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ABSTRACT 
 
Messud, J., 2020. Generalization of Kirchhoff reflectivity to go beyond modelling and 
inversion of first-order reflection data - a theoretical review. Journal of Seismic 
Exploration, 29: 477-504. 
 
    I emphasize the connections and differences between Kirchhoff and Born modelling. 
I seize the opportunity to clarify aspects related to possibly non-smooth propagating 
media and the linearity approximation on reflectors. I discuss how they lead to a general 
expression for the conversion of a velocity perturbation into a reflectivity through the 
“generalized reflectivity" concept. The latter offers opportunities:   
• On FWI approaches that include a reflectivity or least squares migration approaches 

that can be based on Kirchhoff or Born modelling: to rigorously convert the 
reflectivity into a velocity perturbation.  

• In the framework of traditional Kirchhoff modelling scheme: to model first-order 
effects that go beyond first-order reflections (like first-order diffractions).  

• In the framework of traditional Kirchhoff inversion or true amplitude migration, i.e., 
for the interpretation of seismic-migrated images: to give a basis to interpret by AVA 
(amplitude versus angle) more information than the amplitudes associated to 
first-order reflections, for instance the amplitudes of first-order diffractors. Also, it 
would theoretically allow to go beyond AVA analysis, inverting for the whole 
seismic image amplitude information (not only amplitude information at peaks) to 
recover the related velocity model perturbation. This is discussed formally in the 
article.  
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INTRODUCTION 
 
     The aim of seismic imaging (Claerbout, 1985) is to characterize the 
geological structures of the subsurface from the analysis of seismic waves 
(Aki and Richards, 1980; Chapman, 2004). A central component of seismic 
imaging is the scale separation, i.e. the separation of a smooth background 
velocity containing the long wavelength components of the true subsurface 
velocity model from the short wavelength components (Claerbout, 1985; 
Tarantola, 2005). This separation is justified regarding the physical behavior 
of these two components with respect to band limited data (typically 3 to 
80Hz) (Claerbout, 1985; Tarantola, 2005; Virieux and Lambaré, 2015): the 
background velocity exhibits a strongly non-linear behavior with respect to 
the data, affecting the kinematics of the seismic events, while the short 
wavelength components have a much more linear behavior, affecting mostly 
the amplitudes of the events. As a consequence, recovery of the background 
velocity and of the short wavelength components is usually done 
sequentially (Lailly, 1983; Tarantola, 1984). The first step is to compute the 
background velocity, typically by non-linear tomographic methods (Luo and 
Schuster, 1991). The second step is to compute the short wavelength 
components through a linear inversion process, considering first-order 
scattered events (reflections and diffractions) (Tarantola, 2005; Claerbout, 
1971; Bleistein, 1987), called seismic migration or imaging. There are two 
ways in seismic migration of linearly representing the short wavelength 
components of the velocity model, usable in a least square version (Huang et 
al., 2016; Salomons et al., 2014): 
 
• Using the Born approximation (Beylkin, 1985, 1986; Lambare et al., 

1992; Bleistein et al., 2001), based on a velocity model perturbation.  
• Using the Kirchhoff approximation (Claerbout, 1985; Bleistein et al., 

2001; Stlok and De Hoop, 2002; ten Kroode et al., 1998; 
Brandsberg-Dahl et al., 2003), where the short wavelength components 
are represented through a reflectivity distribution, i.e., a volumetric 
distribution of reflection coefficients. Inspired by the pioneering work of 
(Beylkin, 1985, 1986). Bleistein’s groundbreaking work (Bleistein, 1987; 
Bleistein et al., 2001) fundamentally establishes the reflectivity and 
shows how it can, at a later stage, be converted into material properties of 
the subsurface through an additional inversion process like AVA 
(amplitude versus angle) analysis (Bleistein, 1987; Russell, 1988).  

 
     Full waveform inversion (FWI) (Tarantola, 2005; Virieux and Operto, 
2009) is another approach for characterizing the subsurface velocity. Its 
ultimate aim is to invert band-limited seismic data non-linearly for the full 
range of wavelength components of the velocity model. In common FWI 
applications, a local optimization scheme is used (each iteration being 
related to a linearization, i.e., the Born approximation) (Tarantola, 2005), so 
that an initial velocity model that is sufficiently good kinematically is 
needed to avoid local minima. Then, the non-linearity is sufficiently weak 
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and FWI can invert for long wavelength components. A reflectivity can be 
introduced within FWI to model first-order reflections but it must be 
converted into a velocity perturbation at each iteration for the velocity 
update (Claerbout, 1985; Berkhout, 1982; Xu et al., 2012). 

 
    Those two representations of the short wavelength components of the 
velocity model, i.e., model perturbation (Born) versus reflectivity 
(Kirchhoff), are commonly used. They are both based on a linearization, but 
each offers some specifics. For instance, Born approximation allows for 
modelling of first-order reflections on weak discontinuities and first-order 
diffractions, whereas Kirchhoff approximation allows for modelling of 
first-order reflections possibly on stronger discontinuities and postcritical 
reflections. The connections and differences between the two have been 
studied from different points of view, see, e.g., (Bleistein et al., 2001; Ursin 
and Tygel, 1997; Alferini, 2002; Beydoun and Jin, 1994). In this paper, we 
propose to emphasize those connections and differences in a refreshing way. 
 
    First, we briefly recall the chain of approximations leading to Kirchhoff 
modelling equations. We seize the opportunity to clarify some aspects 
related to Kirchhoff modelling, concerning possibly non-smooth propagating 
media and the linearity approximation on reflectors. Then, we detail how 
Kirchhoff and Born modelling can lead to very similar expressions and how 
we can derive a general expression for the conversion from velocity model 
perturbation into reflectivity (and conversely) through a “generalized 
reflectivity" concept. We propose a different demonstration than the one 
existing in the literature (Ursin and Tygel, 1997). We then point out, from a 
formal point of view, the strengths and weaknesses of the Kirchhoff and 
Born modelling schemes. 
 
The generalized reflectivity offers opportunities: 
   
• In the framework of traditional Kirchhoff modelling scheme: to model 

first-order effects that go beyond first-order reflections (like first-order 
diffractions).  

• On FWI approaches that include a reflectivity (Xu et al., 2012) or least 
squares migration approaches that can be based on Kirchhoff or Born 
modelling (Huang et al., 2016; Salomons et al., 2014): to rigorously 
convert the reflectivity into a velocity perturbation. 

• In the framework of traditional Kirchhoff inversion or true amplitude 
migration, for the interpretation by AVA of more information than the 
amplitudes associated to first-order reflections, for instance the 
amplitudes of first-order diffractors. Also, it would theoretically allow us 
to go beyond AVA analysis, inverting for the whole seismic image 
amplitude information (not only amplitude information at peaks) to 
recover the related velocity model perturbation. This is discussed 
formally in this article. 



	480 

KIRCHHOFF MODELLING AND INVERSION 
  
    In the following, 𝑡  represents time, 𝐫 = (𝑥, 𝑦, 𝑧) , position in the 
subsurface, 𝐫!, position of an impulsive source of signature 𝑠(𝑡) and 𝐫!, 
the receiver positions. Our time-direction Fourier transform convention is 
𝐴 𝜔 =  !!

!! 𝑑𝑡 𝑒!!"#𝑎(𝑡). We use capital letters for the Fourier transform 
result. 
 
     Seismic waves are frequently modelled assuming a constant density 
acoustic approximation, i.e., using the scalar wave equation where the 
subsurface model is parameterized by the velocity. The subsurface wavefield 
𝑝(𝐫! , 𝐫, 𝑡) generated by a point source at 𝐫! then obeys 
 
for 𝐫! ∈ ℜ𝑒!,∀𝐫 ∈ ℜ𝑒!:   
      [ !

!!(𝐫)
!!

!!!
− Δ]𝑝(𝐫! , 𝐫, 𝑡) = 𝛿(𝐫 − 𝐫!)𝑠(𝑡) 

      𝑝 𝐫! , 𝐫, 𝑡 = 0    and    !
!"
𝑝 𝐫! , 𝐫, 𝑡 = 0   for  𝑡 ≤ 0.             (1) 

 
𝑐 is the velocity of the subsurface. 𝑝 is assumed to satisfy the Sommerfeld 
radiation condition. 
 
 
Kirchhoff modelling 
 
    Reflectors (or “smooth physical interfaces") (Bleistein et al., 2001) are 
defined by discontinuities in the model 𝑐  that generate reflections. 
Reflections are defined within 0-order geometrical optics (0-g.o.) or 
high-frequency approximation by the events that satisfy the Snell-Descartes 
law, which imposes a particular direction to a reflected ray according to the 
direction of the corresponding incident ray (Bleistein et al., 2001; Červený, 
2001; Kravtsov and Orlov, 1990). (Contrariwise, diffraction events do not 
satisfy the Snell-Descartes law.) 
 
