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ABSTRACT 
	
Hertweck, T., 2020. Rays in constant-gradient velocity fields: a tutorial. Journal of 
Seismic Exploration, 29: 527-548. 
  
 Ray theory is a high-frequency approximation to the wave equation and can be 
used to calculate seismic wavefields in 3D inhomogeneous Earth models. In general, the 
corresponding raytracing equations have to be solved numerically. However, for certain 
simplified models such as, for instance, an Earth described by a constant-gradient 
velocity field, the solutions of the raytracing system can be obtained analytically. In this 
tutorial the fundamental concepts are explained, the most important equations and their 
solution are presented, and examples highlighting the analytical nature of describing rays 
in constant-gradient velocity fields are shown. This tutorial is meant to complement text 
books where for space reasons detailed mathematical derivations are often neglected. 
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INTRODUCTION 
	
 Despite the rise of full-wavefield methods over the last decade, ray 
theory (see, e.g., Červený, 2001) is still frequently used in seismics. The 
main reason is its simplicity which often allows us to investigate and 
understand wave phenomena much easier than trying to look at the whole 
wavefield with all its complexity.  Ray theory is based on a high-frequency 
approximation to the wave equation and leads to two fundamental 
alternative equations, the eikonal equation and the transport equation.  While 
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the eikonal equation describes the kinematics, i.e., the paths of rays and 
traveltimes along them, the transport equation describes the dynamics, i.e., 
amplitudes along the rays (see, e.g., Popov, 2002). 
	
 Here I focus primarily on the eikonal equation (𝛻𝑡)! = 𝑣!! which is a 
nonlinear partial differential equation. The parameter 𝑡 is the traveltime 
(eikonal) and 𝑣 is the medium’s velocity, generally varying smoothly (as 
required by ray theory) in all three spatial dimensions. The eikonal equation 
can be solved directly for 𝑡 using numerical methods. This approach leads, 
for instance, to the well-known fast-marching eikonal solver by Sethian and 
Popovici (1999). Typically, however, the eikonal equation is solved in terms 
of characteristics (Bleistein, 1984), i.e., trajectories we call rays described by 
a system of ordinary differential equations, usually called the raytracing 
system. This system of equations can be expressed in various different ways, 
primarily dependent on the parameter that is used to describe a position 
uniquely along a ray (e.g., traveltime or arclength), see Červený (2001) for 
details. 
 
 For arbitrary velocity distributions in the subsurface, the raytracing 
system has to be solved numerically. However, in some special cases 
analytical solutions can be found. The simplest solution is obtained for a 
medium with constant velocity, 𝑣 = 𝑣! = const., where rays turn out to be 
straight lines. A more realistic scenario is a medium with a constant-gradient 
velocity field for which Slotnick (1936) published analytical solutions. Such 
a smooth velocity distribution in the subsurface is relatively common as 
velocity typically increases with depth and sedimentary structures or the 
Earth’s mantle can be approximated fairly well in such a way. Most readers 
probably know that under such circumstances rays form arcs of circles 
(Conrad, 1922). 
 
 In the following, I will look into this scenario in more detail, derive 
the main analytical results in a tutorial style and present some interesting 
observations. Many readers will be familiar with at least some of them. 
Nevertheless, this compact tutorial might shed some light on well-known 
phenomena and provide useful insight into the behavior of rays and 
wavefronts in simple types of media. I will investigate a medium where 
velocity depends only on depth 𝑧, in particular a velocity distribution 
𝑣 = 𝑣 𝑧 = 𝑣! + 𝑔𝑧 where 𝑔 > 0 is a constant gradient and 𝑣! the velocity 
at the source location assumed to be at the surface at 𝑥, 𝑧 = 0, 0 . In such 
a medium rays propagate within a single vertical plane, i.e., without loss of 
generality we can restrict our investigations to the 𝑥-𝑧 plane and assume 
𝑦 = 0. Furthermore, with the coordinate system properly aligned as outlined 
above, the slowness component 𝑝!! at the source is zero, i.e., 𝑝!!! + 𝑝!!! =
𝑣!!!, and 𝑝! remains zero throughout the medium. Hence, the eikonal 
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equation is given by 𝐴 = 𝑝!! + 𝑝!! = 𝑣!! = 𝑢! with 𝐮 = 𝛻𝑡 = 𝑝! , 0, 𝑝!  
being the slowness vector, and 𝐮 = 𝑢 = 𝑣!!. The slowness 𝑢, also named 
interval transit time, is the amount of time required for a wave to travel a 
certain distance; it is proportional to the reciprocal of velocity 𝑣. 
 
