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ABSTRACT

Vargas, RN. and Veiga, A.C.P., 2020. Seismic trace noise removal by smoothed
SureShrink. Journal of Seismic Exploration, 29: 363-370.

Seismic traces are usually corrupted by Additive White Gaussian Noise
(AWGN). AWGN hinders the evaluation of seismic attributes and can lead to distortions
during seismic interpretation. Therefore, the development of methods that can effectively
remove the noise and extract the signal from the seismic trace is critical. Here we
propose a new seismic trace noise removal method called SureShrinkWin, which
evaluates the estimates obtained by the SureShrink method when SureShrink is applied
in signal windows. To validate the efficacy of the SureShrinkWin method, we performed
a Monte Carlo Simulation that considered sixteen seismic traces that were obtained from
the astsa R package.
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INTRODUCTION

Seismic traces are frequently corrupted by high noise levels during
acquisition; therefore, the accuracy of the conclusions obtained from
analyzing this signal is closely related to the effectiveness of the noise
reduction method applied to the seismic trace during the processing stage.
However, the non-stationarity characteristic associated with this type of
signal makes its smoothing a challenge.

The discrete wavelet transform (DWT) is an effective tool for
reducing noise in non-stationary signals since its coefficients can be
localized in time-frequency bands (Donoho and Johnstone, 1995; Percival
and Walden, 2006; Condat, 2013); for this reason, numerous methods based
on this transform have been applied in seismic traces (Mousavi and
Langston, 2016; Vargas and Veiga, 2017; Han and van der Baan, 2015;
Gomez and Velis, 2016).
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The SureShrink and Universal Threshold Applied by Hard-
thresholding Function (UHTWS) (Percival and Walden, 2006) methods
have been applied in various types of research, e.g., for improving wireless
system performance (Damati et al., 2016), ECG denoising (Han and Xu,
2016) and seismic denoising (Mohanalin et al., 2016). The Total Variation
Denoising (1DTVD) (Condat, 2013) method has been applied not only in
seismic traces (Liu et al., 2016), but also for ECG denoising (Ning and
Selesnick, 2013) and the recovery of sharp images from blurred images
(Perrone and Favaro, 2016).

In this paper, we propose a new noise reduction method, called the
SureShrink method by Signal Windows (SureShrinkWin). The
SureShrinkWin method consists of the application of applying the
SureShrink method in signal windows and the subsequent subsequently
processing of the signal estimates from the minimization of the absolute loss
function. To verify the efficacy of the proposed method we performed a
Monte Carlo simulation (Mooney, 1997) for sixteen seismic traces obtained
from the astsa R package in order to compare the performance of the new
method SureShrinkWin with three well-know denoising methods:
SureShrink (Donoho and Johnstone, 1995), the universal threshold applied
by hard-thresholding function UHTWS (Percival and Walden, 2006) and the
total variation denoising 1DTVD methods (Condat, 2013).

The structure of the paper is as follows: the second section presents
the DWT, the wavelet shrinkage and the SureShrink method. The third
section presents the proposed SureShrinkWin method and its applications
can be found in the fourth section. The last section reports the study’s
conclusions.

THE DISCRETE WAVELET TRANSFORM

In this section, we provide a brief overview of wavelets and DWTs
without detailing the underlying mathematics or numerical algorithms. The
basic components of a wavelet are the time (or space) and location. Wavelet
analysis involves approximating signals using the linear combination of
wavelets. There are two important functions in wavelet analysis: the mother
wavelet and the father wavelet; these wavelets generate a family of
functions that can reconstruct the signal. The mother wavelet ¥ () is

defined as a real function ¥: R —» R such that ffooo Y(t)dt = 0. The father
wavelet (or scale function) ¢(-) is a real function ¢p: R = R such that
ffooo ¢(t)dt = 1. Both of these functions satisfy the integrability condition,

specifically, ¥ ,¢ € L2(R) n LY(R). Typically, the mother wavelet is
bounded and centered on the origin. It decays to zero when | t |- oo. If we
consider that j, k € Z, we can relate these two functions with the expansion
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equations Y(t) = V2 X, by (2t —k) and ¢(t) = V2 Tx grp (2t — k).
From the family (1, ¢) we built the following wavelet sequence:
i .
Yk (t) = 229 (27t — k),
J ;
¢ k() = 22927t — k).
The values g;, and hy, represent the low-pass filter and high-pass filter
coefficients, respectively; they satisfy the function h, = (—1)* g,_,. The

DWT maps data from the time domain to the wavelet domain as illustrated
in Definition 1.

