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ABSTRACT 
	
Luo, X., Chen, X.H., Sun, L.M., Zhang, J. and Jiang, W., 2020. Optimizing schemes of 
frequency- dependent AVO inversion for seismic dispersion-based high gas-saturation 
reservoir quantitative delineation. Journal of Seismic Exploration, 29: 173-199. 
	

Previous works demonstrate that dispersion properties can be deduced from 
frequency-dependent AVO inversion (FDAI). The optimal selection of 
dispersion-related fluid factors is of great importance to improve the accuracy of fluid 
identification. In order to quantitatively delineate the reservoir with high gas saturation, 
we propose an optimal scheme of FDAI to pursue the optimal dispersion factor which is 
the most sensitive to the high gas saturation reservoir. First, within the seismic frequency 
band, we construct an objective function to determine the optimal reference frequency 
by using the dispersion factors calculated from the pre-stack seismic data nearby 
borehole. Then, we can directly get the optimal dispersion factor related to gas-saturated 
reservoir according to the fluid indication coefficient. At last, we apply optimal 
parameters to calculate the dispersion results for seismic data volume. Numerical 
analysis indicates that the dispersion degree of fluid-saturated reservoir shows an 
approximate linear increase characteristic with increasing gas saturation. It provides an 
evidence for the delineation of high gas-saturation reservoirs by using the dispersion 
anomalies. The seismic field data results illustrate that the dispersion factors inverted by 
the optimal reference frequency can highlight the dispersion anomalies of gas-saturated 
reservoirs. Meanwhile, the optimal dispersion factor can delineate the reservoirs with 
high gas-saturation more accurate while less affected by the background interference of 
elastic layers than conventional methods. The proposed optimal workflow can improve 
the accuracy of FDAI and it is feasible to detect the location and spatial distribution of 
high gas-saturation reservoirs. 

KEY WORDS: frequency-dependent AVO inversion, dispersion factor, 
     optimal selection, gas saturation, reservoir delineation. 
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INTRODUCTION 

 
Conventional AVO analysis has been proved to be an effective method 

in hydrocarbon exploration over the past few decades (Smith and Gidlow, 
1987; Castagna et al., 1998; Gray, 2002; Russell et al., 2003). It has been 
commonly observed that the velocity dispersion and attenuation occur when 
the seismic waves travel through the hydrocarbon saturated porous rocks 
(Chapman et al., 2003; Batzle et al., 2006; Quintal, 2012; Chen et al., 2013). 
Here, the attenuation refers to the amplitude decrease, waveform distortion 
and the phenomenon of dominant frequency shifts to lower frequency when 
seismic wave propagates through a fluid-saturated medium. Dispersion is the 
variation of seismic wave velocity with frequency during seismic wave 
propagation. However, the conventional AVO analysis does not take the 
dispersion features of seismic wave propagation into consideration and 
ignores the frequency-dependent effects. Intensive studies suggest that 
velocity dispersion and attenuation provide frequency-dependent anomalies 
associated with hydrocarbon-bearing rocks (Brown, 2009; Chapman et al., 
2009). When fluids are contained in the pore space of rocks, the mechanism 
that causes frequency-dependent dispersion and attenuation is known as 
wave-induced fluid flow (WIFF) (Biot, 1962; Mavko and Nur, 1975; White, 
1975; Brown, 2009; Müller et al., 2010; Rubino et al., 2012) which results in 
frequency-dependent AVO response. That is, the seismic reflection 
coefficients are not only related to the incidence angle, but also vary with 
frequencies (Chapman et al., 2005; Silin et al., 2006; Silin and Goloshbin, 
2010). 

  
Many studies show that dispersion and attenuation caused by the fluid 

flow may occur in the seismic frequency range (Batzle et al., 2001; Korneev 
et al., 2004; Chapman et al. 2006, 2009; Gurevich et al., 2010; de Paula et al., 
2012). For years, geophysicists preferred to explain the mechanism of 
velocity dispersion and attenuation by different theoretical equivalent 
models. For instance, the local fluid-flow or squirt-flow model (Dvorkin et 
al., 1995; Gurevich et al., 2010) and the dual-porosity model (Pride and 
Berryman, 2003a, 2003b). White (1975) proposed the patchy-saturation 
model to study the mesoscopic mechanism and explained the velocity 
dispersion and attenuation in the seismic spectral band. This model was then 
extended and modified by other researchers (Dutta et al., 1979; Johnson, 
2001). For the anisotropic case, Chapman et al. (2002, 2003) proposed a 
multi-scale equant porosity model to numerically model the velocity 
dispersion and attenuation of fluid-saturated rocks. All the studies illustrate 
that fluid-saturated reservoirs lead to frequency-dependent dispersion and 
attenuation which are preferable to hydrocarbon detection. 