 
RAYTRACING SYSTEM 
 
 For a medium where velocity depends only on depth, 𝑣 = 𝑣 𝑧 , the 
raytracing system can be expressed as 
	
𝑑𝑥
𝑑𝜉

= 𝐴
!
!!! 𝑝! ;  

𝑑𝑝!
𝑑𝜉

= 0 ;  
𝑑𝑧
𝑑𝜉

= 𝐴
!
!!! 𝑝! ;  

𝑑𝑝!
𝑑𝜉

=
1
𝑛
𝜕
𝜕𝑧

1
𝑣!

  ,           1  

 
with a fifth equation that relates the traveltime to the general variable 𝜉 that 
specifies a position along the ray, namely 𝑑𝑡/𝑑𝜉 = 𝑣!! (Červený, 2001). 
The parameter 𝑛 = 0,±1,±2,… actually determines the specific variable 
along the ray. For instance, 𝜉 = 𝑡 (traveltime) for 𝑛 = 0 and 𝜉 = 𝑠 
(arclength) for 𝑛 = 1. This set of equations appears quite complex, so let us 
take a closer look. From the second equation of (1) it is obvious that 
𝑝! = 𝑝!! = const., which leads to the well-known fact that the horizontal 
slowness is constant in a velocity field that depends only on depth 𝑧. 
Typically, 𝑝! is called 𝑝 and termed the “ray parameter” or “raypath 
parameter” under such circumstances, as it uniquely specifies a raypath 
(Sheriff, 2002). The ray parameter can also be expressed as 
	

                     𝑝 =
sin 𝛼
𝑣

=
sin 𝛼!
𝑣!

    ,                                                                        2  

 
where 𝛼 is the instantaneous angle between the ray and the vertical, and 
correspondingly 𝛼! is the take-off angle at the source. This is also known as 
generalized Snell’s law. The eikonal equation can then be expressed as 
𝐴 = 𝑝! + 𝑝!! = 𝑣!! = 𝑢!. Solving for 𝑝! leads to 
	

                    𝑝! = ± 𝑣!! − 𝑝! = ± 𝑢! − 𝑝!      ,                                           3  
 
where the plus-sign holds for downgoing waves (assuming the depth axis 𝑧 
points downwards) and the minus-sign holds for upgoing waves that travel 
in negative 𝑧-direction. The equation is valid as long as 𝑝!𝑣! ≤ 1, otherwise 
the square root becomes negative and we end up with a complex vertical 
slowness. Note that eq. (3) depends only on 𝑧. The parameter 𝜉 can now be 
eliminated from the raytracing system and it can be expressed in terms of 
depth 𝑧 as 
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!"
!"
= ± !

!!!!!
= ± !"

!!!!!!
  ;     !"

!"
= ± !!

!!!!!
= ± !

! !!!!!!
 ,                   (4)  

 
 
assuming wave-propagation in positive 𝑥-direction. Note that looking at 
wave propagation in positive 𝑥-direction is no general restriction to the 
problem at hand as it is symmetric about the direction of the velocity 
gradient, i.e., the vertical axis in this case. Solutions for negative 𝑝 and wave 
propagation in negative 𝑥-direction are in principle identical to solutions for 
positive 𝑝 and wave propagation in positive 𝑥-direction. 

