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ABSTRACT

Song, H., Chen, W., Zhang, H., Wang, Y. and Xue, Y.J., 2020. Sandstone porosity
prediction based on gated recurrent units. Journal of Seismic Exploration, 29: 371-388.

Sandstone porosity prediction is a difficult task because of the heterogeneity of
reservoir rock. Deep learning has been widely used in various fields, but it is rarely used
for sandstone porosity prediction. Recurrent neural networks (RNNs) are currently  very
popular algorithms for deep learning and have achieved good performance in processing
sequence data, such as speech recognition and machine translation. Since sandstone
porosity prediction belongs to sequence data prediction, this paper proposes to use the
gated recurrent units (GRUs), which is a variant of RNNSs, to predict sandstone porosity
using the well logs data. Six well logs data are divided into training set, validation set and
testing set. We apply three deep learning architectures including convolutional neural
networks (CNNSs), recurrent neural networks (RNNs) and gated recurrent units (GRUs) to
predict sandstone porosity. Results show that GRUs can extract the nonlinear
characteristics of data more effectively and are more suitable for sandstone porosity
prediction.

KEY WORDS: convolutional neural networks (CNNs), recurrent neural networks (RNNs),
gated recurrent units (GRUs), sandstone porosity prediction.
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INTRODUCTION

Porosity refers to the volume of pores contained in reservoir rocks,
reflecting the ability of rocks to store fluids. It is an essential petrophysical
parameter for evaluating reservoir properties and its estimation is susceptible
to noise (Chen et al., 2016a,b; Siahsar et al., 2017; Chen et al., 2017a; Liu
and Chen, 2019). Therefore, it is necessary to improve the prediction
accuracy of reservoir porosity. Porosity of small cores or cuttings is
measured in the laboratory, which is a time-consuming process. In addition
to time-consuming, coring is also expensive. In many cases, coring is limited
to certain intervals of the reservoir, which makes it difficult to obtain
sufficient physical analysis data for reservoir evaluation. Using well logs
data to estimate porosity is a relatively inexpensive method compared to
expensive core data. Different well logs data can reflect the change of
reservoir porosity to some extent. According to the correlation between well
logs data and porosity, some regression equations are proposed, but the
prediction accuracy of this method is not high, because there is no absolute
linear correlation between well logs data and reservoir porosity. Machine
learning has many excellent algorithms for dealing with nonlinear problems,
such as support vector machines (SVM), K-means clustering, and artificial
neural networks (ANNs) (Pal, 2006; Cracknell and Reading, 2013; Zhao et
al., 2014; Chen et al., 2017b; Reynen and Audet, 2017; Paitz et al., 2017),
and has shown great advantages in reservoir prediction, such as porosity,
permeability, and saturation (Rogers et al., 1995; Helle et al., 2001; Ahmadi
et al., 2013; Iturrar’an-Viveros and Parra, 2014; Fattahi and Karimpouli,
2016; Zhang et al., 2018b).

Deep learning is a new field in machine learning, and its concept
stems from the research of ANNs (Hinton et al., 2006). Compared with the
traditional shallow learning, deep learning can realize complex function
approximation and layer-by-layer feature transformation by constructing a
machine model structure with many hidden layers. At present, deep learning
is widely used in computer vision, natural language processing, and speech
recognition (Kavukcuoglu et al., 2010; Mikolov et al., 2013; Hinton et al.,
2012). Deep learning includes many popular network structures, such as
convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). Since CNNs can effectively extract features of an image through
multiple convolution kernels, it is often applied to image processing, such as
image denoising and image classification (Zhang et al., 2017, 2018a; Yuan et
al., 2018). Compared with CNNs, RNNs specialize in solving time series
problems. RNNs have the characteristics of memory and parameter sharing,
which makes it possible to learn the nonlinear characteristics of the sequence
with high efficiency. When it comes to certain sequential machine learning
tasks, such as speech recognition, language modeling, and machine
translation, other algorithms are hard to exceed the effects of RNN
processing. RNNs have the function of remembering previous information.
However, due to the problem of gradient disappearance, memory is
short-term memory and cannot store long-term information (Bengio et al.,
1994). Gating algorithm is an important method to deal with long-distance
dependence and long-short memory networks (LSTMs) are the earliest
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proposed RNNs gating algorithms (Hochreiter and Schmidhuber, 1997).
Hidden layer of LSTMs contains three gates: input gate, forgetting gate, and
output gate. Three gates control the transmission of information in the hidden
layer: the input gate determines what new information is stored in the cell
state; the forgetting gate determines what information is discarded from the
cell state; the output gate determines what information is output from cell
state. Gated recurrent units (GRUs) are very popular variants of LSTMs, and
its corresponding hidden layer contains only 2 gates: update gate and reset
gate (Chung et al., 2014). The GRUs are simpler than LSTMs, which
improves learning efficiency, but can achieve almost the same functions as
LSTMs. The function of the reset gate is similar to that of the input gate of
the LSTMs, and the update gate realizes the functions of the forgetting gate
and the output gate of the LSTMs.