 
Thus, understanding the mechanism of fluid-related dispersion is of 

great importance to pursue hydrocarbon indicators for fluid identification in 
reservoir delineation. The numerical modeling for velocity dispersion and 
attenuation and frequency-dependent AVO analyses have been studied by 
researchers (Rubino et al., 2009; Liu et al., 2011; Chen et al., 2016, 2017). 
Xu et al. (2011) used the frequency-dependent seismic reflection coefficient 
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for discriminating gas reservoirs. Chen et al. (2012, 2013) proposed fluid 
mobility attribute for gas reservoir delineation based on the 
frequency-dependent response. Ghosal et al. (2018) performed the dispersion 
analysis of velocity and reflectivity. Meanwhile, estimation of attenuation 
attributes is of great importance for exploring the attenuation characteristics 
of fluid-saturated reservoirs (Bradford, 2007; Quintal, 2012; Beckwith et al., 
2017). It is also a key factor for seismic processing and migration images 
(Yang et al., 2018). 

  
To extract the dispersion anomalies induced by fluid flow from 

pre-stack field data, Wilson et al. (2009) and Wu et al. (2010, 2012) 
proposed a frequency-dependent AVO inversion (FDAI) method. Recently, 
considerable attention has been paid to predict hydrocarbon reservoirs and 
gas saturation by using the dispersion-related fluid factors obtained from 
FDAI (Wu et al., 2012, 2014; Cheng et al. 2012; Chen et al., 2012, 2014; 
Zhang et al., 2011; Zong et al., 2016; Zhong et al., 2017). However, the 
FDAI method is routinely based on the AVO linear approximation proposed 
by Smith and Gidlow (1987) to invert the dispersion factors which are 
obtained from the frequency-dependent velocities of the P- and S-wave. 
Zhang et al. (2014) proposed a new dispersion factor which is deduced from 
the frequency-dependent fluid term based on f-µ-ρ AVO approximation 
(Russell et al., 2003). All these dispersion factors are beneficial to identify 
the dispersion phenomena caused by fluid-saturated media while not 
necessarily sensitive for the delineation of high gas saturation reservoirs. 

  
In our work, the study area is sandstone reservoir saturated with 

different gas saturation. To explore the high gas saturation (Sg > 40%) 
reservoir is of great significance for marine exploration. In order to pursue 
the optimal dispersion factor to quantitatively delineate the reservoir with 
high gas-saturation and improve the reliability of hydrocarbon detection, we 
propose an optimal workflow of FDAI to pursue the optimal dispersion 
factor. First, we quantitatively analyze the velocity dispersion and 
attenuation and the frequency-dependent AVO response of reservoirs 
saturated with different gas saturations based on the real log data. Then, to 
obtain the most sensitive dispersion factor related to high gas-saturation 
reservoirs, we review the FDAI method and construct an objective function 
to select the optimal reference frequency. This can maximize the dispersion 
anomalies of hydrocarbon reservoirs and make the dispersion differences of 
different fluids reach the maximum. Next, we define a fluid indication 
coefficient for selecting the optimal dispersion factor. This enables us to 
suppress the interference of elastic layers and to produce high-accuracy 
dispersion results only related to high gas-saturation reservoirs. Finally, we 
use field data examples to illustrate the effectiveness of our optimizing 
schemes. 
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THEORY AND METHOD 
 
Frequency-dependent AVO inversion 

 
Wilson et al. (2009) and Wu et al. (2010, 2012) extended the two-term 

AVO linear approximation proposed by Smith and Gidlow (1987) to 
frequency domain and obtained the dispersion factors Ia and Ib which are 
deduced from the derivatives of frequency-dependent velocities of P- and 
S-wave. Their expressions are written as 

,  p s
a b

p s

v vd dI I
d v d vω ω

⎛ ⎞Δ ⎛ ⎞Δ
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	     (1) 

 
Zhang et al. (2014) introduced a dispersion factor If  which is deduced 

from frequency-dependent fluid term based on the f-µ-ρ AVO approximation 
proposed by Russell et al. (2011). 
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 ,  (2) 

 
where R(θ) is derived from the theory of poroelasticity and is the P-wave 
reflection coefficient (a ratio of the amplitudes of incident and reflected 
waves) for an incident plane wave across an interface between two elastic 
media,	 and it mainly represent the difference of elastic parameters at the 
interface of two elastic media for different incident angles.	f, µ and ρ are the 
fluid term, shear modulus and density, respectively. The expression form of 

 and  can be expressed as: 
2 2

2 2p p
sat dry

s ssat dry

V V
V V

γ γ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

，   .                        (3) 

Russell et al. (2011) discussed the different forms of eq. (2) at different 
values of . Here, we set r = . If we let r = 2 and r = 4/3, eq. (2) reduces 
to the λ-µ-ρ and K-µ-ρ AVO approximation, respectively. As discussed by 
Russell et al. (2003), the r values are not appropriate for typical saturated 
rocks and the measurement from real lithology illustrated that r values as 
high as 3 for sandstone reservoirs. In our work, we only discuss the r values 
within the range of 4/3 to 3 since the target reservoirs are sandstone in our 
field data example. 
  
