

 
 

Fig. 1. Prestack simultaneous inversion flow chart. 
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Adaptive mixed-norm inversion method 
	

In order to predict reservoir effectively, prestack simultaneous inversion 
is required. Most existing prestack inversion methods assume that the 
seismic data noise obeys Gaussian distribution, while the actual underground 
medium noise is complex. Therefore, the deterministic assumptions is not 
enough to fully characterize the underground situation. In this paper, an 
adaptive hybrid norm inversion method is proposed to improve the 
suppression effect of the inversion algorithm on the prestack seismic data 
noise and to improve the effectiveness of the inversion results. 

 
The random signal can be divided into Gaussian signal and 

non-Gaussian signal according to whether the probability density function of 
the signal obeys the Gaussian distribution or not. Gaussian signal refers to 
the random signal whose probability density function obeys Gaussian 
distribution. The most important feature of Gaussian signal is the symmetry 
of the probability density function. The non-Gaussian signal is the stochastic 
signal whose statistical characteristic deviates from Gaussian distribution. 
Existing inversion methods, including some mature commercial inversion 
software, usually assume that noise obeys a Gaussian distribution. However, 
due to the complexity of seismic data acquisition, it is difficult for the noise 
to satisfy the Gaussian distribution assumption. So the traditional prestack 
inversion method based on the Gaussian model is very difficult to achieve 
powerful results. 

 
Generally, there are mainly Gaussian distribution, super-Gaussian 

distribution and sub-Gaussian distribution noise in the seismic data. We can 
usually use kurtosis to distinguish Gaussian, sub-Gaussian, and 
super-Gaussian types of noise. Kurtosis is a dimensionless parameter, as 
shown in eq. (2), which is often used to describe the abrupt degree of all 
value distribution in the whole. 
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where n  is the mean, iσ  is the standard deviation, and N is the 

sample length. 
      
According to the magnitude of the signal kurtosis, the signal can be 

divided into super-Gaussian signal, Gaussian signal and sub-Gaussian signal. 
Since the second order and above order statistics of the random variables 
satisfying the Gaussian distribution are equal to zero, the Kurtosis should be 
equal to zero for the Gaussian distribution. When the Kurtosis is quite 
different from zero, we can judge that the random variable deviates from the 
Gaussian distribution. Correspondingly, the signal with a negative Kurtosis 
is called the sub-Gaussian signal, and the signal with a positive Kurtosis is 
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called a super-Gaussian signal. As described by a more intuitive concept, 
kurtosis measures the degree of a "peak" of a distribution relative to the 
Gaussian distribution. In the same variance case, compared to the Gaussian 
signal, the sub-Gaussian signal has a shorter trailing, and is even more flat in 
the whole distribution. In other words, the sub Gaussian distribution presents 
a typical "flat" probability density function: near zero, near a constant, and 
very small at large values. For example, the uniform distribution is a typical 
sub-Gaussian distribution. 

 
The traditional L2 norm has good performance in Gaussian and 

super-Gaussian environment. At the same time, the inversion algorithm 
based on L4 norm has better performance in sub-Gaussian environment. 
However, there may be many kinds of underground noise. It is very 
unreasonable to use one distribution feature to suppress the whole three 
dimensional noise. We should use the weight function corresponding to 
noise to establish corresponding objective function. For this reason, we 
propose an mix-norm inversion method, which combines the ability of L2 
norm to process Gaussian and super-Gaussian noise and L4 norm to deal 
with the sub-Gaussian noise. Adjusting the weight between L2 norm and L4 
norm increases the ability of the algorithm to adapt to sub-Gaussian, 
Gaussian or super-Gaussian noise. Adaptive mix-norm inversion objective 
function can be defined as the form of eq. (3). 

