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ABSTRACT 
 
Zhao, Z.C., Chen, J. and Wang, M.X., 2020. Comparison of the fast sweeping and fast marching 
methods for first-arrival P-wave traveltime calculation in attenuating VTI media. Journal of Seismic 
Eploration, 29: 403-424.  
 

First-arrival traveltime plays a crucial role in many geophysical applications such 
as static correction, tomography and prestack migration. Eikonal equation has been 
proven as an effective tool to calculate the first-arrival traveltime even in complex 
subsurface media. In attenuating media, eikonal equation can provide not only the 
information of first-arrival traveltime, but also amplitude decay. The real part of the 
complex-valued traveltime corresponds to seismic phase, while its imaginary part 
describes seismic attenuation due to energy absorption. Since the Fast Sweeping and Fast 
Marching methods have been considered as two effective eikonal equation solvers, it is 
necessary to compare them for the performances of calculating the complex-valued first-
arrival P-wave traveltime in attenuating vertical transversely isotropic (VTI) media. The 
numerical tests show that the Fast Sweeping method is less time-consuming than the Fast 
Marching method, while having the same numerical accuracy.  

 
KEY WORDS: eikonal equation, attenuation, transverse isotropic,  
    Fast Sweeping method, Fast Marching method. 
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INTRODUCTION 
 
First-arrival traveltime plays an important role in seismic migration 

and tomography (Lan and Zhang, 2013). The ray-tracing method and eikonal 
solution are two numerical schemes which are widely used in the calculation 
of first arrivals. In most cases, the traveltimes can be accurately and 
efficiently calculated by a ray-tracing method. However, the ray-traced 
traveltimes may sometimes not honor the actual first arrivals due to either a 
waveguide or shadow zone (Xu et al., 2006; Červený and Pšencík, 2009). 
Seismic rays may fail to penetrate through shadow zones (low velocity zone), 
and first arrivals in a waveguide may result from a complex interference 
phenomenon (Qin et al., 1992). In either case, the ray tracing method may be 
computationally expensive since the ray associated with the energy of the 
first arrival fails to be found. Without the influences of shadow zone and 
waveguide, the solutions of eikonal equations show the stability and 
applicability in complex media. Eikonal equations are derived from the high-
frequency asymptotic wave equations and the first-arrival traveltimes satisfy 
the equations. Vidale (1988) proposed a finite-difference method to 
approximate the acoustic eikonal equation based on the idea of the 
wavefront propagation. However, the finite-difference method is unstable 
when the distribution of velocity changes rapidly (Qin et al., 1992). Sethian 
(1996) implemented the Fast Marching method based on entropy-satisfying 
upwind scheme, which is accurate and highly efficient for wavefront 
calculation. Since then, this method has been definitely applied to the 
traveltime calculation of seismic wave propagation (Alkhalifah and Fomel, 
2001; Popovici and Sethian, 2002; Lan et al., 2012). The Fast Marching 
method assumes that the ray direction (the direction of energy propagation) 
is the normal direction of wavefront, which is only valid in isotropic media. 
Zhao (2005) proposed a Fast Sweeping method to calculate the numerical 
solution of the isotropic eikonal equation, which has been proven to be more 
robust than the Fast Marching method (Waheed et al., 2015). 

 
Seismic anisotropy is widespread in the earth (Thomsen, 1986). Many 

geological structures (e.g., periodic sequences of thin layers, orientated 
cracks and parallel fractures) usually exhibit anisotropic properties which 
strongly affect seismic wave propagation. Such media can be described by 
transversely isotropic media. For the fractured reservoir characterization and 
source localization, it is necessary to calculate first arrivals in the presence 
of anisotropy (Schoenberg and Sayers, 1995; Tsvankin, 2012; Tsvankin and 
Grechka, 2011). Seismic traveltime calculation in an anisotropic medium has 
been studied by numerous researchers (Babuska and Cara, 1991; Kendall, 
1994; Blackman et al., 1996). The Fast Marching and Fast Sweeping 
methods used to calculate the solution of eikonal equation in isotropic media 
are modified to apply to the anisotropic eikonal equation (Qian et al., 2007). 
Sethian and Vladimirsky (2003) proposed a modified Fast Marching 
algorithm to deal with anisotropic models. But the computational cost 
increases with the strength of anisotropy. Although Konukoglu et al. (2007) 
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and Cristiani (2009) incorporated velocity anisotropy into the Fast Marching 
algorithm to account for wave propagation in anisotropic media, it can only 
be applicable to the elliptical anisotropy. Waheed et al. (2015) proposed an 
iterative, Fast Sweeping algorithm to solve the anisotropic eikonal equation. 
However, this algorithm suffers from source-singularity problem due to the 
source-point initial condition, which may result in a significant increase of 
the truncation error in the traveltime calculation near the source. This can 
further result in the convergence of an inaccurate solution (Waheed and 
Alkhalifah, 2017). Waheed and Alkhalifah (2017) solved the source-
singularity problem effectively by using the factorization method proposed 
by Fomel et al. (2009). The traveltimes are factorized into two multiplicative 
factors, one is used to capture the source singularity and the other can be 
regarded as the background solution.  

