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ABSTRACT

Lv, H., 2020. Seismic noise attenuation based on a dip-separated filtering method.
Journal of Seismic Exploration, 29: 327-342.

Mode decomposition and reconstruction is a commonly used denoising algorithm
for seismic data. The principle of the decomposition based method is that the signal and
noise can be represented by different parts in a mode decomposition process. While the
features of useful signals can be captured by the principal components, the noise is
separated out by rejecting the less important components during the reconstruction
process. The decomposition based method can be optimally applied in the
frequency-space domain, where signal and noise are separated by their differences in the
wavenumber spectrum. The wuseful signals are mainly corresponding to the
low-wavenumber components, i.e., less oscillating, while the noise corresponds to the
highly oscillating components. Such decomposition acts as a dip filter, which can be
combined with a spatial coherency based smoothing operator. The overall algorithm is
thus a dip-separated structural filtering method. In this paper, we use the variational
mode decomposition (VMD) method to decompose the seismic data into several dipping
components, which is followed by a low-rank approximation filtering step. We apply the
proposed method to both synthetic and field data examples and obtain satisfactory
results.

KEY WORDS: noise attenuation, filtering, variational mode decomposition.

INTRODUCTION

Noise attenuation is critical in seismic exploration. Among many classic
denoising methods (Gulunay, 2000; Naghizadeh and Sacchi, 2012; Liu et al.,
2012; Liu and Chen, 2013; Tian et al., 2014; Liu et al., 2015a,b; Chen and
Fomel, 2015; Jiao et al.,2015; Yangetal.,2015; Gan et al.,2016; Zu et al.,
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2016; Chen et al., 2016; Xue et al., 2016; Mousavi and Langston, 2017; Liu
et al., 2018a), the low-rank approximation method has been studied
extensively for seismic noise attenuation. In this paper, we propose a multi-
scale dip-separated low-rank approximation method to separate signal and
noise in a seismic data. The seismic data is first decompose into several
dipping components by means of the variational mode decomposition
(VMD) Dragomiretskiy and Zosso (2014); Liu et al. (2017). Then, with
more consistent and low ranks for each local processing patch, we are able
to apply the low-rank approximation filter more effectively.

There are still three main problems in the low-rank approximation
method. The first problem of the low-rank approximation method is the low
computational efficiency caused by the singular value decomposition (SVD)
(Zhou and Zhang, 2017) in the low-rank approximation method. The SVD
decomposition is computationally intensive and is a requirement of the
low-rank approximation. The computational complexity of SSA will also
make the proposed method suffer from the low computational efficiency
problem. The problem of low computational efficiency can be partially
solved via some approximated SVD algorithms or some SVD-free matrix
completion algorithms. One algorithm would be the randomized SVD
method (Oropeza and Sacchi, 2010). The randomized SVD method
approximates the exact SVD by means of randomization operation. The
randomized SVD can greatly reduce the computational cost by about two
times. Some other efficient SVD-like decomposition that can be used for the
rank reduction in the low-rank approximation is the online subspace
tracking method as introduced in Zhou et al. (2018). The online algorithm
introduced in Zhou et al. (2018) used incremental gradient descent
algorithm to Grassmannian mandifold of subspace and obtain more efficient
performance than the classic SVD based singular spectrum analysis (SSA)
method. It is interesting to note that in the online subspace tracking method,
there is also an randomization step involved to improve the noise rejection
effect for spatially coherent signals. Other choices to substitute the SVD
operation is also possible, and deserves future investigation.

The second problem of the classic low-rank approximation method is
the rank to be defined before the filtering process. Theoretically, the rank in
the low-rank approximation method is equal to number of linear seismic
events. For synthetic example, where we know exactly how many linear
events are shown in the data, we can easily define a correct rank. This
makes all synthetic example processed by the low-rank approximation
method perform almost perfect. However, the real seismic data is
complicated and cannot be easily characterized by a combination of some
simple linear events. In this case, the selection of the optimal rank for real
data is not trivial. A smaller rank tends to damage most of the useful energy
while a larger rank is easy to preserve to most of the unwanted random
noise. Useful energy and noise energy is compromise in the SSA based rank
reduction method. One possible strategy to alleviate the problem caused by
the input parameter rank is to use localized windows. In localized windows,
the seismic data become structurally simple and can be easier to be
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characterized as linear events. Besides, in localized windows, the rank can
be much smaller and the uncertainties caused by the ranks are much smaller
than the situation without localized windows. Nevertheless, localized
windows caused another undefined parameter, that is, the window size.
Defining the window size, again, requires a prior knowledge and human
interference. From this perspective, it is almost not possible to achieve
satisfactory noise suppression performance and easy parameterization
process in the same time. In the proposed dip-separated filtering framework,
we also propose an automatic rank selection strategy. We calculate the
singular value difference spectrum, which is formed to describe the
variation of every adjacent singular values and then we propose to use the
sharp peak max(b;) = by, i =1, 2, -+, d—1, to represent the boundary
between signal and noise. Although not possible to obtain the perfect
performance, it serves as the most appropriate way to balance the noise
suppression performance and parameterization.