  The fluid term f and shear modulus µ can be expressed as: 

   2 2 2 2,P dry S Sf V V Vρ ργ µ ρ= − =     .                                 (4) 

Then, Δf/f and Δµ/µ can be written as: 

2
satγ 2

dryγ

2
dryγ 2

dryγ
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and 

( )2 2 S
s s
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VV V
V V

µ ρµ µ
ρ ρ
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⎛ ⎞ ΔΔ Δ∂ ∂

= Δ + Δ = +⎜ ⎟∂ ∂⎝ ⎠
   .               (6) 

 
Note that Δf/f and Δµ/µ are related to the velocity of Vp and Vs according 

to the eqs. (5) and (6). Thus, Δf/f and Δµ/µ are also frequency-dependent due 
to the frequency-dependent velocities. Here, we suppose the relative change 
of property Δρ/ρ is sufficiently small that can be neglected. Then, eq. (2) can 
be extended to the frequency domain. 
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≈ +     ,                 (7) 

where ω is the angular frequency, and A(θ) and B(θ) are defined as: 
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Eq. (7) can be expanded as first-order Taylor series at a reference 

frequency f0 ( f0 = ω0/2π ) without considering the higher-order terms. 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0,i i i j i f i j i
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Here, we define If and Iµ as the dispersion factor of fluid term and shear 

modulus respectively, and they are expressed as: 
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Then eq. (10) can be written as: 
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We assume that we know the velocity model so that the coefficients 
( )iA θ  and ( )iB θ  can be calculated through ray tracing method and they can 

make the replacement by ( ),A t n and ( ),B t n , respectively. Therefore, 
considering m frequencies [ω1, ω2,…, ωm], the vectors r and e can be 
expressed in matrix form: 
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and 
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Then, we can obtain: 

     
fI
Iµ

⎡ ⎤
≈ ⎢ ⎥
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r e    .                                (15) 

 
At last, the least-squares inversion method can be used to estimate the 

frequency-dependent attributes If and Iµ: 

( ) 1fI
Iµ

−Τ Τ
⎡ ⎤
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e e e r    .                          (16) 

 
The FDAVO inversion method is to extract the dispersion information 

from the amplitudes of reflection coefficients. However, the seismic 
amplitudes contain overprint of the source wavelet, so it must be removed if 
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the true spectral behavior of the fluid-saturated reservoir is obtained. Thus, 
this method strongly relies on a spectral decomposition and balancing 
process to remove this wavelet effect. Here, spectral decomposition is based 
on generalized S-transform (GST) (Chen et al., 2008). 

 

   ,   (17) 

where, β，p are the regulatory factors, x(t) is the original signal and  f  is the 
frequency. 
 

For a partial stack with n traces denoted as a data matrix s(t, n), we 
perform GST on s(t, n) to obtain time-frequency spectra S(t, n, f ). The 
wavelet overprint contained in S is removed through spectral balancing by 
the following weight function w: 
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where, max ( )

0f
S n⎡ ⎤⎣ ⎦ and max ( )

if
S n⎡ ⎤⎣ ⎦refer to the maximum amplitude of the nth 

trace at reference frequency f0 and each individual frequency fi , respectively. 
Then, we use the weight function ( ),iw f n  to balance the amplitudes of all 
spectral components of seismic traces by the equation: 
 

( ) ( ) ( ), , ,
i i

b
f f iS t n S t n w f n=    .                             (19) 

 
	
The scheme for determining the optimal reference frequency 

 
The selection of reference frequency is significant for FDAI since an 

appropriate reference frequency can directly influence the accuracy of 
inversion result associated with the gas saturation. In general, the selection of 
reference frequency is determined by empirical observations from spectral 
decomposition and the dominant frequency of the seismic signal is usually 
selected as the reference frequency (Wilson et al., 2009; Wu et al., 2010, 
2012). However, the method cannot accurately determine the most sensitive 
reference frequency which can maximize the dispersion anomalies of 
hydrocarbon reservoirs and makes the dispersion difference of different 
fluids reach the maximize value. Thus, we propose an optimal workflow to 
determine the optimal reference frequency fopt. The main steps are as follows: 

 
1) Within seismic frequency band, using all frequency components of the 

seismic data nearby bore-hole as reference frequency to calculate the 
dispersion factors based on FDAI at the target intervals.  