 
Seismic attenuation is another important component of wave 

propagation in subsurface media (Hao and Alkhalifah, 2017a, 2017b). 
Formations or aligned fractures that show velocity anisotropy are often 
characterized by even stronger attenuation anisotropy (Bai et al., 2017). 
Many laboratory experiments have demonstrated that attenuation anisotropy 
may help to estimate the orientation of layered formations or the presence of 
laminae in the rocks (Chichinina et al., 2006; Guo and McMechan, 2017; 
Bai and Tsvankin, 2019). The time-harmonic wave traveltime in the 
viscoacoustic medium is generally complex-valued and is governed by the 
complex eikonal equation (Červený, 2005). The real part of complex-valued 
eikonal equation has the same form to the real eikonal equation in 
nonattenuating media. From the ray theory, the real part of the complex-
valued traveltime from a time-harmonic ray describes the wave phase, and 
the imaginary part corresponds to the attenuation due to the energy 
absorption in viscoacoustic media (Hao and Alkhalifah, 2017a; Hao and 
Alkhalifah, 2019). Zhu and Tsvankin (2006) presented a Thomsen-style 
notation to describe the anisotropy of attenuation coefficient for plane waves 
in attenuative anisotropic media. The introduction of Thomsen-style notation 
leads to the concise form of eikonal equation in viscoacoutic media. They 
found that the attenuation coefficient of quasi P-wave Ap0 is almost 
independent of the quasi S-wave attenuation coefficient As0 and the impact 
of the S-wave velocity vs0 on the traveltime is weak and negligible. Thus, 
Hao and Alkhalifah (2017a) derived an acoustic eikonal equation using the 
acoustic approximation in attenuative VTI media.  

 
Although the complex-valued eikonal equation shows a similar form 

as the real eikonal equation in nonattenuative media, it is hard to find the 
exact solution to the complex eikonal equation. Numerical schemes (e.g., the 
Fast Sweeping method and the Fast Marching method)  widely used in the 
traveltime calculation for the nonattenuative medium, cannot be directly 
applied to the complex-valued eikonal equations since they are required to 
update the traveltime along the orientation of wavefront propagation by 
choosing the minimum of traveltimes in a heap. Selecting the minimum 
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value is also not valid for complex numbers. Hao and Alkhalifah (2017a) 
presented a perturbation method to approximate the complex-valued 
traveltime from the eikonal equation for the homogeneous attenuative VTI 
medium, and the shanks transform was adopted to accelerate the 
convergence of the series decomposed from the complex eikonal equation 
with respect to the perturbation parameters. Based on the perturbation 
method, they applied the modified Fast Marching scheme to calculate the 
solution of the complex-valued eikonal equation in inhomogeneous 
attenuative VTI media. Hao et al. (2018) implemented the Fast Sweeping 
method to calculate the solution of the complex-valued eikonal equation in 
attenuating VTI media. 

 
The main goal of this paper is to compare the Fast Marching method 

and the Fast Sweeping method in term of accuracy, efficiency and stability 
in attenuative VTI media, in which the symmetry of the attenuation waves is 
the same as that of the phase velocity. The rest of this paper is organized as 
follows. First, we apply the perturbation method to the complex-valued 
eikonal equation in attenuative VTI media and decompose the complex form 
into two simpler expressions, which govern the real and imaginary parts of 
the complex-valued traveltime, respectively. Then, we solve the two simpler 
equations successively by using the Fast Sweeping method and the Fast 
Marching method. Two numerical tests are carried out to compare the two 
methods with respect to accuracy, efficiency and stability. Finally, we 
conclude that the Fast Sweeping method is as accurate and stable as the Fast 
Marching method but more efficient. 