    In the following, we consider a subsurface composed of infinitely 
spread and sufficiently separated reflectors (in a sense that will be clarified 
later), with a sufficiently smooth velocity between reflectors from the 0-g.o. 
point of view. 𝑆!  denotes the position of one reflector surface in the 
subsurface. “Above 𝑆!” means in the “incident" medium by slight abuse of 
language, see Fig. 1. The Green function 𝑔(𝐫! , 𝐫, 𝑡)  of the subsurface 
satisfies eq. (1) with 𝑠(𝑡) = 𝛿(𝑡). It is decomposed above 𝑆! into: 
   
• An “incident" field 𝑔!"# that is generated by the source and does not 

interact with 𝑆! and the medium below 𝑆!; in other terms it satisfies  
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eq. (1) above 𝑆! with 𝑠(𝑡) = 𝛿(𝑡) and radiation (or “absorbing” 
boundary) conditions on 𝑆!.  

• A field 𝑔!"# = 𝑔 − 𝑔!"# that represents what remains, i.e., reflections 
generated on 𝑆! and events generated below 𝑆! that “come back" into 
the medium above 𝑆!. They are described through a boundary condition 
on 𝑆!.  

 
    We briefly remind the main steps that lead to the Kirchhoff modelling 
approximation.  
 
    Firstly, the 0-g.o. approximation (Červený, 2001, Kravtsov and Orlov, 
1990) for the Green function 𝐺!"# makes it possible to separate 𝐺!"# into 
the contributions related to each of the travel-time branches (or ray paths) 
that reach 𝑆! for the source or receiver sides: 
 
• The source-side Green function is  

   ∀𝐫 ∈ 𝑆!: 𝐺!"#(𝐫! , 𝐫,𝜔) ≈  !!! 𝐺!"#
(!) (𝐫! , 𝐫,𝜔)    

           𝐺!"#
! 𝐫! , 𝐫,𝜔 = 𝐴 ! 𝐫! , 𝐫 𝑒!!"!

! 𝐫!,𝐫 ,   
(2a) 

 
where 𝑖  denotes the travel-time branch numbers. 𝑁(𝐫!) denotes the 
number of direct travel-time branches (i.e., non-reflected, or refracted due 
to velocity inhomogeneities) and 𝑖 ≤ 𝑁(𝐫!)  refers to these arrivals. 
𝑖 > 𝑁(𝐫!)  refers to travel-time branches reflected (once or multiple 
times) within the medium above 𝑆! but not on 𝑆! (remembering that 
𝐺!"# denotes the field that does not interact with 𝑆! and the medium 
below). In eq. (2a), each wavefield on 𝑆! related to a travel-time branch 
(𝑖) is parameterized by an amplitude 𝐴(!)  and travel-time 𝑇(!)  that 
satisfy respectively the transport and eikonal equations (Červený, 2001, 
Kravtsov and Orlov, 1990). ∇𝐫𝑇(!)(𝐫! , 𝐫 ∈ 𝑆!) defines the direction of 
the 𝑖!! source-side travel-time branch “ray” on 𝑆!. 
  

• The receiver-side Green function 𝐺!"#  is defined in a similar way that in 
eq. (2a), with 𝐫! → 𝐫! and 𝑖 → 𝑗 in the notations above.  

 
Fig. 1 gives an illustration, with 𝑖 > 𝑁(𝐫!) for the source travel-time 

branch and 𝑗 ≤ 𝑁(𝐫!) for the receiver travel-time branch. An important 
quantity is the “incidence angle” 𝜃!"#

(!) (𝐫! , 𝐫)  that is the acute angle at 
position 𝐫 ∈ 𝑆! between ∇𝐫𝑇(!) and the unit vector 𝐧 normal to 𝑆! that 
points “downward” (well defined for smooth 𝑆!  only). 𝜃(!")(𝐫! , 𝐫, 𝐫!) 
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denotes half the angle at reflector positions between the 𝑖!!  source 
traveltime branch ray and the 𝑗!!  receiver traveltime branch ray. For 
“specular” source and receiver ray pairs, i.e. reflections (that satisfy the 
Snell-Descartes law) (Bleistein et al., 2001; Ursin and Tygel, 1997), we have 
𝜃!"#
(!) (𝐫! , 𝐫) = 𝜃(!")(𝐫! , 𝐫, 𝐫!). 

 
 
Fig. 1. Source and receiver travel-time branches related by a reflection “from above” on a 
reflector 𝑘.  
 
     Fig. 1 gives an illustration, with 𝑖 > 𝑁(𝐫!) for the source travel-time 
branch and 𝑗 ≤ 𝑁(𝐫!) for the receiver travel-time branch. An important 
quantity is the “incidence angle" 𝜃!"#

(!) (𝐫! , 𝐫)  that is the acute angle at 
position 𝐫 ∈ 𝑆! between ∇𝐫𝑇(!) and the unit vector 𝐧 normal to 𝑆! that 
points downward (well defined for smooth 𝑆!  only). 𝜃(!")(𝐫! , 𝐫, 𝐫!) 
denotes half the angle at reflector positions between the 𝑖!!  source 
travel-time branch ray and the 𝑗!!  receiver travel-time branch ray. For 
specular source and receiver ray pairs, i.e. reflections (that satisfy the 
Snell-Descartes law) (Bleistein et al., 2001; Ursin and Tygel, 1997), we have 
𝜃!"#
(!) (𝐫! , 𝐫) = 𝜃(!")(𝐫! , 𝐫, 𝐫!). 

  
    Secondly, the 0-g.o. (possibly complex) reflection coefficient on 𝑆! is 
introduced (Červený, 2001; Kravtsov and Orlov, 1990; Bleistein et al., 2001; 
Berkhout, 1982) 
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∀𝐫 ∈ 𝑆!:  

   𝑅 ! 𝐫! , 𝐫 = 𝑅 𝐫,𝜃!"#
! 𝐫! , 𝐫 = lim

!→!!

𝑐+(𝐫)cos(𝜃𝑖𝑛𝑐
(𝑖) (𝐫𝑠,𝐫))− 𝑐−2 (𝐫)−sin2(𝜃𝑖𝑛𝑐

(𝑖) (𝐫𝑠,𝐫))𝑐+
2 (𝐫)

𝑐+(𝐫)cos(𝜃𝑖𝑛𝑐
(𝑖) (𝐫𝑠,𝐫))+ 𝑐−2 (𝐫)−sin2(𝜃𝑖𝑛𝑐

(𝑖) (𝐫𝑠,𝐫))𝑐+
2 (𝐫)

   

   𝑐! 𝐫 = lim
!→!!

𝑐 𝐫 + 𝜖𝐧 𝐫 ,    𝑐! 𝐫 = lim
!→!!

𝑐 𝐫 − 𝜖𝐧 𝐫 .         (2b) 
 
    Kirchhoff approximation considers only source and receiver travel-time 
branches coupled with a single reflection from above on 𝑆!. This allows to 
relate linearly, within 0-g.o., 𝐺!"# to the reflection coefficients on 𝑆! and 
to 𝐺!"# . 𝑃!"#(𝐫! , 𝐫! ,𝜔) = 𝑆(𝜔)𝐺!"#(𝐫! , 𝐫! ,𝜔)  denotes the total reflected 
wavefield measured at the earth’s surface. 𝑃!"#,!

(!") (𝐫! , 𝐫! ,𝜔) represents the 
contribution of the 𝑖!! “source” travel-time branch, coupled with a single 
reflection from above on reflector 𝑘  to the 𝑗!!  “receiver” traveltime 
branch. In traditional Kirchhoff modelling approximation, we consider only 
the contributions related to direct (or refracted) source and receiver 
traveltime branches. Appendix A reminds the computation that leads to the 
Kirchhoff modelling approximation considering one reflector. Then, 
performing the linearity approximation on reflectors (supposing that the 
reflectors are in a configuration where they are separable almost everywhere, 
i.e. not too dense in a sense that will be clarified later), we sum each 
reflectors contribution and obtain the traditional Kirchhoff modelling 
approximation equation (Bleistein et al., 2001): 
 

𝑃!"#(𝐫! , 𝐫! ,𝜔) ≈  
!!!

 
!(𝐫!)

!!!

 
!(𝐫!)

!!!

𝑃!"#,!
(!") (𝐫! , 𝐫! ,𝜔) 

𝑃!"#,!
!" 𝐫!, 𝐫! ,𝜔 =  

!!
𝑑𝐫𝑅 ! ,𝜃 !" 𝐫!, 𝐫, 𝐫!