In this paper, we propose three different deep learning algorithms for
sandstone porosity prediction, such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and gated recurrent units
(GRUs). We focus our research on GRUs and conduct experiments to
determine the optimal network hyper-parameters for GRUs. Moreover, we
compare the performance the three models on different blind testing wells.
The final results show that GRUs have the best performance in sandstone
porosity prediction.

THEORY
Convolutional neural networks

Convolutional neural networks (CNNs) are feedforward neural
networks, which is widely used in the field of computer vision. The
difference between a convolutional neural network and a simple neural
network is that it contains a special extraction structure consisting of a
convolutional layer and a pooling layer. The convolutional layer is the core
of CNNs, and most of the computational load is at this layer. In a
convolutional layer, the maps of the previous layer are convolved by the
learnable convolution kernels, and then the results of the convolution are
input to the activation function to obtain the output feature maps. Each
output feature map may be results of the combined convolution of multiple
input feature maps, and the features learned by each convolution kernel are
different. The j-th output feature map of the /-th layer can be expressed as:

I _ -l g 1 I
X; —f(z X, Fw+b))

ieM;

; )

where, x;! represents the i-th output feature map at the /-1 layer, w;/
represents the weights learned by the convolution kernel used to extract
features. Since a convolution kernel cannot extract all features, multiple
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RNN is known as recurrent because it performs the same operation on
every element of a sequence, and its subsequent output depends on previous
computations. Another way to understand RNNs is that RNNs have some
"memory" that captures some of the information that were previously
calculated. A typical RNNs structure include input layer, hidden layer and
output layer, as shown in Fig. 1a, which shows that RNNs can be viewed as a
process in which the same neural structure is repeated multiple times. Loop
diagrams are concise, but it cannot not describe the computational flow. The
expansion diagram can clearly describe the calculation process, as shown in
Fig. 1b, which helps us understand how RNNs work. Fig. 1b shows that the
parameters (W, Wi, W,) of RNNs are shared at all times, while the
traditional neural networks use different parameters at each layer, which
reflects the fact that we are performing the same operation at every time step
with different inputs. This structure greatly reduces the number of
parameters to learn. For input vector sequence, x;,, the calculation of the
hidden sequence vector /4, and the output sequence vector y, can be expressed
as:

h, =tanh(W,,h_ +W, x, +b,)

= tanh([W,,. W, 11+, “
=tanh(W,[h,_,,x,]+b,)

=o(W,h+b) )

where W and b denote weights and bias(for example, W, and b, represent
weights and bias of hidden layer, respectively), o denotes the sigmoid
function.

(a) (b)

Fig 1. (a) Loop diagrams of RNNs. (b) Expansion diagram of RNNs.
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convolution kernels are often used in the same convolutional layer to learn
different features. M, represents a selection set of input feature maps, and all
or a specific combination of feature maps can be selected from A, as input
feature maps, b; ! represents the j-th bias of the /-th layer, symbol *
represents convolution operation, f represents the nonlinear activation
function rectified linear unit (Relu), which is widely used in CNNs. Relu
solves the problem of gradient disappearance and speeds up the convergence
of backpropagation. Pooling layer is the fix function in CNNs, which can be
regarded as a special convolution kernel without any parameters to be
learned. The pooling layer is generally used after the convolutional layer for
feature dimensionality reduction and reduction of the number of parameters.