	

DIRECT WAVE 
 
 Assuming a constant-gradient velocity field, 𝑣 = 𝑣! + 𝑔𝑧 with 𝑔 > 0, 
as outlined above we can easily integrate eqs. (4) analytically to obtain 
solutions for 𝑥 𝑝, 𝑧  and 𝑡 𝑝, 𝑧  for the downgoing direct wave (i.e., we use 
the plus-sign in above equations). For distance 𝑥 we obtain (see Appendix A 
for details) 

              𝑥 𝑝, 𝑧 =
1
𝑔𝑝

1 − 𝑝!𝑣!! − 1 − 𝑝!𝑣! 𝑧      ,                               5  

 
and for the traveltime 

       𝑡 𝑝, 𝑧 =
1
𝑔
 ln
𝑣 𝑧   1 − 𝑝!𝑣!! + 1

𝑣!  1 − 𝑝!𝑣! 𝑧 + 1
     .                                           6  

 
 Obviously, any direct wave with 𝑝 ≠ 0 will only reach a certain finite 
depth 𝑧!"#. This penetration depth can be found using the generalized 
Snell’s law from eq. (2) by setting 𝛼 = 90∘ at the maximum depth 𝑧!"# 
where the ray bottoms out: 
	
sin 90∘

𝑣 𝑧max
=

1
𝑣! + 𝑔𝑧max

= 𝑝 = const.     ⇒       𝑧max 𝑝 =
1
𝑔
𝑝!! − 𝑣!       7  

 
 Solving eq. (5) for 𝑝 allows us to determine the ray take-off angle 𝛼! 
at the source of a downgoing wave that arrives at an arbitrary location 𝑥, 𝑧  
with 𝑥 > 0 in the subsurface, as well as the incidence angle 𝛼 at that point 
(see Fig. 1), provided 𝑝!𝑣! ≤ 1: 
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             𝑝 =
2𝑥

𝑔! 𝑥! + 𝑧! ! + 4𝑣! 𝑥! + 𝑧! 𝑣 𝑧
=
sin 𝛼!
𝑣!

=
sin 𝛼
𝑣 𝑧

 ,          8  

 
that means 𝛼! = arcsin 𝑝𝑣!  and 𝛼 = arcsin !" 𝑧 . Obviously, under the 
given circumstances 𝛼 > 𝛼!. 
 
 

 
Fig. 1. The ray take-off angle 𝛼! at the source and the incidence angle 𝛼 of the 
downgoing ray at an arbitrary depth point 𝑥, 𝑧 . Note that 𝛼 > 𝛼! if 𝑔 > 0 or, in other 
words, the downgoing ray bends away from the vertical. 
	
 
 The integrals shown in Appendix A can only be used for the 
downgoing wave as otherwise the negative signs in eqs. (4) have to be 
considered. In other words, for a receiver at the surface (assumed to be 
planar and horizontal) we need two integrals each to calculate the distance 𝑥 
and the traveltime 𝑡, one integral for the downgoing path and another 
integral for the upgoing path. However, as the problem is symmetric about 
the turning point at 𝑧!"#, we can simply use solutions (5) and (6) with 
𝑧 = 𝑧!"# and multiply by 2. As 𝑣 𝑧!"# = 𝑣! + 𝑔𝑧!"# = 𝑝!!, we obtain 
 

        𝑥 𝑝 =
2
𝑔𝑝

1 − 𝑝!𝑣!!        ,                                                                   9  
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and 

        𝑡 𝑝 =
2
𝑔
 ln

1 − 𝑝!𝑣!! + 1
𝑝𝑣!

     .                                                        10  

 
These two equations hold for a receiver at the surface, i.e., for diving waves. 
Using both of them we can eliminate 𝑝 and obtain the traveltime as a 
function of offset, i.e., 𝑡 𝑥 . Solving 𝑥 𝑝 , eq. (9), for 𝑝 and inserting the 
result into 𝑡 𝑝 , eq. (10), leads to (see Appendix B for details) 
	

                𝑡 𝑥 =
2
𝑔
 arsinh

𝑥𝑔
2𝑣!