 
 

THEORY 
 
The acoustic eikonal equation for 2D ( ),x z   attenuative VTI media is 

expressed as (Hao and Alkhalifah, 2017a): 
 

                  2 2 2 2 1x z x zAt Bt Ct t+ + =    ,                                                      (1) 
 
where t  is the complex-valued traveltime, and and xt  and zt  denote the first-
order derivatives of traveltime with respect to the directions x and z, 
respectively; The coefficients A, B and C are expressed through the medium 
properties as: 
 

                  ( ) ( )( )2 1 2 1 2 1n q QA v ikη ε= + − + ,          
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              ( )2
0 1 2 ,P qB v ik= −                                                        

( )( ) ( )( ) ( )( )
2 22 2 2 20

0 02 1 2 1 2 1 2 1 2 1P
q n q Q P P n q q Q

n

vC ik v ik v v v ik ik
v

δ η ε= − − − + − − + , 

  
with  

           
0
2
01

P
q

P

Ak
A

=
− ,                                                               

 
where i  represents the imaginary unit; Qε and Qδ are the Thomsen-style 
parameters for attenuation anisotropy introduced by Zhu and Tsvankin 
(2006); Qε  is the fractional difference between the horizontal and vertical 
attenuation coefficients, and Qδ  is the second-order derivative of the 
attenuation coefficient Ap with respect to the phase angle of homogeneous 
plane quasi P-waves along the vertical direction. Note that Qε  and Qδ  are 
believed to be predominantly negative. Ap0 is the wavenumber-normalized 
attenuation coefficient of the vertically propagating P-wave, hereafter 
referred to as the P-wave vertical attenuation coefficient, for brevity.; vp0 and 
nv  are the P-wave velocity in the symmetry-axis direction and normal 

moveout velocity, respectively; and ( ) ( )/ 1 2η ε δ δ= − +  is the anellipticity 
parameter, where ε  and δ  are Thomsen anisotropy parameters (Thomsen, 
1986). 
 
 
Perturbation method 
 
 According to Alkhalifah (2000) and Hao and Alkhalifah (2017a), the 
perturbation method can be used to decompose a complex-valued equation 
into an infinite number of relatively simple equations by identifying a small 
parameter [e.g., kq in eq. (1)] or several parameters and setting these 
parameters to zero. Thus, the complex-valued equation can be solved. Here, 
we choose kq as the small parameter to decompose eq. (1) into two simple 
equations. Since i  and kq always appear in the product form in the eikonal 
equation, the two decomposed equations from the complex-valued equation 
represent the real part and imaginary part of complex-valued eikonal 
equation, respectively. Thus, the left part of the eq. (1) can be expressed as: 
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                 ( ), 1qF t k =    .           (2) 
 The perturbation parameter l  is introduced to scale k  in eq. (2), 
 
                 ( ), 1qF t lk =     .                                (3) 
  
 The first-order perturbation solution of eq. (2) is defined as: 
 
                 0 1t t ilt= +     ,                                                                              (4) 
 
where t0 and t1 denote the zero-th and first-order traveltime coefficients, 
respectively. They also represent the real part and imaginary part of the 
complex-value traveltime, respectively. 
 
 We expand eq. (3) around 0l = , and obtain 
  
                ( ) ( ) ( )1, ,0 ,0 ,qF t ik F t ilF t= +                                                             (5)  
where 
 
         ( ) ( )2 2 2 2 2 2 2 2

0 0 0 0 0 0,0 1 2 2 ,n x p z n p x zF t v t v t v v t tη η= + + −        

         ( ) ( ) ( )2 2 2 2 2 2
1 0 1 0 0 1 0 0 1 0 0 1 0 1,0 1 2 2 ,n x x p z z n p z z x x x zF t v t t v t t v v t t t t t t fη η= + + − + −     

 
( ) ( ) ( )( )( )2 2 2 2 2 2 4 2 2 2 2

1 0 0 0 0 0 0 0 01 1 2 2 2 1 2n x p z n p Q p Q n p x zf k v t kv t k v v v v v t tε η δ ε η= + + + + + − + +  
 
 In eq. (5), ( )1 ,0F t  denotes the first derivative of F with respect to the 
perturbation parameter l  at 0l = . Since the right side of eq. (3) is equal to 
unity, which is a real number, we should have the following relationship 
 
                   ( ),0 1F t =      ,                                                                            (6a) 
 
                   ( )1 ,0 0.F t =                                                                                 (6b) 
 
 
Factorization method 
 
 To solve eq. (6a), Waheed et al. (2015) proposed a modified Fast 
Sweeping algorithm to get the accurate solution, and applied the 
factorization method to address the source-singularity problem. For the 
multiplicative factorization, the real part of the traveltime is factorized into: 
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                   0 0 0t T τ=    ,                                                                                 (7) 
 
where 0T  denotes the analytical solution of eq. (6a) for homogeneous VTI 
media, which  overcomes the source singularity and 0τ  is an unknown factor 
which is smooth in the vicinity of the source position. The spatial traveltime 
derivatives are expressed as 
 