We hope that the difference between the predicted value and the desired
value is as small as possible. A loss function is defined as:

L) ﬁ;@g(m—yoz , @)

where 0 ={w,b} represents weights and bias, N is the number of data used
for model training, j,represents the network output value when the input is
Xr, yr represents the desired result, which is the label of the data, & represents
the serial number of the sample, L represents the degree of difference
between the predicted value and the desired value. The purpose of the neural
network is to learn specific parameters & to minimize L. The
backpropagation algorithm and the gradient descent method are used
together to update parameters 6. The network parameters are updated as
follows:

oL
O« 0-n=
155 3

where 7 denotes learning rate.

Recurrent neural networks

Now that we have CNNs, why do we have recurrent neural networks
(RNNs)? And the reason for that is very simple, whether it's a convolutional
neural network or a deep neural network, their premise is that the previous
inputs are completely unrelated to the latter inputs. However, there are cases
where the previous information are related to the later information, or the
latter information are related to the previous information. For example, if
you want to predict the porosity of a well at a certain depth, you need to use
the porosity information at the previous depth, because porosity does not
exist independently for a particular interval.
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In order to increase the expressive ability of the models, multiple
hidden layers are stacked in the hidden layer of the RNNs. Such RNNs
become deep recurrent neural networks (DRNNSs), as shown in Fig. 2, which
shows that the DRNNs repeat the hidden layer of each time step multiple
times. The parameters of same hidden layer are shared at different time step,
but the parameters of different hidden layers can be different at the same
time step.

Fig. 2. Multi-layer RNNs structure.

Gated recurrent units

The hidden layer has no ability to measure the value of information in
RNNs. Therefore, the hidden layer treats the status information of each time
step as the same, which results in that the hidden layer often stores some
useless information, while the really useful information is squeezed out by
the useless information. The most important idea of GRUs is to introduce the
gated mechanism to control the transmission of information, as shown in Fig.
3. The process of information transmission in the hidden layer of GRUs is as
follows:

z,=0(W.[h_.x]+b.) (6)
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r=c(W,[h_,x]+b,) (7
i;r =tanh(W,[h_, ®r.,x,]+b,) ®
h,Z(l—Z[)®h,71+Z,®};, , )

where z,and 7, denote update gate and reset gate, respectively. h denotes the
candidate sequence vector, ® denotes elementwise product. When the
values of z, and 7, are both 1, the update gate and reset gate in the GRUs will
no longer 'work'. In this case, the transmission of information in the hidden
layer becomes as follows:

h = tanhW,[h_.x,]+b,) (10)

h=h . (11)

_..

Fig. 3. The hidden layer structure of the GRUs.

DETAILS OF MODEL TRAINING

Porosity prediction is a regression problem, which is a kind of
supervised learning. Supervised learning uses existing data (including input
and output) to train the model, and then new data is fed into the trained
model to get the output. If the output is continuous, it is called regression; if
the output is discrete, it is called classification. In our study, we use natural
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gamma ray (GR), acoustic wave (AC), density (DEN), and shale content (SH)
as inputs and porosity as output.

In our study, well logs data are obtained from an oil field. The reservoir
is a sedimentary environment of the salt lake. The lithology is dominated by
fine sandstone with medium separation. The sandstone composition is
mainly quartz, followed by feldspar, which is feldspar quartz sandstone. The
reservoir type is pore type with less cement content. 5920 samples are
selected from 6 wells as data sets for the model, and 6 wells are named W1
to Wé.