Another problem of the low-rank approximation method is the
assumption of plane waves (Siahsar et al., 2017). It is required by the
low-rank approximation method that the data to be filtered needs to be only
containing plane waves. This requirement makes the traditional low-rank
approximation method only valid in localized windows, where the seismic
data are most similar to a superposition of linear events. As explained above,
the localized windows require a pre-defined optimal window size, which is
usually difficult to choose. The proposed dip-separated processing
algorithm framework severs as a multi-spectral processing strategy for the
low-rank approximation method. Because of the VMD decomposition, the
seismic data corresponding to different spatially oscillating components are
separated. The different spatially oscillating components are also referring
to different dip bands of the seismic events. Simply speaking, because of the
VMD decomposition, the seismic data are decomposed into different
dipping components, where for each dipping component the seismic events
are approximating to plane waves. Thus, the different dipping components
after the VMD decomposition are appropriate for SSA filtering. From this
perspective, the VMD process prepares a seismic dataset that is better suited
by the low-rank approximation assumption. In summary, the proposed
dip-separated processing algorithm framework not only relieves the
dependency of the VMD method on the accurate selection of number of
components (K), compensating for the mode-mixing weakness of the VMD
process, but also makes the low-rank approximation perform better in
preparing more spatially stationary, that is to say, more linear seismic events,
for the subsequent SSA. From this perspective, the proposed method is less
sensitive to additional noise than the traditional SSA method.

The rest of the paper is organized as follows: in the first section, we
introduced the SSA based low-rank approximation algorithm; then we
introduce the dip-separated low- rank approximation method; in the next
section, we use both synthetic and real seismic data examples to
demonstrate the performance of the proposed denoising method, finally, we
draw some key conclusions.
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THEORY
Variational mode decomposition

VMD algorithm attempts to non-recursively decompose a real-valued
multi-component signal into a set of quasi-orthogonal band-limited modes
where each mode is considered as being nearly compact around their
respective center frequencies, simultaneously, every mode is characterized
by the sparsity within the bandwidth. In addition, the sum of these
decomposed modes is able to recover the input signal well (Dragomiretskiy
and Zosso, 2014). The bandwidth of each mode is estimated by the
following scheme:

e The analytic signal of every mode is obtained by Hilbert transform,
which aims at a one-sided frequency spectrum with only positive
frequencies:

(5@5) + %) s up(t) | "

e Shift the frequency spectrum of each mode to baseband using the
exponential term,—jwkt.
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The resulting constrained variational problem is written as
(Dragomiretskiy and Zosso, 2014):
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where uj and wy, denote the k-th decomposed mode of f(¢) and its center
frequency, respectively. {uj} and {wj} represent the ensemble of modes
and their corresponding center frequencies after decomposition for the
signal f(7), respectively. f(7) is the given signal and O(¢) is the Dirac function.
The unconstrained formula can be expressed as eq. (5) using a quadratic
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penalty factor o and Lagrangian multipliers A (Dragomiretskiy and Zosso,
2014; Liu et al., 2016, 2018b):
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where a is utilized to constrain the data-fidelity. The ADMM (Alternate
Direction Method of Multipliers) (Hestenes, 1969) algorithm can be
employed to solve eq. (5), which produces an ensemble of mode functions
and their corresponding center frequencies. Each mode, obtained from
solution in spectral domain, is formulated as:

e i« ()
flw) =3 ai™Hw) = ) af(w) + =
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where f(w), ﬁi(w), Aw), @y (w) are the Fourier transforms of the input
signal, i-th decomposed mode, Lagrangian multiplier and k-th mode in the

case of (n + 1)-th iteration, respectively, and the » represents iterations.