                     0 0 0 0 0x x xt T Tτ τ= +  ,                                                                  (8a) 
                     0 0 0 0 0z z zt T Tτ τ= +  .                                                                   (8b) 
   
 By substituting eqs. (8a) and (8b) into (6a), we find the factored 
zeroth-order governing equation for the multiplicative factorization: 
 
                     ( )( ) ( ) ( )2 22 2

0 0 0 0 0 0 0 0 0 01 2n x x p z zv T T v T T fη τ τ τ τ τ+ + + + =  ,                   (9)  
where 
                     ( ) ( ) ( )2 22 2

0 0 0 0 0 0 0 0 0 01 2 n p x x z zf v v T T T Tτ η τ τ τ τ= + + +  .  
  
 According to Luo and Qian (2012), 0T  may overcome the source 
singularity, while the function 0τ   is smooth near the source. The accurate 
calculation on 0τ   is crucial to find the accurate 0t . Here, 0T  is regarded as 
the solution of eq. (6a) in homogeneous case 
 
                     ( ) ( )2 2 2 2

0 0 01 2ns x ps zv T v T fη τ+ + =  ,                                                   (10) 
 
where ( ),ns n s sv v x z=   and ( )0 ,ps p s sv v x z=  . ( ),s sx z  is the source location. The 
analytical solution of eq. (10) is given as: 
 
                    ( ) ( ) ( )2 2

0 , s sT x z a x x b z z= − + −    ,                                        (11) 
where 

                    ( )
( )

0
2 1 2ns

f
a

v
τ

η
=

+
 ,  

                    ( )0
2
ps

f
b

v
τ

=  .  

  
By analogy with eq. (7), the imaginary part of the traveltime is given as: 
 
                     1 1 1t Tτ=      .                                                                              (12)  
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 The spatial derivatives are expressed as: 
                    1 1 1 1 1x x xt T Tτ τ= +    ,                                                              (13a) 
                    1 1 1 1 1z z zt T Tτ τ= +    .                                                               (13b) 
  
 Thus, the first-order governing equation can be written as:  
 
                    ( ) ( ) ( ) ( )2 2

0 1 1 1 1 0 0 1 1 1 1 11 2n x x x p z z zv t T T v t T T gη τ τ τ τ τ+ + + + =     ,              (14) 
where  
                    ( )1g τ = ( ) ( )( )2 2 2 2

1 0 0 1 1 1 1 0 0 1 1 1 1 02 n p z z z x x x x zf v v t T T t t T T tη τ τ τ τ+ + + +    .   
  
The analytical solution of the first-order governing equation can be obtained  

                    T1 =
a1 x − xs( )

4
+b1 x − xs( )

2
z − zs( )

2
+c1 z − zs( )

4

T0
3

    ,                     (15) 

where 

                    ( ) ( )
( )

2
0

1 24

1

1 2
Q

ns

k f
a

v

ε τ

η

+
=

+
 ,  

                    ( )( ) ( )
( )

2 2 2
0

1 24 2

2 1 2

1 2
ns Q ps

ns ps

k v v f
b

v v

η δ τ

η

+ +
=

+
 ,  

                     ( )2
0

1 4
ps

kf
c

v
τ

=  .  

  
Luo and Qian (2012) proposed a Fast Sweeping scheme to calculate 0τ  in eq. 
(9) based on eq. (11). On a rectangular grid with grid size h , for a grid point 
c, we discretize eq. (9) on four triangles with an common vertex c (Fig. 1). 
 

 

Fig. 1. Rectangular mesh and characteristics line. 
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For the triangle wcsΔ , the expressions of 0 xτ  and 0zτ  can be written as: 
 

           ( ) ( ) ( ) ( ) ( )0 0 0 0
0 0, ,x z

c w c s
h h

τ τ τ τ
τ τ

− −⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠

    .                               (16) 

  
 By substituring eq. (16) into eq. (9), a quadratic equation in terms of 0τ  
can be obtained 
 

          
' 2 ' '
0 02 0A B C! !" + =      ,                                                        (17) 

where  

           ( )' 2 2 2 2
01 2n pA v m v nη= + + ,  

           ( )' 2 2
01 2n pB v m v nη α β= + + ,  

           ( ) ( )' 2 2 2 2
0 01 2n pC v v fη α β τ= + + − ,  

           0 0
0 0,x z

T Tm T n T
h h

= + = + ,  

           ( ) ( )0 0,
T w T s
h h
τ τ

α β= = .  