2) According to the result of log interpretation, dispersion factors of all 
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reference frequencies calculated are used to construct an objective 
function D(t,f ) which is the 2D dispersion distribution in frequency and 
time domain  

       

      ( ) ( ) ( ) ( ) ( )1 2 3, , ; , ; , ;...; ,s s s s mD t f I t f I t f I t f I t f= ⎡ ⎤⎣ ⎦ 	 ,	 	 	 	 	 	 	 	 	 	 	 	 (20) 

 

where [f1,f2,f3,…,fm] are reference frequencies within the seismic 
frequency band,	 Is (s = a,b,f,µ) is	 the dispersion factor calculated from 
different elastic modulus. 

3) Then, extracting dispersion curves at specific time locations (the top and 
bottom of high gas saturation reservoirs) and use the cross-plot analysis to 
pick up the optimal reference frequency fopt when dispersion factors 
obtain their maximum value  

	

[ ]max ,opt t bf
f D D= 	 	 	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	   (21) 

 

where Dt and Db are the dispersion curves extracted from the objective 
function D(t,f) at the time location of top and bottom of high gas 
saturation reservoirs, respectively. 

4) Using the fopt of step (3) selected as the optimal reference frequency in 
FDAI to process the pre-stack angle gathers of whole area. Dispersion 
factors obtained in this case can maximize the dispersion anomalies of 
gas-saturated reservoirs.  

 
 
The scheme for determining the optimal dispersion factor 

 
The optimal dispersion factor should be further selected due to the 

sensitivity difference in FDAI-based gas saturation delineation. According to 
the equation (10), we can obtain different dispersion factors when the 
parameter r changes. How to select the optimal dispersion factor is the key to 
improve the accuracy of fluid identification by using the dispersion 
anomalies. Thus, we propose a workflow for selecting the optimal dispersion 
factor. 

  
Here, we use the optimal reference frequency fopt to calculate the 

dispersion factors, and the optimal dispersion factor is selected when the r 
values within the range of 4/3 to 3. The main steps of the method are as 
follows: 

 
1) To obtain the dispersion factors of the seismic data nearby bole-hole 

when r given different values. 
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2) The dispersion factor If obtained and the parameter r are used to 
construct the objective function F(t,ri): 

( ),
i

i
r

fF t r
fω

⎛ ⎞∂ Δ
= ⎜ ⎟∂ ⎝ ⎠

    .                            (22) 

3) According to the result of log interpretation. We regard fluid-saturated 
interval as the interpreted layers and the layers outside the interpreted 
layers are elastic. Extract the dispersion curves at the time location of 
the fluid-saturated and elastic layers from the objective function F(t,ri) 
to analyze. 

4) Calculate the fluid indication coefficient c(ri) using the equation (23) 
and to determine the optimal parameter ropt when c(ri) gets the 
maximum value.  

( )
( ) ( )

( )
, ,

,
f i e i

i
e i

F t r F t r
c r

F t r
−

=    ,                       (23) 

where c is the fluid indication coefficient, ft and et are the time points 
at fluid-saturated stratum and elastic layer, respectively.  

 
According to the above steps, we can get the optimal dispersion factor 

related to fluids when c(ri) gets the maximum. The optimal parameter ropt 
selected as follows: 

 

    ( )max
i

opt ir
r c r= ⎡ ⎤⎣ ⎦   .                                (24) 

 
 
NUMERICAL ANALYSIS 

 
In order to quantitatively delineate the reservoir with high gas 

saturation, we analyzed the frequency-dependent velocities and attenuations 
of fluid-saturated reservoirs with different gas saturation based on the real 
log curves. Fig. 1 shows the well-logs through the sandstone reservoir, 
including water saturation (Sw), P-wave, S-wave and density curves. The 
color rectangles outlines the fluid-saturated reservoirs saturated with 
different gas saturation (high gas-saturated zone with the Sg= 0.6, low 
gas-saturated zone with the Sg= 0.3 and water-saturated zone with the Sg= 0). 
The S-wave curve in the third column shows high values. However, the 
P-wave velocity (in the second column) and density curves (in the fourth 
column) show a change to lower values, corresponding to the elastic zone. 
According to the analysis of log curves, the elastic parameters (P-wave, 
S-wave and density) are difficult for identifying the reservoir with high gas 
saturation. 
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Fig. 1. Well log curves of the sandstone reservoir. 

 
 

Then, we follow the work of Chapman et al. (2003) to calculate the 
frequency-dependent velocities and attenuations (the theoretical background 
is exhibited in Appendix A) of the hydrocarbon reservoirs saturated with 
different gas saturations (outlined by three different color rectangles in Fig.1). 
The parameters (Table 1) of fluid-saturated reservoirs used in the 
calculations are given by the real log data. The porosity of porous medium is 
18% given from the real log data and other parameters are given as follows: 
crack density is 0.1, crack radius is 2.75 mm and aspect ratio is 0.0036. The 
basic properties of gas and water used in numerical modeling are calculated 
by the equations of Batzle and Wang (1992) at a pressure of 25 Mpa, a 
temperature of 50 ℃, a salinity of 100,000 PPM, a density of dead oil of 
0.75 g/cm3 and a gas to air density ratio set at 0.65.The physical parameters 
of gas and water are given in Table 2. 