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
𝑐(𝐫) 𝐿!"#

(!")(𝐫!, 𝐫! , 𝐫,𝜔) 

𝐿!"#
!" 𝐫! , 𝐫! , 𝐫,𝜔 = 𝑖𝜔𝑆 𝜔 𝐺!"#

! 𝐫! , 𝐫,𝜔 𝐺!"#
! 𝐫, 𝐫! ,𝜔 .               (3) 

 
    All the performed approximations to obtain eq. (3) are valid for 
sufficiently high-frequencies (Bleistein et al., 2001), except the linearity 
approximation on reflectors that is physically valid for not too large velocity 
contrasts on the reflectors (even if eq. (3) is mathematically well defined for 
large contrasts). Subtleties about the linearity approximation on reflectors 
are discussed in Appendix A, related to non-direct travel-time branches 
( 𝑖 > 𝑁(𝐫!)  and 𝑗 > 𝑁(𝐫!) ) and incident Green functions that can be 
different for different reflectors. 
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    Interestingly, the stationary phase approximation allows the following 
replacement in eq. (3), even for non specular ray pair (Bleistein et al., 2001; 
Bleistein, 1987; Ursin and Tygel, 1997): 
  
         ∀𝐫 ∈ 𝑆!:    𝜃!"#

! 𝐫! , 𝐫    ⇔    𝜃 !" 𝐫! , 𝐫, 𝐫! .                 (4) 
 
    The 𝐺!"#

(!)  were defined using 0-g.o., eq. (2), for the demonstration of 
the Kirchhoff modelling equation. But, as we factorized them in the final 
result, eq. (3), a wave propagation scheme can also be used for their 
computation. Ultimately, computing the 𝐺!"#

(!)  should involve the true 
subsurface velocity 𝑐, considering only a direct traveltime branch. This is 
not easy when 𝑐  contains discontinuities. For instance within a 0-g.o. 
propagation this would imply resolving boundary conditions along each 
discontinuity in 𝑐. Within a wave propagation this would imply “muting" all 
reflections or the use of one-way propagators (Claerbout, 1985; Berkhout, 
1982). To avoid the need for this, it is common practice to introduce in the 
modelling a smooth velocity 𝑐!"# ← 𝑐 that best reproduces travel-times and 
amplitudes of a wavefield generated at the earth’s surface and measured at 
the reflector positions. A smooth velocity 𝑐!"#  that meets as well as 
possible those criteria can be defined through tomography (Woodward et al., 
2008; Lambaré, 2008). 
 
     However, if a strong reflector (i.e., a large velocity contrast such as a 
salt dome) is present in the true subsurface, i.e., in 𝑐, the use of a unique 
smooth velocity 𝑐!"#  will not be able to reproduce good amplitudes at 
positions below the reflector. A solution might involve considering two 
different smooth velocities: 𝑐!"#!"#$%  for propagations related to events 
occurring above the large contrast and 𝑐!"#!"!"# for propagations related to 
events occurring below the large contrast. This would permit more freedom 
in the modelling to better reproduce the phase and amplitude below the 
reflector (Yarman et al., 2013). The considerations of Appendix A allow to 
fundamentally understand that this remains in the spirit of the most general 
form of the linearity approximation on reflectors, where the incident Green 
functions can be different for different reflectors. 
 
 
Reflectivity distribution, Kirchhoff inversion and interpretation. 
 
     We convert the surface integral in eq. (3) into a volume integral to 
introduce the reflectivity 𝑅, i.e., a volumetric distribution of the reflection 
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coefficients. We use the “singular function of the reflector’s surface”, i.e. the 
Dirac delta distribution 𝛿!!(𝐫)  that spikes on 𝑆! , that satisfies 

 !!
𝑑𝐫 𝐴 𝐫 =  ! 𝑑𝐫𝐴

! 𝐫 𝛿!! 𝐫 , where 𝐴′ is a well-behaved extension of 
𝐴 (defined only for 𝐫 ∈ 𝑆!) in the whole volume 𝑉 (that contains 𝑆!). If 
𝑔!(𝐫) = 0  is an equation that defines the position of 𝑆! , its singular 
function is defined by (Bleistein et al., 2001) 
  
      𝛿!! 𝐫 = ∇𝑔! 𝐫 𝛿 𝑔! 𝐫 .                                (5) 
 
We obtain (choosing 𝑉 to be the space under the earth’s surface located at 
𝑧 = 0) (Bleistein et al., 2001) 
  

𝑃!"# 𝐫!, 𝐫! ,𝜔 ≈  
!(𝐫!)

!!!

 
!(𝐫!)

!!!

 
!!!

𝑑𝐫 𝑅(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!))𝐿!"#
(!")(𝐫!, 𝐫! , 𝐫,𝜔) 

𝑅 𝐫,𝜃 !" 𝐫!, 𝐫, 𝐫! =  !!! 𝑅 𝐫,𝜃 !" 𝐫!, 𝐫, 𝐫!
! !"# ! !" 𝐫!,𝐫,𝐫!

!!"# 𝐫
𝛿!! 𝐫 .  (6) 

 
    Eq. (6) represents the Kirchhoff volumetric modelling equation 
(Bleistein et al., 2001). The reflectivity 𝑅 represents a distribution that 
“points” on reflectors and contains information on the reflection coefficients 
𝑅. The reflectivity concept becomes interesting in the context of Kirchhoff 
inversion. Suppose we recorded seismic data 𝑃  at the earth’s surface, 
pre-processed to retain only first-order reflections, and produced a smooth 
subsurface model 𝑐!"# that allows computing 𝐿!"#

(!"). One can then invert the 
linear eq. (6) to recover the reflectivity 𝑅. Let us consider only given 
travel-time branches, i.e., given 𝑖  and 𝑗  values (for instance the ones 
related to the shortest traveltimes). We return to 𝜃!"#

(!)  (⇔ 𝜃(!")  for 
reflections) in eq. (6) for the practical purpose of removing the 𝐫! 
dependency of the reflectivity and allow inversions per full shot, 𝑅 𝐫! , 𝐫 =
𝑅(𝐫,𝜃!"#

(!) (𝐫! , 𝐫)) ⇔ 𝑅(𝐫,𝜃(!")(𝐫! , 𝐫, 𝐫!)). One obtains the following linear 
inversion for each shot, i.e. ∀𝐫! 
 

𝑅!"# 𝐫!, 𝐫 = 

      arg min
! ! ! ,𝐫

 𝑑𝜔  𝑑𝐫!|𝑃 𝐫!, 𝐫! ,𝜔 −  !!! 𝑑𝐫𝑅(𝐫!, 𝐫)𝐿!"#
!" (𝐫!, 𝐫! , 𝐫,𝜔)|!.   (7) 

 
This is called least-squares Kirchhoff inversion or true amplitude migration 
by shots (Claerbout, 1985; Tarantola, 2005; Bleistein, 1987). The reflectivity 
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is rigorously speaking a singular distribution, but the result of the 
band-limited (limited 𝜔  range) and aperture-limited (limited 𝐫!  range) 
inversion (7) gives an estimate 𝑅!"#(𝐫! , 𝐫) of the reflectivity “convolved” 
with a filter, that can be interpreted as a function. By making certain 
assumptions, amongst others one of real reflection coefficients, (Bleistein, 
1987) shows that (𝑅 then has the dimension of a time divided by a squared 
distance) 

 𝑅!"#(𝐫! , 𝐫) ≈  
!!!

𝑅(𝐫,𝜃!"#
(!) (𝐫! , 𝐫))

2cos(𝜃!"#
(!) (𝐫! , 𝐫))

𝑐!"#(𝐫)

!

𝛿!"(𝑔!(𝐫)) 

    𝛿!" 𝑔! 𝐫 = !
!
ℜ𝑒  𝑑𝜔 𝑒!"!! 𝐫 𝐹 𝜔 ,                       (8) 

 
where 𝐹 represents the residual (band-limited) wavelet present in the data 
(after pre-processing). It maps in 𝑅!"# (also called reflectivity by slight 
abuse of language) through eq. (8). The band-limited Dirac 𝛿!"  peaks 
where 𝑔!(𝐫) = 0 , i.e., on the reflector 𝑘  positions. The inverted 
reflectivity 𝑅!"# is thus also called an image of the reflectors, or seismic 
image (Tarantola, 2005; Bleistein, 1987; Claerbout, 1985). 𝐹 maps in the 
image in the direction perpendicular to the reflectors, see Appendix B. Of 
course enough frequency and receiver aperture ranges are needed so that the 
inversion (7) gives an unambiguous result, depending amongst others on the 
number of samples that describe the reflectivity. Eq. (8) allows us to deduce 
(Bleistein, 1987)  

∀𝐫 ∈ 𝑆!:   𝑅!"# 𝐫! , 𝐫 ≈ 𝛼 𝑅 𝐫,𝜃!"#
! 𝐫! , 𝐫

!"#$(!!"#
(!) (𝐫!,𝐫))

!!"#(𝐫)

!

  

          𝛼 = !
!
ℜ𝑒  𝑑𝜔 𝐹 𝜔 .                               (9) 

 
    Suppose we could pick the amplitude variations along the amplitude 
peaks of continuous events in the image, i.e., along reflector positions 𝑆!, 
and compute the incident angles 𝜃!"#  using rays or wavefield 
decomposition techniques and picked reflector dips. Then, using the 
definition of the reflection coefficient, eq. (2b), we can invert eq. (9) for 𝑐 
around reflector positions. This common method of interpretation of the 
seismic image is called “amplitude versus angle" (AVA) analysis (Russell, 
1988; Bleistein, 1987). 
 
    Now we can clarify what we previously meant by reflectors in a 
not-too-dense configuration almost everywhere. From the Kirchhoff 
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inversion point of view this means reflectors separated almost everywhere 
from each other by more than the source or receiver wavefield wavelengths 
at the dominant frequency. 
 
 
GENERALIZATION OF THE KIRCHHOFF REFLECTIVITY 
  
Born modelling approximation. 
 