 
 If ( )2' ' '2 4 0B ACΔ = − ≥ ,  the candidate values of 0τ  can be solved 
from eq. (17). We denote this candidate value as ( )0

c cτ  at the grid point c.  
Thus, for four triangles with a common vertex c, four quadratic equations in 
terms of 0τ  can be obtained. The acceptable candidate value should be real 
and satisfies the causality condition (Waheed et al., 2015). According to the 
causality condition, the characteristic line passing through the common 
vertex c  should be between the two edges of each triangles. If no candidate 
value satisfies the causality condition or 0Δ <  , for triangle wcs∇ , the 
characteristic line passes through the common point c along two edges. For 
instance,  if the characteristic line propagates along wc ,  the derivative of 
eq. (9) with respect to 0zt  should be zero, which yields 0 0 0 0 0z zT Tτ τ+ = . By 
substituting this relationship into eq. (9), the viscosity solution for the 
triangle wcs∇  is given as: 
 

                ( )
( ) ( )

( )
( ) ( )( )

0 0 2

0 0

1
1 2nc

x c w

T c w h
v

c
T c T c x x

τ
η

τ

+
+

=
+ −       

.                                    (18) 
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 For every grid point, at least four candidate values of 0τ  can be 
calculated and only the minimum value will be selected. Similar treatments 
as eqs. (16)-(18), the factorization method can also be applied to the first-
order governing equation to tackle with source-singularity problem. For 
triangle wcs∇ , the expressions of 1xτ  and τ1z  can be written as 
 

                ( ) ( ) ( ) ( ) ( )1 1 1 1
1 1, ,x z

c w c s
h h

τ τ τ τ
τ τ

− −⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠    

.                                      (19) 

  
By substituting eq. (19) into eq. (14), the following expression in terms of 
τ1  can be obtained 

               ( ) ( ) ( )1 1 1 12 2
0 1 1 1 0 0 1 1 1 11 2n x x p z z

w s
v t T T v t T T g

h h
τ τ τ τ

η τ τ
− −⎛ ⎞ ⎛ ⎞

+ + + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.      (20) 

  
The solution of eq. (20) at the grid point c can be obtained in the form: 
 

               ( )
( ) ( ) ( )

( )

2 21 1 1 1
1 0 0 0

1
2 21 1

0 1 0 0 1

1 2

1 2

n x p z
c

n x x p z z

w T s T
g v t v t

h hc
T Tv t T v t T
h h

τ τ
η

τ
η

+ + +
=

⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    .              (21) 

  
 Similar to the candidate value of 0τ  , 1

cτ  is also required to satisfy the 
causality condition. Otherwise, we suppose that the characteristic line is 
along one of the edges of the triangles. If it propagates along the edge wc , 
the derivative of eq. (14) to 1zt  should be equal to zero (Luo and Qian, 2012). 
Thus, 2

0 0 0p zv t = . Substituting this relationship into eq. (20) yields 
 

                  
( )

( )1
1 1

2 1
0 1

1
1 1

1 2n x x
c

x

g h T w
Tv t T
h

T h T

τ
η

τ

+
⎛ ⎞+ −⎜ ⎟
⎝ ⎠=

+
      .                             (22) 

  
 The candidate value along the another edge of this triangle can be 
calculated in the same way by assuming ( )2

01 2 0n xv tη+ = . For a grid point c, at 

least four candidate values of 1τ  can be derived and the minimum value will 
be chosen. 



 

 
 

413 

ALGORITHM 
 
Fast Sweeping method 
 
 Waheed et al. (2015) presented an iterative Fast-Sweeping-based 
eikonal solver in anisotropic media which can be applied to the zeroth-order 
governing equation. We combine  this algorithm with the complex-valued 
eikonal equation. The steps of the modified fast sweeping method are as 
follows: 
 
 1) Discretization. The  first-order finite-difference expressions for the 
spatial derivatives of factors 0τ  and 1τ   are given by  
  

              
, ,

, min , min
, ,, , 0,1

i j i j
k k x k k z

k x x k z zs s k
h h

τ τ τ τ
τ τ

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,       (23) 

  
where 2,3,..., 1i I= − , 2,3,..., 1j J= − . h  is the grid size; ,i jτ  represents the 
value of unknown factor τ  at the grid point ( ),i j ; minxτ  and minzτ  denote the 
smaller values of neighboring nodes in the x  and z  directions, respectively. 
In other words, for the multiplicative factorization, the expressions of xτ  and 
zτ  are given by 

              

1, 1, 1, 1, 1,
0 0

, min 1,

, 1 , 1 , 1 , 1 , 1
0 0

, min , 1

,
,

,
,

i j i j i j i j i j
k k k

k x i j
k

i j i j i j i j i j
k k k

k z i j
k

if T T
else

if T T
else

τ τ τ
τ

τ

τ τ τ
τ

τ

+ + + − −

−

+ + + − −

−

⎧ <
= ⎨
⎩

⎧ <
= ⎨
⎩

                               (24) 

 
where xs  and zs are parameters used to control the directions of the first-order 
derivatives ( xτ and zτ ). 
  