In supervised deep learning, in order to prevent over-fitting, the data set
is generally divided into three independent parts: training set, validation set,
and testing set. The training set is used to determine the common parameters
of the model, such as weights and bias, which are obtained by automatic
learning. The validation set is used to determine the model hyper-parameters,
such as the number of network layers and the number of network units,
which are manually set. The testing set does not participate in model training
and is only used to test the generalization ability of the model. In our study,
the testing set consisted of all the samples in the well W3. 20% of the
remaining data are randomly selected as the validation set, and the rest of the
data are used as a training set for training the model.

The dimensionality difference of the input data is relatively large, which
leads to a slow or even non-convergence in the process of model training.
Therefore, we need to use the following formula to normalize the data so that
our data are as close to the same dimension as possible.

Y _ X_Xmin 12
Xmax - Xmin ' ( )

The formula applies the linearization method to scale the original data
equally to the range of [0,1]. Where, Y is the normalized value, X is the
original value, X, is the maximum value in the original data, X, is the
minimum value in the original data.

Models use the RMSProp optimizer and set the batch size as 360 for
training. Let 360 = 7 x n, where T represents time step, n represents how
many groups of 7" have been calculated, and then the network parameter is
updated once. The training will be terminated if the validation error does not
decrease after 3 iterations. Mean absolute error (MAE) and goodness of fit
(R?) are used to evaluate the predictive performance of the models.

1 N
MAE—NZ

k=1

N

Dy — Py

(13)
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Z(pk — D )’
R2=1—k7\1, — , (14)
>.(pi—p)

N

where pr, P, and p represent the actual value, predicted value and

average value, respectively. The closer MAE is to 0 and R? is to 1, the better

the models predict.

EXPERIMENTS

Hyper-parameters in deep learning play an important role in model
performance. Finding the optimal hyper-parameters of the model is called
tuning. The GRU model is the most complex model in this study. Thus, in
the following research, we will focus on GRUs for model tuning, such as
learning rate, number of hidden layers, number of network units and time
step. We choose the TensorFlow framework of deep learning to implement
the models. In order to reduce the random effects on experiment results, the
average of 5 runs is taken as the final evaluation result.

Learning rate

The learning rate is one of the important hyper-parameters that affect
the performance of the model. If the learning rate is set too high, the model
cannot converge to the local minimum. If the learning rate is set too small, it
can ensure that no local minimum is missed, but it will take longer to make
the model converge. Therefore, it is very critical to set the appropriate
learning rate for model training. Fig. 4a shows that when the learning rate is
0.001, GRUs can not only ensure the stability of training, but also reduce the
training time. Fig. 4b shows the experiment results of learning rate of 0.05,
0.001, and 0.0005 for GRUs. Results show that the GRUs have best
performance on the validation and testing data with the learning rate of
0.001.

Hidden layers

For simple problems or small data volumes, one or two hidden layers
can achieve good results. For more complex problems or large data volumes,
you can increase the appropriate number of hidden layers to achieve better
performance. Fig. 5 shows the experiment results of the number of hidden
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layers for GRUs. In this study, it is evident that the one hidden layer is
sufficient for completing the network task, and the GRUs are more difficult
to train and the performance is worse as the number of hidden layers
increases.
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Fig. 4. (a) Effects of different learning rate on the loss function. (b) Effects of different
learning rate on training, validation, and testing data for GRUs when using W3 as the
blind testing well. The model uses one hidden layer with 20 network units and is trained
with a time step of 6.
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Fig. 5. Effects of number of hidden layers on training, validation, and testing data for
GRUs when using W3 as the blind testing well. The model uses 20 network units and is
trained with a learning rate of 0.001 and time step of 6.