 
 

Table 1. The parameters of fluid-saturated reservoirs used in the calculations. 
 

Properties High gas-saturated Low gas-saturated Water-saturated 

Vp (m/s) 3465 3500 3700 

Vs (m/s) 2147 2165 2135 

Sg (%) 0.6 0.3 0 
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Table 2: Fluid properties used in the calculations. 
 

Properties Gas Water 

Density (g/cm3) 201.6 1068.2 

Bulk modulus (MPa) 60.6122 3024.4 

Dynamic viscosity (cP) 0.0254 0.755 
    —————————————————————  

 
Fig. 2 shows the frequency-dependent velocities and attenuation and 

there are differences in velocity dispersion and attenuation at different gas 
saturations. The velocity moves toward higher value with decreasing gas 
saturation. Note that the attenuation peaks of 1/Qp  and  1/Qs shown in 
Figs.2c-2d get the maximum values when Sg = 0 and get the minimum values 
when Sg = 0.6, whereas the attenuation peaks for Sg = 0.3 intermediated 
between Sg = 0.6 and Sg = 0. Both attenuation peaks for 1/Qp and 1/Qs 
decrease with increasing gas saturations. However, the characteristic 
frequency at which the peak attenuation occur shifts to a higher frequency as 
the gas saturation increases from 0 to 0.6. Thus, the information of velocity 
dispersion and attenuation are beneficial for our work to delineate the high 
gas saturation reservoir. Meanwhile, the P-wave velocity shows a larger 
difference between high and low frequency relative to the S-wave. 
Figs.2c-2d shows the attenuation value of S-wave is small compared to the 
P-wave case due to the shear modulus is decoupled from the saturating fluid. 
This phenomenon indicates that the velocity dispersion of a P-wave is more 
obvious than for an S-wave. 

 

Fig. 2. Frequency-dependent velocities of (a) P-wave and (b) S-wave and the inverse 
quality factors (c) 1/Qp and (d) 1/Qs at gas saturations of 0.6, 0.3, and 0, respectively.  
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Due to the characteristics of frequency-dependent velocities, the 
reflection coefficients at the top and bottom of the reservoirs will also show 
frequency-dependent characteristics. According to the three-term AVO linear 
approximation formula proposed by Wiggins et al. (1983), we can calculate 
the frequency-dependent reflection coefficients versus incident angles by 
using the frequency-dependent velocities. Here, we only analyze the 
reflection coefficients at the top and bottom interfaces of the high 
gas-saturation reservoir. The results are shown in Fig. 3. Note that the 
reflection coefficients are frequency-dependent at different incidence angles 
and the absolute value of the reflection coefficients at top and bottom 
interfaces decrease with increasing frequencies. 

 

 

 
Fig. 3. Frequency-dependent reflection coefficients distributions at (a) top interface and (b) 
bottom interface, and the corresponding reflection coefficients of (c) top interface and (d) 
bottom interface at 6 specific frequencies. The dashed lines marked in (a) and (b) denote 
the corresponding location at 6 specific frequencies of 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 
and 80 Hz. 
 

Our research focuses on the frequency-dependent behaviors of the high 
gas saturation reservoir saturated with different gas saturation. In order to 
better quantitatively delineate the reservoir with high gas-saturation, we 
calculate the velocity dispersion and attenuation when the gas saturation 
varies from 0 to 1. Fig. 4a shows the frequency-dependent velocities of the 
P-wave in the case of a gas-water saturated reservoir when the gas saturation 
within the range of 0 to 1. Fig. 4b shows that the attenuation peak varies 
non-linearly with increasing gas saturations in the frequency-saturation 
plane. 
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Fig. 4. Frequency-dependent (a) velocities and (b) attenuation of P-wave as functions of 
both frequency and gas saturation. 
 

  Next, we perform a 1D simulation of seismic wave propagation using the 
phase-shift wavefield extrapolation method in the frequency wavenumber 
domain (Appendix B) to obtain the seismic responses for the case of gas 
saturation changes from 0 to1. The synthetic seismic records shown in Fig. 5 
were generated by using a Ricker wavelet with the dominant frequency of 
35Hz. As shown in Fig. 5, the time range of the seismic gather is only about 
0.12 s due to the imited length of logging data. The seismic reflection at the 
bottom interface of the saturated sandstone reservoir shown in Fig. 5 
indicates that the travel time delay increases nonlinearly with increasing gas 
saturation. The energy of the top reflection enhances with increasing gas 
saturation, whereas there is energy loss clearly at the bottom reflection for 
higher gas saturation. The main cause of this phenomenon is that the energy 
is absorbed more seriously when the seismic wave passes through the higher 
gas saturation reservoir, which results in the stronger velocity dispersion and 
attenuation. 
 