             
1, , 1

0, min 0 0, min 01 1
, .

1 1

i j i j
x z

x z
if if

s s
else else

τ τ τ τ− −⎧ ⎧+ = + =
= =⎨ ⎨

− −⎩ ⎩
                (25) 

 
2) Initialization. The real and imaginary parts of the complex-valued 

traveltimes 0t  and 1t   at the source location vanish, while the rest of the 
computational domain can be initialized with a large positive value. As a 
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result, for the multiplicative factorization, both 0τ and 1τ  at the source node 
can be initialized with unity. 

  
3) Calculate 0T  and 1T  analytically. 0T  and 1T   are the solutions of eqs. 

(9) and (14) for the homogenous case, respectively. After step 2), we 
evaluate 0T and 1T   for the whole domain using eqs. (11) and (15), 
respectively. 

  
4) Calculate 0τ  iteratively. After step 3), 0τ of the whole domain can 

be calculated by solving eq. (17) or (18) and sweeping the whole domain 
repeatedly is implemented by the following order 

 

                
( ) ( )
( ) ( )
1 1: , 1: , 2 1: , :1,
3 :1, 1: , 4 :1, :1,
i I j J i I j J
i I j J i I j J
= = = =

= = = =
                                (26) 

  
For each grid node of the computational domain, the candidate value of 0τ   
can be solved by eq. (17) and denoted by 0 ,

c
i jτ . Then ,

0
i jτ  will be updated if it 

satisfies the causality condition and minimum traveltime criterion. If this 
value does not meet the causality condition, 0 ,

c
i jτ  should be calculated from 

eq. (18) and then one needs to check if it meets the minimum traveltime 
criterion discretized as:  

 

        
0 , 0 , 0 , , 0 ,

0 ,
0 ,

,
,

c c old
i j i j i j i j i jnew

i j old
i j

if T T
else

τ τ τ
τ

τ

⎧ <⎪
= ⎨
⎪⎩

.                        (27) 

  
After updating the value of 0τ  in the whole domain, the real part of the 
complex-valued traveltime 0t  and 1f  in eq. (5) can be obtained by eqs. (7) 
and (5), respectively.  
 

5) Update ( )0f τ . After evaluating 0τ  at each point of the whole 
computational domain,  ( )0f τ  value at each node of the domain can be 
updated by solving the right-hand side of eq. (9). Noticed that at the first 
iteration, ( )0f τ  is initialized with unity at each point of the whole 
computational domain. 

  
6) Calculate 1τ  iteratively. Thus, for each grid point, once 0t  has been 

obtained in step 4), the derivatives of 0t  with respect to x  and z  axes, 
namely 0xt  and 0zt , can be approximated using the first-order difference 
operator. Substituting these derivatives into eq. (21), the candidate value of 
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1τ  can be derived and denoted as 1 ,
c
i jτ . Thus, the 1τ  for the whole domain can 

be calculated by solving eqs. (21) or (22) and sweeping the whole domain 
repeatedly can be done on the order in step 3). Then ,

1
i jτ  will be updated if 

the candidate value satisfies the causality condition and minimum traveltime 
criterion. If this value does not meet the causality condition, 1 ,

c
i jτ  should be 

calculated from eq. (22); next, it is necessary to check if it meets the 
minimum traveltime criterion. 

  
 7) Update ( )1g τ  and repeat. After evaluating 1τ  at each points, ( )1g τ  
value at each node of the domain can be updated by solving  the right-hand 
side of  eq. (14). Notice that at the first iteration, ( )1g τ  is initialized with 1f   
at each point of the whole computational domain. Then repeat steps (3)-(6) 
until the result converges to the correction solution.  

 
  

Fast Marching method 
 
Here, we apply the Fast Marching method to calculate the first-arrival 

traveltime based on the complex-valued eikonal equation. Sethian (1996) 
used the sets Far, Close and Alive to descibe the status of grid points of the 
whole domain. The modified Fast Marching method is summarized as 
follows: 

  
1) Same as in the Fast Sweeping algorithm, step 1). 
 