    We now briefly recall the steps leading to Born modelling 
approximation (Bleistein et al., 2001). We consider eq. (1) and decompose 
the subsurface velocity 𝑐 into 
  
         !

!!(𝐫)
= !

!!!(𝐫)
+ 𝛿𝑙 𝐫 ,                                     (10) 

 
where 𝑐! is called a “reference" medium velocity, and 𝛿𝑙 is the squared 
slowness related to a “perturbation" of the reference medium. We 
decompose the subsurface wavefield into 𝑃(𝐫! , 𝐫,𝜔) = 𝑃!(𝐫! , 𝐫,𝜔) +
𝑃!"(𝐫! , 𝐫,𝜔), where the reference medium wavefield 𝑃! satisfies (in the 
time domain) a scalar wave equation like eq. (1) in medium 𝑐! with source 
wavelet 𝑠(𝑡) , and 𝑃!"  is the remaining wavefield (related to the 
perturbation 𝛿𝑙). 𝑃!" can be decomposed into a linear contribution and a 
non-linear contribution (Bleistein et al., 2001), 
𝑃!"(𝐫! , 𝐫! ,𝜔) = 𝑃!(𝐫! , 𝐫! ,𝜔) + 𝑃!"[𝑃!"](𝐫! , 𝐫! ,𝜔),  where (considering the 
earth’s surface at 𝑧 = 0)  
 
𝑃!(𝐫! , 𝐫! ,𝜔) = −(𝑖𝜔)!𝑆 𝜔  !!! 𝑑𝐫 𝛿𝑙(𝐫)𝐺!(𝐫! , 𝐫,𝜔)𝐺!(𝐫, 𝐫! ,𝜔)   

𝑃!"[𝑃!"](𝐫! , 𝐫! ,𝜔) = −(𝑖𝜔)!  !!! 𝑑𝐫 𝛿𝑙 𝐫 𝑃!" 𝐫! , 𝐫,𝜔 𝐺! 𝐫, 𝐫! ,𝜔 .   (11) 
 
𝐺!  denotes the causal Green function in the reference medium, i.e. 
satisfying eq. (1) with 𝑐 → 𝑐! and 𝑠(𝑡) = 𝛿(𝑡). Eq. (11) does not involve 
any approximation. The Born approximation deals with the linear 
contribution 𝑃!  for the wavefield perturbation 𝑃!" 𝐫! , 𝐫,𝜔 ≈
𝑃! 𝐫! , 𝐫,𝜔 , which represents a good approximation if  
 

 
!!!

𝑑𝐫 
1

𝑐!! 𝐫
≫  

!!!
𝑑𝐫 𝛿𝑙 𝐫   and  

1
𝑐!! 𝐫

≫ 𝛿𝑙 𝐫  

     ⟹ 𝑃! 𝐫! , 𝐫,𝜔 ≫ 𝑃!" 𝑃!" 𝐫! , 𝐫,𝜔 .                         (12) 
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This implies that 𝑐!  remains close to 𝑐  on average, i.e., reproduces 
travel-times of first-order scattered events. 
 
Reformulation of Born modelling and generalized reflectivity. 
 
    We reformulate the Born modelling equation in a way that allows a 
direct comparison with the Kirchhoff modelling eq. (6). Demonstrations that 
share a similar spirit can be found in (Ursin and Tygel, 1997; Alferini, 
2002). Here we propose a different demonstration that involves travel-time 
branches, and provide exhaustive detail on properties and consequences. 
 
    Firstly, as the Kirchhoff approximation involves 0-g.o. approximation, 
we introduce 0-g.o. for the propagation of 𝐺!. Secondly, we must constrain 
the perturbation 𝛿𝑙 to describe at least all reflectors of the true subsurface 
model 𝑐; more generally, we constrain it to describe all discontinuities of 
the subsurface. As a consequence 𝑐! will be smooth and we can consider 
only direct (refracted) travel-time branches 
  

       𝐺!(𝐫! , 𝐫,𝜔) ≈  !(𝐫!)
!!! 𝐺!

(!)(𝐫! , 𝐫,𝜔)   

       𝐺!
! 𝐫! , 𝐫,𝜔 =  𝐴 ! 𝐫! , 𝐫 𝑒!!"!

! 𝐫!,𝐫 .                     (13) 
 
    We moreover constrain 𝑐! so that it reproduces the travel-times of the 
first-order events, or in other words, so that it minimizes the travel-time 
corrections present in 𝑃!". A velocity that meets this criterion as much as 
possible can be defined through tomography (Woodward et al., 2008; 
Lambaré, 2008). There is thus a close link between 𝑐! and the smooth 
velocity 𝑐!"# introduced in Kirchhoff modelling. So, we consider 
  

       𝑐! 𝐫 ⇔ 𝑐!"# 𝐫    and  𝐺!
! 𝐫! , 𝐫,𝜔 ⇔ 𝐺!"#

! 𝐫! , 𝐫,𝜔 .       (14) 
 
    We next denote by 𝐫!"(𝐫) = (𝑥!"(𝐫), 𝑦!"(𝐫), 𝑧!"(𝐫))  any set of 
curvilinear coordinates obtained by transformation of the Cartesian 
coordinates 𝐫 = (𝑥, 𝑦, 𝑧); the superscript “𝑠𝑟" denotes that the curvilinear 
coordinates can be different for different 𝐫!  and 𝐫!  positions. The 
transformation must be well-defined, i.e. its Jacobian determinant must be 
non-null at every position 𝐫. To that aim, the curvilinear abscissa must not 



	 489 

cross. We choose a transformation 𝐫!"
(!")(𝐫) = (𝑥!"

(!")(𝐫), 𝑦!"
(!")(𝐫), 𝑧!"

(!")(𝐫)), 
where 𝑧!"

(!")(𝐫) is a curvilinear coordinate in the average direction of a 
direct ray that links 𝐫! to 𝐫, and of a direct ray that links 𝐫! to 𝐫, and 
(𝑥!"

(!")(𝐫), 𝑦!"
(!")(𝐫)) are cartesian coordinates measured in the (𝑥, 𝑦) system, 

see Fig. 2. The unit vector in the direction of the curvilinear abscissa 
𝑧!"
(!")(𝐫) is (using standard rules of 0-g.o.) 

  

𝐞!"
(!")(𝐫) = ∇(!(!)(𝐫!,𝐫)!!(!)(𝐫!,𝐫))

|∇(!(!)(𝐫!,𝐫)!!(!)(𝐫!,𝐫))|
   ⇒   !

!!!"
(!")(𝐫)

= 𝐞!"
(!")(𝐫).∇            (15)            

!

!!!"
!" 𝐫

(𝑇 ! (𝐫!, 𝐫)+ 𝑇 ! (𝐫! , 𝐫)) = |∇(𝑇 ! (𝐫!, 𝐫)+ 𝑇 ! (𝐫! , 𝐫))| =
! !"# ! !" 𝐫!,𝐫,𝐫!

!!"# 𝐫
. 

 
      The Jacobian matrix of the transformation is invertible because there 
is a unique incidence angle 𝜃(!") at each position. Using eq. (13), we can 
show that for sufficiently large frequencies (i.e., for the high-frequency 
leading term) we have (the derivatives in the following are defined from the 
distributional derivative point of view) 
 

∀𝐫 such that 𝜃(!")(𝐫! , 𝐫, 𝐫!) ≠ 𝜋/2:                                       
   
𝐺!"#

! 𝐫! , 𝐫,𝜔 𝐺!"#
! 𝐫, 𝐫! ,𝜔 ≈

                − !
!"

!

!!!"
!" 𝐫

!!"# 𝐫

! !"# ! !" 𝐫!,𝐫,𝐫!
𝐺!"#

! 𝐫! , 𝐫,𝜔 𝐺!"#
! 𝐫, 𝐫! ,𝜔 .    (16) 

 

     The area where 𝜃(!")(𝐫! , 𝐫, 𝐫!) = 𝜋/2 corresponds to the area where 
one ray can be directly traced between 𝐫! and 𝐫!, i.e. to the “diving waves". 
To avoid related singularities, we constrain the Green functions in eq. (13) to 
contain no diving-wave travel-time branches. In areas where only diving 
waves occur in the subsurface, the Green functions 𝐺!"#

(!)  are thus null. This 
does not reduce the generality of our considerations as, using notations 
introduced above, the diving waves are described by the 𝑃! term while the 
first-order scattered events (first-order reflections and diffractions) are 
described by the 𝑃! term. We also constrain without loss of generality 𝛿𝑙 
to be null at the earth’s surface. We then insert eq. (16) in eq. (11) and use 
integration by parts 
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𝑃! 𝐫! , 𝐫! ,𝜔                                                 (17)   

≈ 𝑖𝜔𝑆 𝜔  
! 𝐫!

!!!

 
! 𝐫!

!!!

 
!!!

𝑑𝐫 𝛿𝑙(𝐫)
𝜕

𝜕𝑧!"
(!")(𝐫)

{
𝑐!"#(𝐫)

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
𝐺!"#
(!) (𝐫!, 𝐫,𝜔)𝐺!"#

(!)(𝐫, 𝐫! ,𝜔)} 

≈ 𝑖𝜔𝑆 𝜔  
! 𝐫!

!!!