Definition 1
Lety = (9,1, Yn—1)' be an iid. random sample, with N = 2/,

J € N. Therefore, the DWT of y, with respect to the mother wavelet Y (-), is
defined as

dj,k = {y=—01 Yt l/’j,k(t) ) (D
forall j =0,1,2,-+,] —1and k = 0,1,2,-+-,2/ — 1.

We can write the transform (1) in matrix form by

d=Wwy, (2

assuming that there are appropriate boundary conditions, the transform is
orthogonal, and the Inverse DWT (IDWT) can be obtained as:

Y =w'd

To calculate the DWT, a fast pyramid algorithm with complexity
O(N) is applied, which consists of a sequence of high-pass and low-pass
filters (Meyer, 1993). Given a noisy signal, y, this pyramid algorithm
returns two sets of wavelet coefficients. The detail wavelet coefficients set
is {dj,} and the smooth wavelet coefficients set is {s;,}, where j €
{0,---,J—1}and k € {0,--+, 2/ —1}.

Wavelet shrinkage

First, let us formalize the concept of Additive White Gaussian Noise
(AWGN), in Definition 2.
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Definition 2

Let x represent an N-length signal If ey, e,, -, ey are iid with normal
distribution N (0, ), then e = (eq4,e,,++,ey) is an AWGN and y = x+ e
is a noisy signal.

Wavelet shrinkage usually refers to the reconstructions that are
obtained from the shrunken wavelet coefficients. This reduces or even
removes the noise mixed in with the real signal. It can be formally defined
as follows.

Definition 3

Let x represent an N-length signal, e an AWGN and y = x + e a noisy
signal; Let {d;,} represent the detail wavelet coefficients obtained by
application of the DWT to the noisy signal y and let A € R represent a
threshold. The estimated signal of x (denoted by X) is obtained by the
wavelet shrinkage method, applying the IDWT with the sofi-thresholding
given by the following equation:

Ns(d 0 1) = {Sgn(dj,k)(|dj,k| = A),if |dju| > 2,

0, otherwise, 3)

instead of {d;y} for all values of j and k as shown in Definition 1.
Therefore, the main problem associated with estimating an appropriate
threshold A, can be solved using the SURE Method.

The SURE method

The SURE method involves estimating the threshold A. It is based on
the following theorem proved by Stein (1981).

Theorem 1. Let:

1. u € RN be a parameter to be estimated;

2. x be an N-length normal random realization such that x;~N (u;, 02),
c€eRi€{1,23,,N}

3. g:RN - RY such that g(x) estimates p € RY;

4. h: RN > RN where h(x) is weakly differentiable such that h(x) =

gx) —x.



Then,

N
oh;
Eullg = wI? = No? + [hGOI” + 207 ) = @
i=1 '

The SURE method (Donoho and Johnstone, 1995) selects a threshold
A that minimizes eq. (4) and considers g(x) to be the soft-thresholding
given by eq. (3).

THE SURESHRINKWIN METHOD

Here we propose a new noise reduction method called the
SureShrinkWin method. It is based on the several estimated values of the
signal obtained by an iterative application of the SureShrink method to the
signal of various lengths.

A N-length noisy signal, y, is obtained from the addition of a white
Gaussian noise e to a clean signal x = (x[1],---,x[N]), where N = 2/,] €
N, N = 16. To apply the SureShrinkWin method to the noisy signal y, the
following steps are necessary.

For each h € {1,2,3-+,] — 3}, we define n = 16x 2"~V and divide
the noisy signal y in N/n non-overlapping windows, where each window
has n observations.

Next, we apply the SureShrink method to each window, represented
by the interval I =[(s —1)n+ 1,sn] with s € {1,2,3,--,N/n}. For
allk € I;n N*, we denote by X,,[k] the adjusted fit of the value x[k] on
the interval I;. Then, the estimation without noise X = (x[1], ::- X[N]) of the

signal x is obtained by ZX[k] =argné%§n2,]1_=?;|9?h[k]—s|, for all k €
S
{1,2,3,-+-,N}.

APPLICATIONS

In this section, we perform Monte Carlo simulations (Mooney, 1997)
for all the seismic traces obtained from the astsa R package, considering 100
replications of white Gaussian noise addition to each considered signal, in
order to compare the performance of the proposed SureShrinkWin method
with that of three well well-known noise reduction methods: SureShrink
(Donoho and Johnstone, 1995), the universal threshold applied by hard-
thresholding function (UHTWS) (Percival and Walden, 2006) and the total
variation denoising (1DTVD) (Condat, 2013).
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Let x be a seismic trace signal obtained from the astsa R package with
length N, and let y be the N-length noisy signal obtained from addition of a
white Gaussian noise e to the x. To compare the performance of the
proposed SureShrinkWin method with that of the others, we consider the
Percentage Root Mean Square Difference (PRD) given by

PRD(x, %) = 100 )

where X is the estimation for the clean signal x. The lower the PRD value,
the better is the method performed.