 
( ) ( ) ( )2 4
1 2 4
J 1 b bn n= −ϒ − +ϒ −⎡ ⎤⎣ ⎦m d Gm d Gm    .             (3) 

 
The vector d is an M × 1 dimensional vector, representing the prestack 

seismic gathers; G is an M × N dimensional matrix which represents the 
forward modeling matrix; m is an N × 1 dimensional vector, which is the 
stratum model parameter we want to obtain, P-wave impedance, S-wave 
impedance and density. The weight parameter ( )bnϒ  controls the weights of 
the L2 norm and the L4 norm, and bn  denotes the background noise. From 
eq. (3), we can see that: when ( ) 0bnϒ = , the algorithm degenerates into L2 
norm; when ( ) 1bnϒ = , the algorithm degenerates into L4 norm; and the 
adaptive criterion should satisfy the following conditions: 

 
a) The adaptive weight parameter should be a function of the inversion 

error so that the weight is adaptively adjusted; 
 
b) When the noise is Gaussian or super-Gaussian noise, the weight 

parameter ( ) 0bnϒ ≈ , and the L2 norm is used. Conversely, when the noise is a 
sub-Gaussian noise, the weight parameter ( ) 1bnϒ ≈  and the L4 norm is used. 
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Eq. (4) describes the relationship between weight parameter ( )bnϒ  and 
Kurtosis ( )bnχ . 

 

   ( ) ( )( ) ( )
( )
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exp

b
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c n
n f n

A c n
χ

χ
χ
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where c and A are positive parameters, usually given by experience. Fig. 2 
shows the relationship between ( )bnϒ  and ( )bnχ for different values of c 
and A. As A increases, the weight proportion of the L2 norm to the L4 norm 
increases; as c increases, ( )bnϒ  approaches the step function. 

 

 
Fig. 2. Relationship between weight parameters and kurtosis under different c and A. 
  

 
In the above objective function, the regularization parameter is a function 

of the noise Kurtosis, and the Kurtosis can be calculated by eq. (2). 
 

When the noise is known, we can use eq. (4) to calculate the weight 
parameter ( )bnϒ , but in real seismic prestack inversion, it is hard to get the 
true noise data. So in this paper, we propose to use iterative residuals kn  
instead of true noise data errors bn  to update ( )bnϒ . Iterative algorithm 
equation can be expressed as: 

 
   1 1 1k k k kα− − −= +m m P    ,             (5) 

 
where mk denotes the k-th iteration result, Pk-1 denotes the k-th iteration 
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search direction, and 1kα −  denotes the search step length. In the actual AVO 
inversion, the iterative residuals are time-varying, caused by model errors, 
inversion errors, background noise and some other uncertainties, and show 
obviously non-Gaussian distributions. Mathematically, it can be expressed 
as: 
 
  k k k b= − = Δ + Δ +Δ Δ +n d Gm Gm G m G m n    ,,       ,,    (6) 

 
where ΔG  represents the model error between the true forward model and 
the partial forward model we used, and Δm  represents the inversion error 
between the current iterative model km  and the real model parameterm . 

 
Then, the inversion objective function can be expressed as: 
 
  ( ) ( ) ( )2 4

1 2 4
J 1 k kn n= −ϒ − +ϒ −⎡ ⎤⎣ ⎦m d Gm d Gm    .         

(7) 

 
Synthetic data test 

 
We use synthetic seismic records to verify the effectiveness of the 

inversion algorithm. In order to verify the anti-noise performance of the 
algorithm, we add Gaussian noise with a SNR of 2dB and Laplace noise with 
non-Gaussian noise of 2dB respectively to the seismic data (Fig. 3). The 
noisy record is shown in Fig. 4. 

 

 
Fig. 3. Noiseless synthetic seismic angle gather.  

 
 
The conventional Gaussian distribution inversion algorithm and 

adaptive simultaneous inversion methods were compared, as shown in Fig.5. 
It can be found that the conventional inversion method has good suppression 
effect on Gaussian noise, but for non-Gaussian noise is not ideal. While the 
adaptive inversion method has better suppression effect both on Gaussian 
noise and non-Gaussian noise through the Kurtosis updating iteration. At the 
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same time, we also compare the iterative convergence of the conventional 
inversion method with the adaptive mixed-norm method. As shown in Fig. 6, 
the error of the adaptive mix-norm inversion method tends to be stable with 
the increase in the number of iterations. While the residuals of the 
conventional Gaussian method will increase with the increase in the number 
of iterations. Thus, the convergence of the proposed method is obviously 
stronger than the conventional inversion algorithm. 