 
! 𝐫!

!!!

 
!!!

𝑑𝐫 {−
𝜕𝛿𝑙(𝐫)
𝜕𝑧!"

(!")(𝐫)
𝑐!"#(𝐫)

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
}𝐺!"#

(!) (𝐫!, 𝐫,𝜔)𝐺!"#
(!)(𝐫, 𝐫! ,𝜔) 

  +𝑖𝜔𝑆 𝜔  
! 𝐫!

!!!

 
! 𝐫!

!!!

 
!!!

𝑑𝐫 
𝜕

𝜕𝑧!"
(!")(𝐫)

{𝛿𝑙(𝐫)
𝑐!"#(𝐫)

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
𝐺!"#
(!) (𝐫!, 𝐫,𝜔)𝐺!"#

(!)(𝐫, 𝐫! ,𝜔)} 

≈ 𝑖𝜔𝑆 𝜔  ! 𝐫!
!!!  ! 𝐫!

!!!  !!! 𝑑𝐫 − !"# 𝐫

!!!"
!" 𝐫

!!"# 𝐫

! !"# ! !" 𝐫!,𝐫,𝐫!
𝐺!"#

! 𝐫!, 𝐫,𝜔 𝐺!"#
! 𝐫, 𝐫! ,𝜔 .  

  
   Details leading to the last relationship are given in this footnote1. This 
starts to look like the Kirchhoff modelling equation. Again, !"#(𝐫)

!!!"
(!")(𝐫)

 is 

defined from the distributional derivative point of view. We rewrite eq. (17) 
as 

𝑃! 𝐫! , 𝐫! ,𝜔 ≈  
! 𝐫!

!!!

 
! 𝐫!

!!!

 
!!!

𝑑𝐫 𝑅!"# 𝐫,𝜃 !" 𝐫! , 𝐫, 𝐫! 𝐿!
!" 𝐫! , 𝐫! , 𝐫,𝜔  

𝐿!
!" 𝐫! , 𝐫! , 𝐫,𝜔 = 𝑖𝜔𝑆 𝜔 𝐺!"#

! 𝐫! , 𝐫,𝜔 𝐺!"#
! 𝐫, 𝐫! ,𝜔  

𝑅!"# 𝐫,𝜃 !" 𝐫! , 𝐫, 𝐫! = − !!"# 𝐫

! !"# ! !" 𝐫!,𝐫,𝐫!
𝐞!"
!" 𝐫 .∇𝛿𝑙 𝐫 .         (18) 

  
    This main result consists of a reformulation of the Born approximation 
using 0-g.o. (Ursin and Tygel, 1997; Alferini, 2002). It looks like the 
Kirchhoff modelling eq. (6), where 𝑅!"# is the counterpart of the Kirchhoff 
																																																								
	
1	 	 We	denote	by	 𝐽(𝑖𝑗) 	 the	absolute	value	of	the	Jacobian	determinant	of	the	transformation	 𝐫𝑠𝑟

(𝑖𝑗)(𝐫) = (𝑥𝑠𝑟
(𝑖𝑗)(𝐫), 𝑦

𝑠𝑟
(𝑖𝑗)(𝐫), 𝑧𝑠𝑟

(𝑖𝑗)(𝐫))	
→	 𝐫 = (𝑥, 𝑦, 𝑧).	We	have	(with	slight	abuses	of	notation,	using	0-g.o.,	keeping	the	high-frequency	leading	term	in	the	penultimate	

line,	using	the	Sommerfeld	radiation	condition	for	 𝐺0 	 and	that	 𝛿𝑙	 is	null	at	the	earth’s	surface	in	the	last	line)	 	

 
!!!

𝑑𝐫 
𝜕

𝜕𝑧!"
(!")(𝐫)

{𝛿𝑙(𝐫)
𝑐!"#(𝐫)

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
𝐺!"#
(!) (𝐫!, 𝐫,𝜔)𝐺!"#

(!)(𝐫, 𝐫! ,𝜔)}

=  
!!"
(!")!!

𝑑𝐫!"
(!") 𝐽(!")

𝜕

𝜕𝑧!"
(!") {𝛿𝑙(𝐫!"

(!"))
𝑐!"#(𝐫!"

(!"))

2cos(𝜃(!")(𝐫!, 𝐫!"
(!"), 𝐫!))

𝐺!"#
(!) (𝐫!, 𝐫!"

(!"),𝜔)𝐺!"#
(!)(𝐫!"

(!"), 𝐫! ,𝜔)}	

	 	 	 	 	 	 	 	 	 	 ≈  !!"
!" !! 𝑑𝐫!"

!"  !
!!!"

(!") {𝐽(!")𝛿𝑙(𝐫!"
(!")) !!"#(𝐫!"

(!"))
!"#$(!(!")(𝐫!,𝐫!"

(!"),𝐫!))
𝐺!"#
(!) (𝐫!, 𝐫!"

(!"),𝜔)𝐺!"#
(!)(𝐫!"

(!"), 𝐫! ,𝜔)}	

	 	 	 	 	 	 	 	 	 	 ≈  𝑑𝑥!"
!" 𝑑𝑦!"

!"  [𝐽(!")𝛿𝑙(𝐫!"
(!")) !!"#(𝐫!"

(!"))
!"#$(!(!")(𝐫!,𝐫!"

(!"),𝐫!))
𝐺!"#
(!) (𝐫!, 𝐫!"

(!"),𝜔)𝐺!"#
(!)(𝐫!"

(!"), 𝐫! ,𝜔)]!!"(!")!!
!!"
(!")!!!	

	 	 	 	 	 	 	 	 	 	 ≈ 0. 
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reflectivity distribution. Note that the Kirchhoff approximation describes 
first-order reflections, whereas the Born approximation may contain more: it 
can describe any first-order events present in 𝑃! (using notations introduced 
above) like first-order diffractions. We call 𝑅!"# “generalized reflectivity" 
even if it can describe more than reflections. We now have to understand 
precisely the differences between 𝑅!"# and Kirchhoff reflectivity 𝑅 
 

 
Fig. 2. 𝜃(!"), 𝐞!"

(!") and 𝑧!"
(!") representation for a source and a receiver direct traveltime 

branches. 
 
Link between Born generalized reflectivity and Kirchhoff reflectivity 
 
     We here firstly verify if Born generalized reflectivity 𝑅!"#, eq. (18), 
reduces to the Kirchhoff reflectivity 𝑅 , eq. (6), when the perturbation 
contains only reflectors. We introduce the velocity perturbation 𝛿𝑐 defined 
by  
          𝑐 = 𝑐!"# + 𝛿𝑐. 
 
We have (using eqs. (10) and (14)) 𝛿𝑙 = 1/(𝑐!"# + 𝛿𝑐)! − 1/𝑐!"#! . Because 
𝛿𝑐  must be sufficiently small, we can perform a 1st-order Taylor 
development and obtain 𝛿𝑙 𝐫 ≈ −2 !" 𝐫

!!"#
! 𝐫

.  As 𝑐!"#  is smooth and 𝛿𝑐 

contains all the rapid velocity variations of the subsurface, we can consider 
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          ∇𝛿𝑙(𝐫) ≈ − !
!!"#
! (𝐫)

∇𝛿𝑐(𝐫). 

 
Inserting this result in eq. (18) we obtain 𝑅!"# as a function of the velocity 
perturbation for a smooth c!"# 
 

𝑅!"#(𝐫,𝜃(!")(𝐫! , 𝐫!𝐫!)) =
1

cos(𝜃(!")(𝐫! , 𝐫, 𝐫!))𝑐!"#! (𝐫)
𝐞!"
(!")(𝐫).∇𝛿𝑐(𝐫). (19)  

 
    Let us study what happens to the Born generalized reflectivity for a 
subsurface, i.e. a perturbation 𝛿𝑐, composed only of reflectors. This can be 
modelled by 
  
 𝛿𝑐 𝐫 =  !!! 𝑎! 𝐫 𝐻 𝑔! 𝐫 − 0.5 ,                (20) 
 
where 𝐻  is the Heaviside function, and 𝑎!(𝐫) a smooth (continuously 
differentiable) function with compact support that has the dimension of 
velocity, and simply “adjusts" the Heaviside jumps. When 𝐫 is on reflector 
𝑘 , 𝑎!(𝐫) equals the velocity jump Δ𝑐(𝐫) across the reflector (we use 
notation of eq. (2b) where 𝐧 is the normal to the reflectors continuously 
extended between reflectors) 
  
          ∀𝐫 ∈ 𝑆!:    𝑎!(𝐫) = Δ𝑐(𝐫)  
                     Δ𝑐 𝐫 = 𝑐! 𝐫 − 𝑐! 𝐫 .                  (21) 
 
     Evaluating the reflection coefficient, eq. (2b), when Δ𝑐 is small we 
obtain the linearized reflection coefficient 𝑅!"# (to 1st-order in 𝛿𝑐) 
  

𝑅 𝐫,𝜃 !" 𝐫!, 𝐫, 𝐫!
!"#$$ !!