Network units

According to the network task, the number of network units in the input
layer and output layer is easily determined. For sandstone porosity prediction,
the number of network units in the input layer is set as 4, and the number of
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network units in the output layer is set as 1. The number of network units in
the hidden layer cannot be determined directly. Thus, the optimal number of
network units must be selected experimentally. Fig. 6 shows the experiment
results of the number of network units for GRUs. Results show that the
GRUs have best performance on all the training set, validation set and testing

set when the number of network units is 20.
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Fig. 6. Effects of number of network units on training, validation, and testing data for GRUs
when using W3 as the blind testing well. The model uses one hidden layer and is trained with
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Time step

Fig. 7 shows the experiment results of the time step for GRUs. The
time step is not sensitive to the MAE indicator in training data set and
validation data set. The GRUs have the best performance on the validation,
and testing data set when the time step is 6.
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Fig. 7. Effects of time step on training, validation, and testing data for GRUs when
using W3 as the blind testing well. The model uses one hidden layer with 20 network
units and is trained with a learning rate of 0.001.
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Generalization ability of the model

Through the above experiments, the optimal hyper-parameters of
GRUs are determined. Fig. 8 shows the prediction results of GRUs and Fig.
9 shows the degree of fit between the predicted sandstone porosity and the
actual sandstone porosity on W3. It can be seen that the overall trend of
sandstone porosity change is basically predicted correctly, although in some
places it does not predict well. To test the generalization ability of the model,
we take turns to use other wells as the blind testing well and compared with
the results of CNNs and RNNs test. CNNs use two convolutional layers,
each containing 20 convolution kernels of 1x3. Pooling layers and fully
connected layers are not used. The hyper-parameter settings of the RNNs are
the same as GRUs. Fig. 10 shows the performance of three models test on
other blind testing wells. In terms of R? indicators, GRUs perform best on all
blind testing wells. In terms of MAE indicators, GRUs perform better than
RNNSs on all blind testing wells, while it performs worse than CNNs on W2
and W6. Overall, the GRUs perform best on all blind testing wells (Table 1).

Table 1. The average performance of different models on all blind testing wells.

Model The average of MAE The average of R?

Training data ~ Validation data  Testing data  Training data ~ Validation data  Testing data
CNNs 0.0572 0.0602 0.0848 0.8540 0.8441 0.8639
RNNs 0.0582 0.0606 0.0837 0.8477 0.8427 0.8671
GRUs 0.0571 0.0606 0.0818 0.8497 0.8473 0.8695
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Fig. 8. Results of sandstone porosity prediction on W3 by GRUs.
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Fig. 9. Cross plot of predicted porosity versus actual porosity on W3 by GRUs.

DISCUSSION

Compared with the other two models, GRUs have best performance
in sandstone porosity prediction. However, it takes a lot of time to determine
the optimal hyper-parameters of the GRUSs, such as learning rate, number of
hidden layers, number of network units, and time step. However, there are
still a few tricks for model tuning. For simple problems such as porosity
prediction, the number of hidden layers can be directly selected as one or two,
and then gradually determine other hyper-parameters. Three models have
different performances on different Wells. However, the performance gap on
WI and W5 is large. The reason for this phenomenon may be that the
selected data set cannot represent the sandstone porosity information of the
whole region. Therefore, how to select representative samples is a
challenging problem.

Compared with RNNs, GRUs are able to remember more useful
information about previous moments by using gates. Therefore, GRUs are
able to take full advantage of changes in the time dimension of data. CNNs
have the characteristics of local perception and can make full use of the
spatial connection between different characteristic parameters. Fig. 10a
shows that in terms of MAE indicators, CNNs perform better than GRUs on
some blind testing wells. CNNs and GRUs have their own advantages to
some extent. For sandstone porosity prediction, it is necessary to consider
not only the spatial relationship between different characteristic parameters,
but also the change of data in time dimension. Therefore, how to fully
combine the advantages of the two models to build a model capable of
expressing spatial and temporal characteristics of data will be studied in the
future.
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CONCLUSION

GRUs are good at processing sequence data and are used for
sandstone porosity prediction for the first time with good performance.
Compared with RNNs and CNNs, GRUs have best performance in sandstone
porosity prediction. Compared with standard RNNs, GRUs can better extract
data features by introducing gated unit to control information transmission.
We also find that one hidden layer is sufficient for sandstone porosity
prediction. Sandstone porosity prediction is essentially a regression problem,
and GRUs can also be used for other regression problems and classification
problems, such as permeability prediction, saturation prediction, and
lithology prediction.
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