Low-rank approximation via SSA

Let the time series of a signal to be denoised be {4;, i = 1,2, ,N}, and
then it is used to calculate a Hankel matrix with the expression:

hi hy - hg
ha  hy - hri
H = . . , .
hy hpyr -+ by ) 7)

where L represents window length parameter and 1 < L < N. K is defined a
N — L + 1. The delay value is 1. The matrix H is referred to the trajectory
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matrix. The resulting trajectory matrix is then decomposed by means of
singular value decomposition (SVD) and H can be rewritten as:

=1

d
H =Y H; with, H; = /A U;V/
, (®

where d = rank(H) and it is the number of eigen-components or modes with
non-zero eigenvalue. A are the singular values sorted in the descending

order. U; and V; are respectively the associated left and right singular

vectors. The group denoted by{\//\_z'a Ui, Vit is called the i-th eigentriple.
Then the elementary matrices H;(i=1,2,3,---,d) are split into signal
and noise groups. However, the important step is to determine a subset of

eigentriple that encompass the dominant variation in H. This amounts to

approximating matrix H by the summation of the first r elementary

-3 UV

matrices, using the following equation: i=1 , where H is

attributed to signal, and r denotes the number of eigentriples selected for

d
R= Y UV

signal reconstruction, and the residual i=r+1 1s taken as noise.

Dip separated low-rank approximation method

We are inspired from the decomposition based dip filter proposed in
Chen and Ma (2014). The principle of the proposed method is that we use a
decomposition method to prepare several dip components based on the dip
filter, because of the dip separation, the ranks in each dip band become
more consistent and is easier to use a global rank for the low-rank
approximation in each processing window.

The VMD method is an advance in the decomposition based seismic
data analysis literature. Its traditional counterpart, i.e., the empirical mode
decomposition (EMD), method, has been investigated for a long time
because of its strong capability in characterize the sharp frequency change
in the seismic data (Chen et al., 2017). In these decomposition based
methods, a decomposition step is first done to separate the whole seismic
signal into a number of components with different oscillating frequency
information. This decomposition step is very beneficial since it decomposes
a highly non-stationary seismic signal into an ensemble of more stationary



333

signals, where some classic signal analysis tool, e.g., de-noising,
reconstruction, time-frequency analysis, can be applied. Traditional
decomposition methods, however, either have strong mode-mixing problem,
or fail to reconstruct the original signal. Besides, traditional EMD based
methods lacks mathematical implication and thus the decomposition is
difficult to control. For example, one can not arbitrarily define a
decomposition number and the target frequency range. These reasons make
the traditional decomposition based approaches fail, in many situations, in
the realistic applications.

The dip-separated processing method is detailed as follows:

1. Transform seismic data from t—x domain to f—x domain.

2. For each frequency slice in the f-x domain, use VMD to decompose the
seismic data into different IMFs. (a) Construct Hankel matrices for
each component. (b) Apply low-rank approximation introduced in
the last subsection for each Hankel matrix.

3. Reconstruct the frequency slice using the low-rank approximated IMFs.

4. Transform seismic data from f—x domain to t—x domain.

The proposed dip-separated processing method can be understood as an
empirical low-rank approximation, where we first adaptively separate the
seismic data into different dip components that have low individual ranks,
and we can simply use a rank of 1 or 2 to optimally represent each dip
component. Then the rank for the traditional low-rank approximation
algorithm can be easily set to be 1 or 2. The time-space domain
interpretation of the nonstationary signal decomposition in frequency-space
domain is the decomposition of dip components. In other words, each dip
components can be viewed as a low-rank component in its spectrum. To
demonstrate the difference between EMD and VMD. We implement a
numerical test in Figs. 1-4. Fig. 1 shows a demonstration of EMD separation
in the t—x domain, where we can see the three dipping components are
almost separated. But there are some mode-mixing issues. Fig. 2 shows a
demonstration of VMD separation in the t—x domain, where three dipping
components are also separated but with less serious mode-mixing issues.
Figs. 3 and 4 show the demonstrations of the EMD and VMD separations in
the f—x domain.

EXAMPLES

In this part, we will use two realistic examples to demonstrate the
potential of the proposed dip-separated filtering method in seismic
applications.