𝑅!"# 𝐫,𝜃 !" 𝐫!, 𝐫, 𝐫! = !! 𝐫

!!!"# 𝐫 !"#! ! !" 𝐫!,𝐫,𝐫!
  (22) 

 
    We wish to compute the generalized reflectivity (19) corresponding to 
the velocity perturbation (20). We start by examining the 𝐞!"

(!").∇𝛿𝑐 term. 
We have 
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𝐞!"
!" 𝐫 .∇𝛿𝑐 𝐫 =  

!!!

𝐞!"
!" 𝐫 .∇𝑎! 𝐫 𝐻 𝑔! 𝐫 − 0.5  

                   

=  !!! 𝑎!(𝐫)𝐞!"
(!")(𝐫).∇𝐻(𝑔!(𝐫))

=  !!! 𝑎!(𝐫)𝐞!"
(!")(𝐫).∇𝑔!(𝐫)

!
!!!

𝐻(𝑔!(𝐫))

=  !!! Δ𝑐 𝐫 𝐞!"
!" 𝐫 .∇𝑔! 𝐫 𝛿 𝑔! 𝐫 .

 

 
    When inserted into eqs. (18) and (19), the contribution of the 

 !!! 𝐞!"
(!")(𝐫).∇𝑎!(𝐫)[𝐻(𝑔!(𝐫)) − 0.5] term is negligible compared to the 

contribution of the  !!! Δ𝑐(𝐫)𝐞!"
(!")(𝐫).∇𝑔!(𝐫)𝛿(𝑔!(𝐫)) term. Indeed, the 

second term leads to a sum of surface integrals [because of 𝛿(𝑔!(𝐫))] for 
which stationary phases exist for reflections whereas the first term (where 
𝑎!  is smooth) leads to a sum of volume integrals for which stationary 
phases exist for diving waves only. As the Green functions 𝐺!"#

(!)  entering 
into our Born modelling equation were constrained to contain no diving 
wave, the impact of the second term can be neglected in our case. The 
dominant contribution of 𝐞!"

(!")(𝐫).∇𝛿𝑐(𝐫) is thus given by [using eq. (22)] 

𝐞!"
!" 𝐫 .∇𝛿𝑐 𝐫  

→  
!!!

Δ𝑐(𝐫)𝐞!"
(!")(𝐫).∇𝑔!(𝐫)𝛿(𝑔!(𝐫)) 

=  
!!!

𝑅!"#(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!))2𝑐!"#(𝐫)cos!(𝜃(!")(𝐫!, 𝐫, 𝐫!))𝐞!"
(!")(𝐫).∇𝑔!(𝐫)𝛿(𝑔!(𝐫)). 

Inserting this result in eq. (19) gives 
 
𝑅!"# 𝐫,𝜃 !" 𝐫! , 𝐫, 𝐫! =

 !!! 𝑅!"#(𝐫,𝜃(!")(𝐫! , 𝐫, 𝐫!))
!"#$(!(!")(𝐫!,𝐫,𝐫!))

!!"#(𝐫)
𝐞!"
(!")(𝐫).∇𝑔!(𝐫)𝛿(𝑔!(𝐫)).  (23) 

 
    We can consider, again from stationary phase reasoning (Bleistein et 
al., 2001; Bleistein, 1987; Ursin and Tygel, 1997), 𝐞!"

(!")(𝐫).∇𝑔!(𝐫)⇔
|∇𝑔!(𝐫)|. Finally, using eq. (5), we obtain 
 

𝑅!"#(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!)) =  !!! 𝑅!"#(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!))
!"#$(!(!")(𝐫!,𝐫,𝐫!))

!!"#(𝐫)
𝛿!!(𝐫).   (24) 
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Gathering previous results we have  
Born generalized reflectivity: 
𝑅!"#(𝐫,𝜃(!")(𝐫! , 𝐫, 𝐫!))                                        (25) 

      = !
!"#(!(!")(𝐫!,𝐫,𝐫!))!!"#

! (𝐫)
𝐞!"
(!")(𝐫).∇𝛿𝑐(𝐫) 

        Describes first-order effects related to any kind of small  
        perturbations δc (first-order reflections and diffractions). 
 

      
!"#$"%&'!( !"#$

 !!! 𝑅!"# 𝐫,𝜃 !" 𝐫! , 𝐫, 𝐫!
! !"# ! !" 𝐫!,𝐫,𝐫!

!!"# 𝐫
𝛿!! 𝐫   

 with   θ(!")(𝐫!, 𝐫, 𝐫!)⇔ θ!"#
(!) (𝐫!, 𝐫) 

        Describes first-order reflections related to sufficiently weak  
        discontinuities. 
 
For comparison let us remember the content of Kirchhoff reflectivity, eq. (6)  
Kirchhoff  reflectivity! 
𝑅(𝐫,𝜃(!")(𝐫! , 𝐫, 𝐫!))                                          (26) 

      =  !!! 𝑅 𝐫,𝜃 !" 𝐫! , 𝐫, 𝐫!
! !"# ! !" 𝐫!,𝐫,𝐫!

!!"# 𝐫
𝛿!! 𝐫            

        with   θ(!")(𝐫!, 𝐫, 𝐫!)⇔ θ!"#! (𝐫!, 𝐫) 
        Describes first-order (possibly postcritical) reflections related to 
        (possibly larger) velocity discontinuities. 
 
    Let us discuss what we have learned. From the propagation point of 
view, Born 𝑐! has been constrained here to be very close to Kirchhoff’s 
𝑐!"#. According to previous considerations and Appendix A, Kirchhoff has a 
slight advantage over Born because Kirchhoff modelling may be more 
“effective" (the general form of the linearity approximation on reflectors 
allows different modellings for events above and below strong reflectors). 
From the reflectivity point of view, we notice main differences if we 
compare Born (25) to Kirchhoff (26): 
1. For reflections: Born is based on a linearized version 𝑅!"# of the 0-g.o. 

reflection coefficient 𝑅, whereas Kirchhoff is based on the full 0-g.o. 
reflection coefficient 𝑅 defined by eq. (2b). This represents an 
advantage for Kirchhoff in describing the following: 
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(a) reflections due to larger velocity contrasts, 
(b) larger incidence angle reflections, 
(c) complex reflections. 

These effects affect the phase of the wavefield, and are thus contained in 
the non-linear term 𝑃!" (using notations introduced above). Because the 
Born approximation does not account for it, these effects cannot be 
included in Born generalized reflectivity. As those effects that are 
non-linear with respect to the wavefield perturbation are still linear with 
respect to the full 0-g.o. reflection coefficient, they may be accounted for 
by Kirchhoff. But remind that the linearity approximation on reflectors 
physically implies not too large velocity contrasts, limiting the ranges of 
validity of points (a)-(c).  

2. For very dense reflector configurations: The generalized reflectivity 
remains well defined in the limit of a configuration where it is no longer 
possible to separate each reflector almost everywhere.  

3. For other first-order events (like first-order diffractions): Born can 
describe them whereas traditional Kirchhoff cannot. The price to pay is 
that the reflectivity must then depend explicitly on the receiver positions 
𝐫! through 𝜃(!")(𝐫! , 𝐫, 𝐫!) (obvious for diffractions because they radiate 
in every direction).  

 
    According to the first point, Kirchhoff contains more than Born. 
According to the second and third points, Born contains more than 
Kirchhoff. The considerations of this article allow us to gather the strengths 
of both schemes in a unique scheme: one may use Born’s generalized 
reflectivity 𝑅!"# together with the full reflection coefficient 𝑅 instead of 
the linearized reflection coefficient 𝑅!"# to model the reflections (only). 
 
 
SOME THEORETICAL CONSIDERATIONS ON THE UTILITY OF THE 
GENERALIZED REFLECTIVITY FOR INTERPRETATION. 
 
    The Kirchhoff inversion procedure has more flexibility than the direct 
inversion of the Born modelling equation. Indeed, the latter attempts to 
directly recover a material property of the subsurface 𝛿𝑙 (or 𝛿𝑐), which is 
independent of the source position. The least-squares inversion of Born 
modelling eq. (11) is a procedure that combines the data from all sources (𝑃 
represents data recorded at the earth’s surface, pre-processed to retain only 
first-order events)  
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min
!" 𝐫

 𝑑𝐫!  𝑑𝜔  𝑑𝐫!  |𝑃(𝐫! , 𝐫! ,𝜔)                                       

                    +(𝑖𝜔)!𝑆 𝜔  !!! 𝑑𝐫 𝛿𝑙 𝐫 𝐺! 𝐫! , 𝐫,𝜔 𝐺! 𝐫, 𝐫! ,𝜔 |!.        (27) 
 
    Kirchhoff inversion attempts to recover a reflectivity (or a seismic 
image) that is not a material property of the subsurface and depends on the 
source position. Thus Kirchhoff least-squares inversion, eq. (7), is done for 
each shot (or offset if the data are reorganized) independently. As a second 
step, the material properties of the subsurface are recovered by inverting the 
obtained reflectivity. This step has already been presented above to interpret 
amplitudes of the reflectors present in the seismic image. In the following 
we discuss how the generalized reflectivity concept allows us to interpret 
events other than reflectors in the seismic image. 
 