For each seismic trace signal x, we generated 100 replications of time
series from the white Gaussian noise model, where each replication was
added to the signal x, in order to obtain one hundred noisy signals. For each
considered method, we applied the method to each noisy signal y,
calculating the Percentage Root Mean Square Difference PRD). Finally, we
obtained the average of the PRD value from all 100 noisy signals that we
obtained from the replications. The experiment’s results are presented in
Table 1. Notably, the SureShrinkWin method outperformed the method
SureShrink, UHTWS and 1DTVD methods in, respectively, 100%, 97.9%,
and 93.9% of the cases present in Table 1. Fig. 1 represents graphically the
experimental results of Table 1. Fig. 2 shows an example of the seismic
trace noise reduction accomplished by the SureShrinkWin method.

Table 1. Performance results of the denoising methods for each seismic trace obtained
from astsa R package. The bold value represents the best performance.

H\S]_PNI]}T Method Seismic traces

EQI | EQ2 | EQ3 | EQ4 | EQ5 | EQ6 | EQ7 | EQ8 | EXI | EX2 | EX3 | EX4 | EX5 | EX6 | EX7 | EX8

SureShrinkWin | 87.4 | 77.4 | 79.3 | 79.5 | 71.2 [ 75.1 | 78.6 | 77.5 | 83.41 | 86.4 | 81.3 | 93.9 | 96.5 | 86.2 | 88.9 | 76.6

5 SureShrink 96.6 1 91.2]952]97.7[952]949[90.1[945[ 96.2[93.8]|92.8[99.7| 100 | 91.0 ] 98.1] 95.1
UHTWS 92.4(84.1]88.0]93.8|88.0|882[839[859) 89.4)889|866|985]| 100|84.7)94.6|90.8
IDTVD 108 | 105| 105 106 | 103 | 104 | 105 | 104 | 107 | 109 | 108 | 113 | 115| 108 | 109 106
SureShrinkWin | 79.4 | 66.8 | 69.5 | 70.3 | 61.0 [ 64.9 | 68.0 | 67.8 | 73.9 | 78.0 | 71.7 | 86.2 | 89.6 | 77.3 | 80.1 | 67.4

3 SureShrink 94.21874(91.0]952[91.0]90.8 [ 86.0[89.8| 924 |91.1|89.498.5] 100.| 88.0 ] 95.7| 92.6
UHTWS 88.5)77.6( 798 883 |81.0(81.1|772)|787| 82.1[849]81.6]|958[999)81.7|89.3]|86.5
1DTVD 84.0) 79.0( 79.0 [ 80.8 | 76.2 | 77.4 | 78.5]| 789 | 819|850 | 82.3]90.1 [ 92.8 | 83.2 | 85.4 [ 80.1
SureShrinkWin | 76.1 | 61.7 | 65.0 | 66.4 | 56.7 | 61.2 | 63.5 | 63.7 | 69.8 | 74.4 | 67.0 | 83.2 | 87.0 | 73.1 | 76.3 [ 63.8

2 SureShrink 92.8185.0|882]93.4|886|886(841[873| 90.089.7)|87.6[97.8]99.9|863]|94.1|912
UHTWS 863 [ 735|753 [85477.0|779| 742|756 783 |825|783]|94.0]99.4|80.1]|864][842
IDTVD 7481692692 [71.666.1|67.6| 68.7|69.1 | 72.6|758|72.6]|82.1|855|744]764(71.1
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Fig. 1. Averages of the PRD of the Table 1, as lower the PRD value, the better is the
performance of the method.
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Fig. 2. Noise reduction by the method SureShrinkWin for the P-wave of the EQ1 signal.
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CONCLUSIONS

Here we propose a new noise reduction method called SureShrinkWin
that utilizes the effectiveness of the SureShrink method, while taking into
account the inherent characteristics of the noise. The application of the
SureShrinkWin method is made iteratively in windows of different lengths
and returns a set of estimators that allow a better identification of the noise.
This feature of the SureShrinkWin method was empirically validated by
Monte Carlo simulations that ensured the effectiveness of the
SureShrinkWin method when compared the results of the SureShrinkWin
method with those of three well-known noise reduction methods.
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