 

 
Fig. 5. 1D seismic responses of the sandstone reservoir for the cases of gas saturation 
changing from 0 to1. 
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We calculate dispersion factors to analyze the dispersion characteristics 
when gas saturation changes based on the seismic gather shown in Fig. 5. In 
the calculation, the choice of reference elastic layer is of critical importance 
to spectral balancing operation that can affects the accuracy of dispersion 
results. In dispersion inversion on the synthetic seismic gather, we choose the 
layer at the waveform trough position above immediately the top interface as 
the reference layer (indicated by a green line in Fig. 5) to calculate dispersion 
factors. According to the numerical modeling results in Fig. 2, the S-wave 
dispersion is significantly smaller than those of the P-wave. The reason is 
that the shear modulus is decoupled from the saturating fluids. Theoretically, 
the shear modulus can be expressed as 2= svµ ρ  and the density is 
frequency-independent, so the two dispersion characteristics of S-wave and 
shear modulus are consistent except for the order. Therefore, we only 
calculate the dispersion factor Ia [eq. (1)] and If  [eq. (11)] to analyze. Here, 
the dispersion factor If is obtained when r = 2. Fig. 6 show the results of 
quantitative analysis of Ia and If . As shown in Fig. 6, the dispersion degree of 
Ia and If show a linear increase trend approximately with increasing gas 
saturation. However, the slopes of dispersion curves are greater when Sg is 
between 0 and 0.1. These phenomena are beneficial to quantitatively 
delineate the reservoirs with high gas saturation. 

 
 

 

 
Fig. 6. (a) The 2D distribution of Ia when gas saturation varies from 0 to 1 and (b) its 
dispersion curve extracted from the reservoir interval; (c) The 2D distribution of If  when 
gas saturation varies from 0 to1 and (d) its dispersion curve extracted from the reservoir 
interval. 
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FIELD DATA EXAMPLE 
 

The methodology and workflow described above are now applied to 
field seismic data to evaluate the performance of our method. Fig. 7 shows 
the stacked profile. The reservoir in the study area is gas-saturated sandstone 
and the high gas saturation zone is located in the position indicated by a 
yellow arrow. Fig. 8a shows the angle gathers at the location of a drilled well. 
Figs. 8b and 8c are the stacked trace of the pre-stack angle traces and its 
time-frequency spectrum, respectively. In Fig. 8c, there are strong energy 
clusters at the interpreted layers between the red lines. 

 

 
 
Fig. 7. Stacked seismic profile. 

 

 
 
Fig. 8. (a) Seismic angle gathers at the location of the well; (b) Stacked trace of the angle 
gathers and (c) its time-frequency spectrum. 
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Optimal selection of reference frequency 
 
   For an effective application of the FDAI method to the real field data, we 
optimize the reference frequency fopt and parameter r using our proposed 
method. First, we use dispersion factors Ia and If in the target interpreted 
layers to pursue the optimal reference frequency fopt. Here, the dispersion 
factor If  is obtained when r = 2. Figs. 9c and 9d illustrate that the optimal 
reference frequency is about 24 Hz when dispersion value gets the maximum 
value. The dispersion anomalies approach to peaks when the dispersion 
factors are calculated by the FDAI in this case, which also makes that the 
dispersion contrasts of different fluids reach the maxima. Meanwhile, we 
observe that the P-wave dispersion of the high gas saturation zone is greatly 
affected by the dispersion anomalies of water-saturated zone (green arrow 
indicates) in Fig. 9a, whereas the dispersion factor If obtained when r = 2 
show significant dispersion anomalies in high gas saturation zone and 
degrade the anomalies of water-saturated zone in Fig. 9b. 

 

 
 
Fig. 9. The dispersion distribution of (a) Ia and (b) If in frequency and time domain, and 
the dispersion curves (c) extracted from (a) and (d) from (b), respectively. Here, the top 
and bottom indicate the interfaces of high gas saturation reservoir. 
 
 
Optimal selection of the parameter r 

 
As shown in Fig. 10a, the background interference of elastic layers show 

weak value in the rectangle zones. To further pursue the optimal parameter r, 
we choose the dispersion curves at the time point of fluid-saturated location 
and elastic interface for analysis. Fig. 10b indicates that the dispersion 
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anomalies of fluid-saturated interfaces are all prominent, whereas they 
decrease with increasing r. However, the background interference of the 
elastic layer decreases first and then increases with the changing r, and gets 
the minimum value when r is nearly equal to 2. In order to obtain the 
dispersion factor which is sensitive to fluid while less affected by the 
background interference, we calculate the fluid indication coefficient and the 
results shown in Fig. 10c and 10d. 