    Suppose we recorded data 𝑃 at the earth’s surface and pre-processed 
to retain only first-order events, with non-linear (or higher-order) events 
filtered out (in particular multiple reflections). Suppose we also produced a 
smooth subsurface model 𝑐!"# that allows us to compute 𝐺!"#

(!)  and 𝜃(!") 
for chosen direct travel-time branches. Traditional Kirchhoff inversion, eq. 
(7), inverts for a reflectivity 𝑅!"#(𝐫! , 𝐫) that does not depend on the receiver 
positions 𝐫!  (Bleistein, 1987). As the generalized reflectivity fits into a 
Kirchhoff modelling framework, eq. (25) can directly be used to interpret the 
result of a Kirchhoff inversion (7). Or course the most exhaustive scheme to 
invert for the generalized reflectivity should depend on the receiver positions 
because 𝜃(!!)(𝐫! , 𝐫, 𝐫!)  is included in the definition of the generalized 
reflectivity. This would not cause any formal difficulties but would lead to 
an inversion scheme that is different from the commonly implemented one, 
eq. (7), with additional ill-posed problems. Here we want our considerations 
to be applicable to the commonly implemented scheme. The obtained 𝑅!"# 
then represents a band-limited average of 𝑅!"#, eq. (25), over the receiver 
positions. If 𝑆!"# denotes the area over which the receiver are spread, we 
have 
  

𝑅!"# 𝐫! , 𝐫 ≈
1
𝑆!"#

 
!!"#

𝑑𝐫!  𝑅!"#!" (𝐫,𝜃(!")(𝐫! , 𝐫, 𝐫!)) ≈ 𝐚 𝐫! , 𝐫 .∇𝛿𝑐!" 𝐫  

  𝐚 𝐫! , 𝐫 = !
!!"#
! 𝐫

!
!!"#

 !!"#
𝑑𝐫!

!
!"#(!(!")(𝐫!,𝐫,𝐫!))

𝐞!"
(!")(𝐫),              (28) 
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where 𝛿𝑐!" is the band-limited version of the velocity perturbation (because 
in practice we deal with band-limited Kirchhoff inversion). Inverting eq. 
(28) for each shot would allow us to convert the seismic image (i.e. the 
reflectivity 𝑅!"# computed by traditional Kirchhoff inversion schemes) into 
a velocity perturbation 𝛿𝑐!" and vice-versa. More generally one could also 
invert eq. (28) for each source-receiver configuration. This offers 
opportunities for further interpretation of seismic images and also for FWI 
approaches that include a reflectivity, showing how to rigorously convert the 
reflectivity into a velocity perturbation. 
 
    We discussed above the traditional way to interpret seismic images, 
considering only the amplitudes of reflectors. But seismic data and images 
also contain events that are not related to reflections, for instance those 
related to diffractions. It has been kinematically understood why migration 
collapses first-order diffractions in the seismic image (Claerbout, 1985; Aki 
and Richards, 1980), and the generalized reflectivity considerations explain 
this from a fundamental point of view. Moreover, eq. (28) can be used to 
interpret events related to first-order diffractions, i.e., recover the 
perturbation 𝛿𝑐!" that generates them. If we deal with a stack over shots, 
we have from eq. (28) 
  

 𝑑𝐫! 𝑅!"# 𝐫! , 𝐫 ≈ 𝛼 𝐫  𝐞!"#$!%#(𝐫).∇𝛿𝑐!"(𝐫)                     

𝐞!"#$!%# 𝐫 =
1

𝛼 𝐫
𝐚!"#$% 𝐫   with  𝛼(𝐫) = 𝐚!"#$%(𝐫). 𝐚!"#$%(𝐫) 

𝐚!"#$% 𝐫 = !
!!"#
! 𝐫

!
!!"#

 !!"#
𝑑𝐫!  𝑑𝐫!

!
!"#(!(!")(𝐫!,𝐫,𝐫!))

𝐞!"
(!")(𝐫).                     (29) 

 
    The direction of the unit vector 𝐞!"#$!%# depends on the acquisition 
configuration and the propagation in the subsurface (through the 
"illumination direction" 𝐞!"

(!")  and 𝜃(!") ). As previously mentioned, for 
reflectors, a residual wavelet maps in the direction perpendicular to them 
whatever the acquisition. For spike diffractors, the wavelet will map in the 
𝐞!"#$!%# direction in the image stacked over shots, this direction depending 
on the acquisition configuration. We denote by 𝜂(𝐫)  the curvilinear 
abscissa defined by 𝐞!"#$!%#(𝐫)  and consider the transformation 
𝐫 = (𝑥, 𝑦, 𝑧) → (𝑥!(𝐫), 𝑦!(𝐫), 𝜂(𝐫)) , where 𝑥!(𝐫)  and 𝑦!(𝐫)  define the 
positions at the earth surface associated to 𝜂(𝐫). We have  
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        𝐞!"#$!%# 𝐫 .∇=
!

!" 𝐫
.                                (30) 

From eqs. (29) and (30), one has to integrate !
!(𝐫)

 𝑑𝐫! 𝑅!"#(𝐫! , 𝐫) over the 
curvilinear abscissa 𝜂  to recover the band-limited velocity perturbation 
𝛿𝑐!". We obtain, with slight abuse of notation 
  

𝛿𝑐!" 𝐫 =  ! 𝐫
! 𝑑𝜂!  !

! !! 𝐫 ,!! 𝐫 ,!!
 𝑑𝐫! 𝑅!"# 𝐫!; 𝑥! 𝐫 ,𝑦! 𝐫 , 𝜂! + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.    (31) 

 
𝐞!"#$!%#, eq. (29), is computable through the knowledge of the propagation 
directions of the source and receiver wavefields. The 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 can be 
computed by imposing that 𝛿𝑐!"(𝐫) is null at the earth’s surface. Thus the 
interpretation of more information than that associated with reflectors is 
theoretically possible using the generalized reflectivity. 
 
 
CONCLUSIONS 
 
    We recalled the chain of approximations leading to Kirchhoff and Born 
modelling equations. They both contain a linearization but each offers some 
specifics. The Kirchhoff approximation allows, for example, the modelling 
of first-order reflections on stronger discontinuities and postcritical 
reflections. Born approximation makes it possible to model reflections on 
weak discontinuities only, but also first-order events beyond reflections (like 
first-order diffractions). We pointed out from a fundamental point of view 
the strengths and weaknesses of these schemes. 
 
    We took the opportunity to clarify some aspects related to Kirchhoff 
modelling approximation, concerning possibly non-smooth propagating 
media and the linearity approximation on reflectors. We discussed how 
Kirchhoff and Born modelling lead a general expression for the conversion 
from velocity model perturbation to reflectivity (and conversely) through the 
generalized reflectivity concept. 
 
    The generalized reflectivity offers opportunities that have been 
discussed formally in the article: 
   
• On FWI approaches that include a reflectivity or least squares migration 

approaches that can be based on Kirchhoff or Born modelling: to 
rigorously convert the reflectivity into a velocity perturbation.  
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• In the framework of traditional Kirchhoff inversion or true amplitude 
migration: to interpret by AVA (amplitude versus angle) more 
information than the amplitudes associated to first-order reflections in 
seismic-migrated images, for instance the amplitudes of first-order 
diffractors. Also, it would theoretically allow us to go beyond AVA 
analysis, inverting for the whole seismic image amplitude information 
(not only amplitude information at peaks) to recover the related velocity 
model perturbation.  

• In the framework of traditional Kirchhoff modelling scheme: to model 
first-order effects that go beyond first-order reflections (like first-order 
diffractions).  
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APPENDIX A 
 
KIRCHHOFF MODELLING APPROXIMATION AND LINEARITY 
APPROXIMATION ON REFLECTORS 
	
    Considering previously introduced notations and the representation 
theorem (Aki and Richards, 1980; Bleistein et al., 2001), some 
manipulations allow us to demonstrate the so-called “Kirchhoff integral” 
(that does not involve any approximation) 
 
𝐺!"# 𝐫!, 𝐫! ,𝜔 = 

 
!!
𝑑𝐫 ∇𝐺!"# 𝐫!, 𝐫,𝜔 𝐺!"# 𝐫, 𝐫! ,𝜔 − 𝐺!"# 𝐫!, 𝐫,𝜔 ∇𝐺!"# 𝐫, 𝐫! ,𝜔 .𝐧 𝐫 .   