2) Initialization. The unknown factors 0τ  and 1τ  at the source location 

are initialized with unity, while the rest of the points in the whole 
computational domain are set to a large number. Tag points in the initial 
conditions as Alive. Then tag as Close for the neighbouring points of the 
point in Alive. Finally, tag as Far for all rest grid points. 

 
3) Same as in the Fast Sweeping algorithm, step 3). 
 
4)  Compute the 0τ  values of grid points in Close from eq. (17) or 

(18). If the new candidate value 0
cτ  meets the minimum traveltime criterion,  

0t  of the points can be calculated from eq. (7). Only the smallest value 
among these points will be tagged as Alive, and its neighboring points not in 
Alive will be tagged as close. Repeat this step until the Far is null. Thus, the
0t  values are updated for the whole computational domain. After calculating 
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the spatial derivatives of 0t  with respect to x  and z , the value of 1f  can be 
obtained. 

 
5) Same as in the Fast Sweeping algorithm, step 5). 
 
6)  Compute 1τ  values of grid points in Close from eq. (21) or (22). If 

the new candidate value 1
cτ  meets the minimum traveltime criterion, 1t  of 

the points can be calculated from eq. (12). Among these points, only the 
point with the smallest value will be tagged as Alive, and its neighboring 
points not in Alive will be tagged as close. Repeat this step until the Far is 
null. 

 
7) Same as the Fast Sweeping algorithm, step 7). 

 
 
NUMERICAL TESTS 

 
To carry out the comparison of the Fast Marching and Fast Sweeping 

methods, we first test two methods with the analytical solutions [eqs. (11) 
and (15)] in a homogenous attenuative VTI medium. Then, the SEG/Hess 
attenuative VTI model is used to further test the accuracy, efficiency and 
stability of the two numerical methods in complex media. 

 
  

Homogeneous attenuating VTI model (Model 1) 
 
 The model size is 1.5 1.5km km× , and the grid size is 5 m. The P-
wave vertical attenuation coefficient 0pA  is 0.025, the Thomsen’s parameter 
δ  is 0.1, the Thomsen-style parameters qε  and qδ  for attenuation 
anisotropy are -0.3 and 0.98, respectively (Zhu and Tsvankin, 2006), the 
anellipticity parameter η  is 0.16, the P-wave vertical velocity vp  and normal 

moveout velocity nv  are 3 /km s  and 3.286 /km s , respectively. The source is 
located at the center of the model. Fig. 2 shows the real parts of the 
complex-valued traveltimes obtained with (a) the Fast Marching method 
(thick dashed line), (b) the Fast Sweeping method (thick dashed line) and the 
analytical solution (solid line). Fig. 3 shows the imaginary parts of the 
complex-valued traveltimes obtained with (a) the Fast Marching method 
(thick dashed line), (b) the Fast Sweeping method (thick dashed line) and the 
analytical solution (black solid line). In Fig. 2, we can see that the real parts 
of traveltimes calculated from both numerical methods have the same values 
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as those obtained from the analytical solution. In Fig. 3, one can observe that 
the errors between the imaginary parts of the traveltimes calculated from 
both numerical methods and the analytical solution increase, as the distance 
from the source increases.  

 

 

 

Fig. 2.  Real parts of the complex-valued traveltimes calculated from (a) the Fast 
Marching method and (b) the Fast Sweeping method for Model 1. 

 
According to the studies on seismic attenuation  (Zhu and Tsvankin, 

2006; Vavryčuk, 2007, 2010; Hao and Alkhalifah, 2017a), the exponential 
term ( )1te ω− x  is to control the amplitude decays of seismic waves, where ω , 1t  
and x stand for the angular frequency, value of the imaginary part of 
traveltime and distance away from the source, respectively. For the same 
travel distance from source, the larger value of the imaginary part of 
traveltime 1t  indicates the stronger seismic attenuation. In Fig. 3a, lines k , m  
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and l  represent the  0o , 40o  and 90o  deviated from the upward vertical 
direction, respectively. We can observe that the largest and smallest values 
of 1t  are along directions m  and l  for the same travel distance from source, 
respectively, which indicates the maximum and minimum seismic 
attenuations are along the angles 40o and 90o, respectively. We can also see 
that the seismic attenuation in the vertical direction (line k  direction) is 
stronger than that in the horizontal direction (line l  direction), which can be 
verified by the Thomsen-style notation  33 11

33
Q

Q Q
Q

ε
−

= . The negative Qε  (-0.3 

used in this model) means that the value of the quality factor 33Q  (vertical 
direction) is smaller than 11Q  (horizontal direction). Note the seismic quality 
factor is inversely proportional to the strength of the attenuation. 