    ,                                                                    (11) 

 
which is the traveltime-distance function for diving waves. An example is 
shown in Fig. 2. 
	

	
	
	
Fig. 1. Traveltime-distance curve (solid line) for diving waves given a velocity field 
𝑣 𝑧 = 1500 m/s+ 0.8 s-1𝑧. The traveltime of a wave traveling along the surface with 
𝑣! = 1500 m/s is shown for comparison as dashed line. The lower part of the figure 
shows five rays associated with diving waves for offsets between 1000 and 5000 m. The 
maximum penetration depth of the diving wave for the longest offset of 5000 m is 
𝑧max = 1250 m. 
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 Diving waves play an important role in applications of, for instance, 
full-waveform inversion. If a regional constant-gradient velocity field can be 
used to approximate the real Earth, eqs. (7) and (9) can be used to estimate 
the maximum penetration depth of diving waves for any given maximum 
offset 𝑥 we can record during acquisition. We simply have to determine the 
ray parameter for the maximum offset and can subsequently determine 𝑧!"# 
and the corresponding traveltime using either 𝑡 𝑝  or 𝑡 𝑥 . In other words, 
although these equations are rather simplistic, they can be used to obtain 
quick estimates in real-world applications, for instance the maximum depth 
for which we can expect updates in applications of diving-wave full-
waveform inversion. 
 
 Eqs. (5) and (6) can be used to implement, for instance, rather 
efficient migration methods (see, e.g., Michaels, 1977). Again, while this is 
no longer adequate for accurate imaging in today’s challenging complex 
exploration environments, it is a great exercise in any applied Geophysics 
class and it provides a lot of insight to implement a basic Kirchhoff depth 
migration algorithm (Schneider, 1978) based on analytical traveltime 
solutions for constant-velocity or constant-gradient velocity media using 
eqs. (6) and (8). In this case, 𝑥 would be the horizontal distance between the 
position of the source 𝑆 or receiver 𝑅, respectively, of a seismic trace to be 
migrated and the image point 𝑀, yielding the one-way traveltimes 𝑡!" and 
𝑡!", respectively, as required by Kirchhoff migration. 
 
 
CIRCLES 
 
 Although it was stated that rays in a constant-gradient velocity field 
form arcs of circles, it has not been shown mathematically. However, we can 
take eq. (5), re-arrange the terms, and express 𝑣 𝑧  explicitly in terms of 𝑧. 
It then reads 

           𝑥 −
1 − 𝑝!𝑣!!

𝑔𝑝
= −

1 − 𝑝! 𝑣! + 𝑔𝑧 !

𝑔𝑝
     .                                     12 	

Squaring the equation and again re-arranging the terms, we arrive at 
	

            𝑥 −
1 − 𝑝!𝑣!!

𝑔𝑝

!

+ 𝑧 +
𝑣!
𝑔

!
=

1
(𝑔𝑝)!

    .                                       13  

 
This is a typical coordinate equation for a circle 
	
            𝑥 − 𝑥! ! + 𝑧 − 𝑧! ! = 𝑟!     ,                                                               14  
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where 𝐶 = 𝑥! , 𝑧!  is the center of the circle and 𝑟 its radius. In other words, 
for a given ray parameter 𝑝, rays do indeed form arcs of circles with the 
center of the circle and its radius given by 
	

          𝑥! , 𝑧! =
1 − 𝑝!𝑣!!