                                                         (A-1) 
 
The Kirchhoff approximation allows us to ease the resolution of eq. (A-1) by 
finding approximate 𝐺!"# and 𝐧.∇𝐺!"# values for those that enter into the 
integral. The essence is to assume the following relationship between the 
Green functions 𝐺!"#

(!)  and 𝐺!"#
!!)  along a reflector 𝑆! (Bleistein et al.,2001) 

 

∀𝐫 ∈ 𝑆!:  𝐺!"#
(!) (𝐫! , 𝐫,𝜔) ≈ 𝑅(!)(𝐫! , 𝐫)𝐺!"#

(!) (𝐫! , 𝐫,𝜔) 

         ∇𝐺!"#
! 𝐫! , 𝐫,𝜔 .𝐧 𝐫 ≈ −𝑅 ! 𝐫! , 𝐫 ∇𝐺!"#

! 𝐫! , 𝐫,𝜔 .𝐧 𝐫 ,   (A-2) 

 
where 𝑅(!) the reflection coefficient defined in eq. (2b). Inserting eq. (A-2) 
in eq. (A-1), using eq. (2a) and keeping the high-frequency leading terms 
gives (Bleistein et al., 2001) 𝐺!"#(𝐫! , 𝐫! ,𝜔) =  !,!!! 𝐺!"#

(!")(𝐫! , 𝐫! ,𝜔), where  

𝐺!"#
!" 𝐫!, 𝐫! ,𝜔 = 𝑖𝜔  

!!
𝑑𝐫 𝑅 𝐫,𝜃!"#

! 𝐫!, 𝐫 𝐧(𝐫).∇(𝑇 ! (𝐫!, 𝐫) + 𝑇(!)(𝐫! , 𝐫)) 

                      ×𝐺!"#
(!) (𝐫! , 𝐫,𝜔)𝐺!"#

(!)(𝐫, 𝐫! ,𝜔).           (A-3) 
 
    Using the property that the phase of this equation is stationary when the 
Snell-Descartes law for reflections is satisfied (Bleistein et al., 2001; Ursin 
and Tygel, 1997), we can make the following replacements in eq. (A-3) for 



	502 

sufficiently high frequencies (Bleistein et al., 2001; Bleistein, 1987; Ursin 
and Tygel, 1997): 
 
∀𝐫 ∈ 𝑆!:                   𝜃!"#

(!) (𝐫!, 𝐫)    ⇔     𝜃(!")(𝐫!, 𝐫, 𝐫!)                     

           𝑅(𝐫,𝜃!"#
(!) (𝐫!, 𝐫))    ⇔     𝑅(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!)) 

        𝐧 𝐫 .∇ 𝑇 ! 𝐫!, 𝐫 + 𝑇 ! 𝐫! , 𝐫  

                ⇔ |∇(𝑇(!)(𝐫!, 𝐫) + 𝑇(!)(𝐫! , 𝐫))| = 2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))/𝑐(𝐫). 
 
By inserting those results in eq. (A-3) and factorizing the 0-g.o.-Green 
functions, we obtain 
  

𝑃!"#(𝐫! , 𝐫! ,𝜔) =  
!,!!!

𝑃!"#
(!")(𝐫! , 𝐫! ,𝜔) 

𝑃!"#
!" 𝐫!, 𝐫! ,𝜔 =  

!!
𝑑𝐫𝑅(𝐫,𝜃(!")(𝐫!, 𝐫, 𝐫!))

2cos(𝜃(!")(𝐫!, 𝐫, 𝐫!))
𝑐(𝐫) 𝐿!"#

(!")(𝐫!, 𝐫! , 𝐫,𝜔) 

𝐿!"#
(!")(𝐫! , 𝐫! , 𝐫,𝜔) = 𝑖𝜔𝑆(𝜔)𝐺!"#

(!) (𝐫! , 𝐫,𝜔)𝐺!"#
(!)(𝐫, 𝐫! ,𝜔),             (A-4) 

 
where 𝑃!"#(𝐫! , 𝐫! ,𝜔) = 𝑆(𝜔)𝐺!"#(𝐫! , 𝐫! ,𝜔)  denotes the total wavefield 
reflected on 𝑆! and measured at the earth’s surface. Each 𝑃!"#

(!")(𝐫! , 𝐫! ,𝜔) =
𝑆(𝜔)𝐺!"#

(!")(𝐫! , 𝐫! ,𝜔) is related to a single reflection event on 𝑆! for the 
corresponding source and receiver travel-time branches. This is the so-called 
Kirchhoff modelling approximation equation for one reflector 𝑆!. Several 
extensions exist (Červený, 2001; Kravtsov and Orlov, 1990; 
Brandsberg-Dahl et al., 2003; ten Kroode et al., 1998; Stlok and De Hoop, 
2002; Beylkin, 1985, 1986; Berkhout, 1982; Weglein et al., 1997; ten 
Kroode, 2002; Malcolm et al., 2009). 
 
   Until now we have considered events occurring on a single reflector in 
Kirchhoff modelling eq. (A-4). Suppose the subsurface reflectors are in a 
configuration where they are separable almost everywhere, i.e. not too 
dense. The idea behind the linearity approximation on reflectors is to 
consider a Kirchhoff modelling equation like eq. (A-4) for each reflector and 
to sum them, in order to account for the contributions of all reflectors. We 
add subscript 𝑘 in eq. (A-4) to make explicit that it concerns reflector 𝑘: 
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obviously to 𝑃!"#,!
(!")  and 𝑃!"#,!

(!") , but also to 𝜃!
(!") and 𝐺!"#,!

(!)  because they 
describe results of propagation in the medium above 𝑆! excluding 𝑆!, thus 
different propagation results when different reflectors 𝑘 are considered. We 
obtain 
  

𝑃!"#(𝐫! , 𝐫! ,𝜔) =  
!!!

 
!,!!!

𝑃!"#,!
(!") (𝐫! , 𝐫! ,𝜔) 

𝑃!"#,!
!" 𝐫!, 𝐫! ,𝜔 =  

!!
𝑑𝐫𝑅(𝐫,𝜃!

(!")(𝐫!, 𝐫, 𝐫!))
2cos(𝜃!

(!")(𝐫!, 𝐫, 𝐫!))
𝑐(𝐫)

𝐿!"#,!
(!") (𝐫!, 𝐫! , 𝐫,𝜔) 

𝐿!"#,!
(!") (𝐫! , 𝐫! , 𝐫,𝜔) = 𝑖𝜔𝑆(𝜔)𝐺!"#,!

(!) (𝐫! , 𝐫,𝜔)𝐺!"#,!
(!) (𝐫, 𝐫! ,𝜔).          (A-5) 

 
     The Born approximation tells us that first-order scattering effects 
(such as first-order, or single, reflections and diffractions) can be modelled 
linearly regarding the wavefield if the velocity perturbation is not too strong. 
Applied to Kirchhoff modelling (based on the reflection coefficient and not 
on velocity perturbations), this linearity implies that each recorded single 
reflection event 𝑃!"#,!

(!")  can be associated with one Kirchhoff modelling 
equation of the form (A-5) if the reflection coefficients are not too large. The 
total reflected wavefield is obtained by “summing" the 𝑃!"#,!

(!")  (here over the 
reflectors and the traveltime branches). The traditional linearity 
approximation on reflectors (Bleistein et al., 2001) considers only the 𝑃!"#,!

(!")  
contributions to 𝑃!"#  related to direct source and receiver travel-time 
branches, i.e., 𝑖 ∈ [1,𝑁(𝐫!)] and 𝑗 ∈ [1,𝑁(𝐫!)]. Consequently, 𝐺!"#,!

(!)  and 
𝜃!
(!") can be considered as independent of reflectors 𝑘 (the presence of 

reflectors above a subsurface position does not condition directly the number 
of direct waves reaching the subsurface position). We denote them by 𝐺!"#

(!)  
and 𝜃(!") and finally obtain eq. (3). 
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APPENDIX B 
 
TIME-DEPTH EQUIVALENCY 
	
    Time-depth equivalency others things implies that the residual wavelet 
𝑓(𝑡)  present in Kirchhoff-inverted reflectivity maps in the direction 
perpendicular to the reflectors. In other terms 𝛿!"(𝑔!(𝐫))  in eq. (8) 
represents a band-limited delta distribution that “peaks" in the direction 
perpendicular to the interface 𝑘 (Bleistein et al., 2001; Bleistein, 1987). To 
demonstrate that, we perform a 1!" -order Taylor expansion of 𝑔!(𝐫) 
around the orthogonal projection of 𝐫 on interface 𝑘, denoted by 𝐫!(𝐫) 
 

𝐧(𝐫) = 𝑔!(𝐫!(𝐫)) + ∇𝐫!𝑔!(𝐫!(𝐫)). (𝐫 − 𝐫!(𝐫)) + 𝑜(|𝐫 − 𝐫!(𝐫)|
!) 

         = 𝐧(𝐫!(𝐫)). (𝐫 − 𝐫!(𝐫))|∇𝐫!𝑔!(𝐫!(𝐫))| + 𝑜(|𝐫 − 𝐫!(𝐫)|
!), (B-1) 

 

where 𝐧(𝐫!(𝐫)) =
∇𝐫!!!(𝐫!(𝐫))

|∇𝐫!!!(𝐫!(𝐫))|
 is the unit vector normal to the interface 𝑘  

 
at position 𝐫!(𝐫) that points “downward". The remainder term is negligible 
within 0-g.o., i.e. when the interface curvature (the 2nd-order derivatives of 
𝑔!) is sufficiently small. Using eq. (B-1), we have 
 
           𝛿!" 𝑔! 𝐫 ≈ !

∇𝐫!!! 𝐫! 𝐫
𝛿!" 𝐧 𝐫! 𝐫 . 𝐫 − 𝐫! 𝐫 .                  (B-2) 

 
Thus the smearing of 𝛿!"(𝑔!(𝐫)) due to the residual wavelet 𝐹 occurs in 
the direction 𝐧(𝐫!(𝐫)). 
 
 