The first example is based on a synthetic dataset, as shown in Fig. 5.
Fig. 5(a) shows the clean data. In this dataset, we have several hyperbolic
events. The first event crosses the second event, creating a challenge for
traditional low-rank approximation (Oropeza and Sacchi, 2011; Huang et al.,
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2016, 2017b,a). The seismic events have different amplitude. Besides, the
zero-offset area shows a large curvature, which also makes the traditional
low-rank method fail in obtaining acceptable performance. Fig. 5(b) shows
the noisy data by adding some band-limited seismic noise. Figs. 5(c) and
5(d) show two zoomed areas from the data of the original sizes 5(a) and 5(b).
The results from three methods, namely, the f-x decon method, the
traditional low-rank approximation method, and the proposed method are
shown in Fig. 6. The top row of Fig. 6 plots the denoised data and the
bottom row of Fig. 6 plots the zoomed areas from the top row. It is clear that
both f—x decon and the low-rank fail in suppressing a sufficient amount of
noise, while the proposed method obtains a very clean result. The
comparison is especially obvious in the zoomed sections on the bottom row.
Fig. 7 shows three removed noise sections corresponding to the
aforementioned denoising methods. It is salient that both f—x decon and the
low-rank methods result in a significant amount of signal leakage while the
proposed method almost not remove useful energy. Fig. 7 shows the signal
recovery errors for the three methods. The errors measures vividly where we
have signal damage. From the error comparison, we further confirm that the
proposed method causes the least signal recovery error.
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Fig. 1. Demonstration of EMD separation in the t—x domain. (a) Input 2D seismic data.
(b) First component. (c) Second component. (d) Third component.
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Fig. 2. Demonstration of VMD separation in the t—x domain. (a) Input 2D seismic data.
(b) First component. (c) Second component. (d) Third component.
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Fig. 3. Demonstration of EMD separation in the f—x domain. (a) Input 2D seismic data.
(b) First component. (c) Second component. (d) Third component.
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Fig. 4. Demonstration of VMD separation in the f—x domain. (a) Input 2D seismic data.
(b) First component. (c) Second component. (d) Third component.
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Fig. 5. Synthetic example. (a) Clean data. (b) Noisy data. (c) and (d) Zoomed areas from

(a) and (b).
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Fig. 6. Synthetic example. (a) Data after noise suppression using the f—x decon method.
(b) Data after noise suppression using the low-rank approximation method. (c) Data after
noise suppression using the proposed method. (d)-(f) Zoomed areas from (a)-(c).
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Fig. 7. Synthetic example. (a) Removed noise using the f—x decon method.
(b) Removed noise using the low-rank approximation method. (c¢) Removed noise using
the proposed method.
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Fig. 8. Synthetic example. (a) Denoising error using the f—x decon method.
(b) Denoising error using the low-rank approximation method. (c) Denoising error using
the proposed method.

We then apply the proposed method to a very complicated real seismic
data. Fig. 9 shows the field dataset in (a) and its zoomed section in (b). The
field dataset is complicated in that it contains some weak-amplitude signals
and some realistic geological features such as the pinch-out. The
complicated structures make a conventional denoising method fail in
preserving the useful energy while removing a significant amount of
random noise. The proposed method still performs well on this field dataset,
as shown in Fig. 10(c). Along with the result from the proposed method are
the results from both f—x decon and the low-rank methods, in (a) and (b),
respectively. The bottom row of Fig. 10 plots the zoomed areas from the top
row of the figure. It is obvious that the proposed method obtains the cleanest
result. The low-rank method, however, leaves a lot of residual noise in the
data. The strong residual noise is because the data structure is extremely
complicated and thus the rank defined for the truncated SVD should be
large enough (Zhang et al., 2017; Zu et al., 2017; Chen et al., 2019). In this
dataset, because we apply a dip-separation operation, the resulted
components have a small rank for each component, which makes the
subsequent low-rank method effective. Fig. 11 plots the removed noise
sections for the three comparing methods, which confirm the previous
observations.

CONCLUSIONS

We have introduced a novel dip-separated structural filtering method for
suppressing strong random noise existing in multi-channel seismic data. The
dip filter is achieved by applying a variational mode decomposition (VMD)
operation to each frequency slice of the seismic data in the frequency-space
domain. The VMD method is superior to the previous empirical mode
decomposition (EMD) method in better separating the seismic data into
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several dipping components without mode mixtures. The VMD based dip
separator offers a better domain for applying the low-rank approximation
method because in the dip separated domain, the rank is easier to choose for
the low-rank method. The VMD based structural filtering is effective for
field applications and its potential has been verified via both synthetic and

field data examples.

Time (s)

Fig. 9. Real data example. (a) Raw noisy data. (b) Zoomed data.
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Fig. 10. Real data example. (a) Data after noise suppression using the f—x decon method.
(b) Data after noise suppression using the low-rank approximation method. (c) Data after
noise suppression using the proposed method. (d)-(f) Zoomed areas from the (a)-(c).
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Fig. 11. Real data example. (a) Removed noise using the f—x decon method.

(b) Removed noise using the low-rank approximation method. (¢) Removed noise using
the proposed method.
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