 

 
 
Fig. 10. (a) The 2D (r & Time) distribution of If  and (b) the dispersion curves at specific 
interfaces; (c) The fluid indication coefficients of fluid-saturated interfaces and (d) its 
distribution as a column map. 
 
 

Figs. 10c and 10d illustrate that the indication coefficients of 
fluid-saturated zone reaches the maximum value when r = 2 and the 
dispersion factor obtained in this case is the most sensitive to gas reservoir. 
Therefore, when we select r = 2 as the optimal parameter for FDAI, the 
dispersion factor obtained in this case is the most sensitive to high 
gas-saturation reservoir and less affected by the background interference of 
other layers. 
 
  
The results analysis 

 
Finally, we calculate the dispersion factor by FDAI method after 

choosing the optimal parameters fopt and r. To illustrate the accuracy of the 
method, we choose three dispersion factor curves near the bore-hole to 
compare with the result obtained by our method. Fig. 11 shows the results of 
comparative analysis. 
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Fig. 11. Dispersion curves of (a) P-wave, (b) r = 4/3, (c) r = 3, and (d) our method 
selected at the location of well.  

 
 
As shown in Fig. 11, all dispersion curves show significant dispersion 

anomalies in gas-saturated reservoirs (outlined by a cyan rectangle). 
However, the dispersion curves shown in Figs. 11a and 11b are greatly 
affected by the dispersion anomalies of water saturated (indicated by blue 
arrows). Both are disadvantage to the delineation for high gas saturation 
reservoir. The dispersion factor of r = 3 are greatly affected by the 
interference of top elastic layers (the black arrow shows), and it is difficult to 
identify the dispersion anomalies of the gas-saturated zone (Fig. 11c). The 
dispersion factor obtained by our method (Fig. 11d) only shows significant 
dispersion anomalies in the gas-saturated zone, whereas the background 
interference of elastic layers is very weak. Meanwhile, there are differences 
in dispersion degree when gas reservoirs saturated with different gas 
saturations. It means that the dispersion factor obtained by our proposed 
optimizing schemes has a much better capability for hydrocarbon detection 
and degraded the elastic characteristics. 
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Finally, we can calculate the dispersion results for seismic data volume 
by using the optimal parameters fopt and ropt. In Fig. 12, the dispersion profile 
of P-wave is compared with the dispersion profile obtained by our method. 
Note that the P-wave dispersion obtained by conventional FDAI method is 
failed to discriminate the reservoirs saturated with different gas saturation. 
However, the dispersion profile obtained by our method can exhibit the 
location and spatial distribution of the hydrocarbon reservoir with high 
gas-saturation and is less affected by the background interference. The 
dispersion slice extracted along the target layer (Fig. 13b) clearly delineates 
the spatial distribution and evident edge of the high gas-saturation reservoir. 
The gas reservoir correlates quite well with the known production. So the 
dispersion factor calculated by our method is the most sensitive to the fluids 
and can manifest the distinct dispersion anomalies of the hydrocarbon 
reservoirs with different gas saturations and degrade the background 
interference of elastic layers to the most extent. 

 

 
 
 
Fig. 12. The dispersion factor profile of (a) P-wave and (b) our method. 
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Fig. 13. (a) Seismic amplitude slice extracted through the reservoir with high gas 
saturation in the target interval and (b) its corresponding dispersion factor slice calculated 
by our method. 
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DISCUSSION AND CONCLUSION 
  
 The velocity dispersion and attenuation occur when the seismic wave 
travels through the fluid-saturated reservoirs and wave-induced fluid flow 
results in frequency-dependent reflection coefficients and AVO response. 
This helps to use the dispersion anomalies to detect the fluid-saturated 
reservoirs. The dispersion factor inferred from FDAI method is a significant 
indicator for fluid identification. In this paper, we proposed an optimal 
scheme of FDAI for selecting the most sensitive dispersion-related fluid 
factors to quantitatively delineate the reservoirs with high gas saturation. 
  

The field data tests prove the effectiveness of the optimizing schemes. 
The dispersion factor inverted by the optimal reference frequency fopt can 
maximize the dispersion anomalies of fluid-saturated reservoirs. Moreover, 
the optimal dispersion factor If selected by fluid indication coefficient can 
indicate the gas reservoir more accurately while it is less affected by the 
background interference of elastic layers. The results show that our optimal 
schemes of FDAI can provide the optimal dispersion factor to detect the 
location and spatial distribution of gas reservoirs with high gas saturation 
more accurately. 