 

 

 

Fig. 3.  Imaginary parts of the complex-valued traveltimes calculated from (a) the Fast 
Marching method and (b) the Fast Sweeping method for Model 1. 
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Fig. 4.  Errors in the imaginary parts of the complex-valued traveltimes computed with 
the  (a) Fast Marching method and (b) the Fast Sweeping method. 
 
 
             Fig. 4 shows the errors the of imaginary parts of the complex-valued 
traveltimes calculated from the Fast Marching method (a) and the Fast 

Sweeping method (b),  respectively. The errors are calculated as ex ns

ex

T T
T
−  , 

where exT  and nsT  are the exact solution (Hao and Alkhalifah, 2017a) and the 
numerical solution, respectively. From Fig. 4, we can see that the Fast 
Sweeping method has a similar computational error as the Fast Marching 
method (less than 0.06%). We also compute the cross-correlation coefficient 
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( ) ( )cov ,
,

ex ns

ex ns
ex ns

T T

T T
T Tρ

σ σ
= , where ( )cov ,ex nsT T  represents the covariance of exT  

and nsT ; 
exT

σ  and 
nsT

σ  are the standard deviations of exT  and nsT , respectively. 
The values of cross-correlation coefficient between 0 and 1 indicate the 
degree of correlation between exT  and nsT . The larger the cross-correlation 
coefficient, the higher the similarity between exT  and nsT . For the real part of 
the complex-valued traveltime, the cross-correlation coefficients are equal to 
1 for the exact solution with the Fast Marching and Fast Sweeping methods, 
respectively. For the imaginary part, the cross-correlation coefficients are 
0.9998 and 0.9998 for the exact solution with the Fast Marching and Fast 
Sweeping methods, respectively. The values of cross-correlation coefficients 
indicate that the Fast Marching method provides the same numerical 
accuracy as the Fast Sweeping method does. 
 
   
SEG/Hess attenuating VTI model (Model 2) 

 
Here, we use the modified SEG/Hess VTI model by adding 

attenuation (Fig. 5). The source is located at the center of the model with the 
dimensions 3.0 1.25km km×  and grid size 5m . Fig. 6 demonstrates that the 
Fast Sweeping method is as stable and accurate as the Fast Marching method 

in complex media. Fig. 7 shows the differences fm fw

fm

T T
diff

T
−

=  are calculated 

for the (a) real and (b) imaginary parts of traveltimes obtained from the Fast 
Marching method ( fmT ) and the Fast Sweeping method ( fwT ), respectively. 
The differences are mostly deserved with substantial velocity changes. 

  
To compare the computational efficiencies of the two methods, we ran 

our model tests on a laptop (Dell Inspiron 15-5555 with 8 GB Ram and 
AMD A8 Processor). Table 1 shows the computational times of the Fast 
Sweeping method and the Fast Marching method in both models (Model 1 
and Model 2). Compared with the Fast Marching method, the Fast Sweeping 
method can save more than 70% of the computational times. 

 
Table 1. Computational times of two numerical methods in Model 1 and Model 2. 

Running time (S) Fast marching Fast sweeping 

Model-1 996 148 

Model-2 2545.28 667.39 
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Fig. 5. SEG/Hess 2D attenuative VTI model (Model 2). (a) The normal moveout velocity 

nv  , (b) the P-wave vertical velocity pv , (c) the P-wave attenuation coefficient 0pA  , (d) 

Thomsen-style parameter qδ , (e) Thomsen-style parameter qε , and (f ) the anellipticity 
parameter η . The source is located at the center of the model with the dimensions 
3.0 1.25km km× and grid size 5 m. 

 
 

CONCLUSIONS 
   
 The Fast Sweeping method and the Fast Marching method have been 
widely used in the first-arrival traveltime calculation. In this paper, we 
successfully performed the two methods in viscoacoustic VTI media and 
compared them in terms of accuracy and efficiency. The numerical results 
can demonstrate that the two numerical methods are stable and applicable 
for calculating the accurate first-arrival P-wave traveltime in the strongly 
heterogeneous attenuating VTI media. In addition, the Fast Sweeping 
method shows the same accuracy and stability as the Fast Marching method 
but more efficient. The factorization method reduces the calculation errors 
near the source and significantly improves the stability of first-arrival 
traveltime calculation. 
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Fig. 6.  Contours of the (a) real and (b) imaginary parts of the complex-valued traveltimes 
for Model 2 calculated from the Fast Marching method (gray dashed line) and the Fast 
Sweeping method (black solid line). 
 

 

 

Fig. 7. The differences between the (a) real and (b) imaginary parts of the traveltimes 
calculated for Model 2 from the Fast Marching method and the Fast Sweeping method . 
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