 
In summary, the adaptive mix-norm inversion method is obviously 

better than the conventional method, this paper intends to apply this method 
to the prestack simultaneous inversion of shale gas reservoirs. 

 

 

(a)                      (b) 

Fig. 4. Synthetic angle gather of 2dB Gaussian noise (a) and synthetic angle gather of 
2dB Laplace noise (b). 
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Fig. 5. Comparison of inversion results. (a) Mix-norm inversion results in Gaussian noise 
environment, and (b) Mix-norm inversion results in Laplace noise environment. 
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Fig. 6. Comparison of convergence performance of inversion method. (a) Gaussian noise 
environment, and (b) Laplace noise environment. 

 
 

Analysis of partial angle stack seismic data 
 
The prestack inversion technique is different from the post-stack 

inversion, and the seismic data required for prestack inversion are partial 
angle stack data. The partial angle superposition data is based on the 
common reflected point gather data (CRP gather), and is obtained through 
the stack of different angles. As a result, the quality of the CRP gathers 
determines the quality of the partial angle stack data. Based on seismic data 
processing technology, such as prestack denoising, amplitude processing, 
surface consistency and multiple suppression, we get prestack CRP gather 
data with relative amplitude preservation, high SNR and resolution. The 
NMO correction record obtained from conventional data processing is a 
function of offset. In order to observe and analyze the variation of seismic 
reflection amplitude with incident angle, it is often necessary to transform 
the record of offset gathers into the record of incident angle gathers. 

 
 An angle gather refers to the record of the reflected energy from all the 

different moments from a certain angle of reflection. The angle gather of a 
certain reflected angle can be obtained by combining the corresponding part 
of the offset record with the desired reflection angle. Repeat above process 
for different reflection angles, and different angle gathers are obtained. 
Based on the estimation of the maximum incidence angle of 3D seismic data 
and the prediction of the maximum incidence angle of the fluid, combined 
with the consideration of SNR of the angle stack data, the angle stack 
scheme of the work area is determined as follows: 5°, -15°,16°,-25°, 
26°, -35°. Fig. 7 shows the three angle stack gathers. It can be seen that 
the overall SNR of the data is high. 
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     (a)                    (b)                    (c) 

 
Fig. 7. Near, middle and far angle stack data profiles. 

 
 
In order to test the inversion parameters, we conducted a comparative 

study using forward angle gathers and real gathers. We use the seismic 
wavelet of well A and the reflection coefficient of well A to synthesize 
seismic records. As shown in Fig. 8 (b), we can see that the difference 
between the single wavelet synthesis record and the real wavelet is obvious. 
The amplitude of the real angle gather increases with the increase of angle, 
but the amplitude of the synthetic record decreases with the increase of 
angle. Therefore, the use of a single wavelet may be a problem. In order to 
further verify our conclusion, we use single wavelet and real gathers as 
inputs for inversion. After the reflection coefficient is calculated by using the 
inversion result of impedance inversion, the angle gathers of Well A are 
synthesized by the single-wave convolution. As shown in Fig. 8 (c), it can be 
found that there is a significant error in the inversion results obtained by 
using single wavelet, which is mainly caused by the wavelet itself. 
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Fig. 8. (a) True angle gathers over well A, (b) Synthetic seismic records by single wavelet 
and well A, and (c) Synthetic seismic records by single wavelet and inversion reflection 
coefficient. 
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In order to solve this problem, we extract wavelet from different angles 
separately and then use different wavelet for each angle to calculate. Fig. 9 
shows the wavelet extracted from each of the three angle gathers over well 
A. It can be found that there are obvious energy differences at different 
angles. The difference of the extracted wavelets is relatively large, which is 
also the reason for the larger error of single wavelet inversion. We use three 
wavelet to synthesize seismic records. And three wavelets are used to invert 
the impedance over the well. The angle gathers are re-synthesized with 
inversion result and three wavelets, and the records obtained are shown in 
Fig. 10. It can be found that using the wavelet extracted from each angle can 
obviously improve the accuracy of the inversion results. 