 
In order to get the more reliable and precise dispersion factor to delineate 

the hydrocarbon-bearing reservoir, there are also other key details should be 
taken into account in FDAI. First, the choice of reference elastic layer is of 
critical importance to spectral balancing operation and directly affects the 
accuracy of final inversion results. Second, in the real calculation, we should 
make full use of logging data to constrain the selection of reference 
frequency and elastic layer. In addition, the tuning effect can affect the 
frequency and amplitude features of seismic waves. The contributions of this 
phenomenon on FDAI will also directly affect the inversion results, which 
should not be ignored. Therefore，we need to consider the influence of 
various factors on the inversion results, and then select the optimal dispersion 
factor by comprehensive analysis to improve the accuracy of reservoir 
delineation. 
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APPENDIX A  

FREQUENCY-DEPENDENT VELOCITY AND ATTENUATION 
Chapman et al. (2003) proposed a local squirt-flow model for a 

multi-scale equant porosity model，which is based on a squirt flow 
mechanism in fractured porous rocks with the pore space consists of 
spherical pores, micro-cracks and an aligned set of fractures. The poroelastic 
model can be used to reproduce dispersion and attenuation results even in 
the low- and high-frequency limits, i,e., at any frequency (Chapman, 2003; 
Mavko et al., 2009). We then use the dynamic equivalent-medium theory to 
analyze the velocity dispersion and attenuation in multi-scale porosity 
fluid-saturated rocks. The element of the effective stiffness tensor Cijkl can 
take the form 

 

	 0 1 2 3
ijkl ijkl p ijjkl c ijkl f ijklC C C C Cφ ε ε= − − − 	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	   (A-1) 

 
where C 0 is the isotropic background elastic tensor of the stiffness matrix 
with the Lamé parameters λ and µ. The corrections C1, C2, and C3 multiplied 
by the equant pores ϕp, microcrack density εc and fracture density εf, are 
functions of the Lamé parameters, fluid properties, fracture length, time 
scale parameter τ and frequency. The stiffness tensor elements Cijkl are 
related to the contribution of the equant pores, the random microcracks and 
the aligned fractures, the stiffness tensor Cijkl is 
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where Λ and M are functions of the Lamé parameters λ0 and µ0 , which 
calculated by the velocities of the unfractured rock, 0

pv  and 0
sv , measured at 

the reference frequency f0. The form given as 
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where ,c pΦ refers to the corrections to the elastic tensor proportional to εc 
and ϕp. 
 

We can calculate the frequency-dependent velocity and attenuation 
based on the five independent stiffness constants. The matrix representation 
of frequency-dependent elastic stiffness calculated from Chapman's (2003) 
model has the following form 
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    .      (A-4) 

 

Then, we can obtain the corresponding frequency-dependent complex 

compressional and shear velocities !v p ω( )  and !vs ω( )  

 

!v p ω( ) = C11 sin2θ +C 33 cos
2θ +C 44 + M( )

1 2

2ρ( )
−1 2

!vs ω( ) = C11 sin2θ +C 33 cos
2θ +C 44 − M( )

1 2

2ρ( )
−1 2

            (A-5) 

 
where 

  ( ) ( ) ( )
2 22 2 2

11 44 33 44 13 44sin cos sin 2M C C C C C Cθ θ θ⎡ ⎤= − − − + +⎣ ⎦   .   (A-6) 
 
Next, the frequency-dependent phase velocities and inverse quality factors 
are given by 
 

  
v p (ω) =

1
Re 1/ !v p (ω)⎡⎣ ⎤⎦
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APPENDIX B  
 
NUMERICAL SIMULATION OF SEISMIC RESPONSES 

 
To illustrate the role of fluids on compressional seismic waves traveling 

through saturated reservoirs, we reduced the 2D scalar wave equation 
(Gazdag and Sguazzero, 1984) to the 1D edition to employ the simulation of 
wave propagation by phase-shift wavefield extrapolation in the frequency 
wavenumber (F-K) domain. The equation form of the 1D edition given by 

 

  
2 2

2
2 2 0u uv
t z
∂ ∂

− =
∂ ∂

   ,                                   (B-1) 

 
where u is the displacement, z is the depth, t denotes the two-way travel time, 
and v is the phase velocity in m/s. 
 

According to the frequency-dependent velocities, the frequency- 
dependent reflection coefficients versus incident angles can be calculated by 
the flowing linear approximation equation that was modified from Wiggins 
et al. (1983). 
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For a harmonic wave given by: 
 

  zik z i tu e e ω−=  .                             (B-4) 
 
Substituting eq. (B-4) into eq. (B-1), we have 
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  ( ) ( )2 22 0zi v ikω − =    .                        (B-5) 
 
Then, we obtain the vertical wave number in the frequency domain related 

to the frequency-dependent complex velocity v(ω), and the relationship can 
be expressed as: 

 

  ( )
( )zK v
ω

ω
ω

=                                 (B-6) 

 
In the numerical simulation, the wave field extrapolation based on the 

phasIe-shift method of eq. (B-4) in the F-K domain, is expressed as: 
 

       ( ) ( ) ( ), , zik zu z z u z e ωω ω Δ+Δ =                     (B-7) 
 
Then we can obtain the frequency-dependent seismic response of a 

compressional wave from the models. 