 

 
 
Fig. 9. Extraction of wavelet results from the angle stack data of well A. 

 
          (d)                     (e)                     (f ) 
 
Fig. 10 (a) True angle gathers over well A, (b) Synthetic seismic records by single 
wavelet and well A, (c) Synthetic seismic records by single wavelet and inversion 
reflection coefficient, (d) True angle gathers over well A, (e) Synthetic seismic records by 
multi-wavelets and well A, and (f ) Synthetic seismic records by multi-wavelets and 
inversion reflection coefficient. 

          (a)                    (b)                      (c) 
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Noise analysis 
 
The noise of seismic data is varied. What kind of noise attenuation 

method should be adopted must first clarify the type and statistical 
distribution characteristics of noise. We analyzed the noise distribution 
results of three known logging data in this area. First, synthetic seismic 
records are calculated by using multiple wavelets in three known wells. 
Then, the residuals of synthetic seismic records and real records are studied, 
and the noise distribution characteristics of actual seismic data are judged by 
residual analysis. As shown in Fig. 11, the error statistics of three wells can 
be analyzed. It can be found that the errors of well A and well C agree with 
the Laplace distribution, while the well B error accords with the Gaussian 
distribution. Therefore, the data noise types in the work area are various, and 
the traditional least square distribution cannot adapt to all types of noise. 
Therefore, we intend to use adaptive mix-norm inversion method for 
calculation. 
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Fig.11. (a) Well A error distribution, (b) Well B error distribution, and (c) Well C error 
distribution. 
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Fig. 12. Comparison of inversion results. Conventional and adaptive mix-norm inversion 
results of P-wave velocity (a, b), S-wave velocity (c, d), and density (e, f ). 
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In order to illustrate the problem, we compared the results of 
conventional method and adaptive mixed-norm method for inversion of 
angle gathers over the well. Fig. 12 is the comparison of the inversion results 
of single well prestack three parameters in three wells of A, B and C by 
using multi wavelet. It is found that the inversion result of adaptive 
mix-norm method is better than that of conventional method. 

 
 
Inversion results 
	

According to the above analysis, we divide the prestack gather into 
three angle gathers, and extract the wavelet on each angle gather for 
inversion. Then we use the adaptive mix-norm method to calculate the three 
parameters. Finally, we obtain the P-wave velocity, S-wave velocity and 
density profiles which are shown in Fig. 13. we can find that the inversion 
result can well show the obvious interface between carbonate and shale. The 
lithology is clearly distinguished, and the inversion result is in good 
agreement with the geological conditions. 

 

 
(a) 

 
(b) 
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(c) 

 

 

(d) 

 

 
(e) 
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(f ) 

 

 

(g) 
Fig. 13. Prestack three parameter inversion profiles. (a) seismic data profile, (b) Gaussian 
inversion P-wave velocity, (c) mix-norm inversion P-wave velocity, (d) Gaussian 
inversion S-wave velocity, (e) mix-norm inversion S-wave velocity, (f ) Gaussian 
inversion density, and (g) mix-norm inversion density. 
 
 
CONCLUSIONS 
	

By comparing the Gaussian inversion and non-Gaussian inversion, the 
non-Gaussian inversion is better than that of Gaussian inversion, the 
signal-to-noise ratio is higher, the vertical resolution and lateral continuity is 
better. It is also proved that the noise distribution of prestack data does not 
completely obey the Gaussian distribution. As prestack data is usually low in 
signal noise, this method is more meaningful for noise attenuation. 
Therefore, we use L2 and L4 mixed-norm to suppress the noise, gain the 
weight by Gaussian noise and non-Gaussian noise adaptively, and through 
the well test and actual data inversion, the denoising effect and feasibility of 
this method are proved. 
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