𝑔𝑝
,−
𝑣!
𝑔

  ;  𝑟! =
1
𝑔𝑝
     ,                                  15  

 
provided the source is located at 𝑥, 𝑧 = 0,0 . It is worthwhile to note that 
for 𝑔 > 0 the center of the circle is located above the surface at negative 𝑧, 
and it moves parallel to the surface as 𝑝 changes. In fact, the center is simply 
located at the depth 𝑧! where 𝑣 𝑧! = 0, which allows for an easy 
geometrical interpretation. Obviously, the smaller the gradient or the smaller 
the take-off angle 𝛼! at the source, the larger the radius of the circle. And as 
expected, for 𝑔 approaching zero (i.e., the medium turns into a 
homogeneous constant-velocity medium) or 𝑝 approaching zero (i.e., the ray 
leaves the source vertically downwards), the radius approaches infinity 
which means rays become straight lines. Fig. 3 compares numerical and 
analytical results and we observe a perfect match between the numerically 
traced ray in the subsurface and the superimposed analytical circle. 

	

 
 
Fig. 2. Exemplary comparison of a numerically traced ray (solid bold line) with a take-off 
angle of 30∘ at the source 𝑆 through the velocity field 𝑣 𝑧 = 1500 m/s+ 1.2 s!!𝑧 and 
an analytically calculated circle (dashed line) according to eq. (13). In this example, the 
center of the circle is located at 𝑥! , 𝑧! = 2165.05 m,−1250 m  and the radius is 
𝑟! = 2500 m. According to eq. (9) the receiver 𝑅 is located at 𝑥 =  4330.1 m (obviously 
twice 𝑥!, as expected). 
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 The length 𝑠 of the ray can easily be determined from geometrical 
considerations. The arclength of the circular segment below the surface is 
given by 

              𝑠 = 2𝑟!   arcsin
𝑥
2𝑟!

=
2
𝑔𝑝

 arcsin
𝑔𝑝𝑥
2

      ,                                    16  

 
see, e.g., Bronshtein et al. (2015). Inserting 𝑥 from eq. (9) leads to 
	

               𝑠 𝑝 =
2
𝑔𝑝

 arcsin 1 − 𝑝!𝑣!!      .                                                    17  

 
Interestingly, the iso-line of equal traveltime, or wavefront, can for any fixed 
𝑡 also be described by a circle (see, e.g., Van Melle, 1948). As derived in 
Appendix C, this circle is given by 

	

               𝑥! + 𝑧 +
𝑣!
𝑔

1 − cosh𝑔𝑡
!
=

𝑣!
𝑔
 sinh 𝑔𝑡

!
   .                      18  

 
This means, the time-dependent center and radius are 

	

         𝑥! , 𝑧! = 0,−
𝑣!
𝑔

1 − cosh 𝑔𝑡   ;  𝑟! =
𝑣!
𝑔
 sinh 𝑔𝑡       .        19  

 
 
 It is worthwhile to note that 𝑥! is always zero independent of 𝑡, i.e., 
the center of the wavefront circle is simply moving down (for increasing 
traveltimes and positive gradients) the 𝑧-axis. Fig. 4 shows an example of 
rays and corresponding wavefronts for certain fixed traveltimes 𝑡. 
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Fig. 3. Rays (solid bold lines) and wavefronts (dashed line) for a velocity field 
𝑣 𝑧 = 1500 m/s+ 0.8 s!!𝑧. Rays are plotted for take-off angles from 5∘ to 70∘ in steps 
of 5∘ until 50∘ and in steps of  10∘ beyond, using eq. (13). Wavefronts are plotted in the 
range 𝑡 =  0.25 s to 3.!  s in steps of 0.25 s, using eq. (18). It can already be observed 
visually that wavefronts seem perpendicular to rays. 
 
 
 It is well known that a wavefront is perpendicular to rays in an 
isotropic medium for any fixed traveltime 𝑡 (e.g., Červený, 2001). Having 
derived the circle equations for the rays and wavefronts, respectively, we can 
prove it by checking whether the circle defining a ray and the corresponding 
circle of the wavefront intersect each other orthogonally. Using the 
Pythagorean theorem, two circles of radii 𝑟! and 𝑟! whose centers are a 
distance 𝑑 apart are orthogonal if 𝑟!! + 𝑟!! = 𝑑! (see, e.g., Casey, 1886). 
Using eqs. (15) and (19), the squared distance between the centers of the 
circles is given by 
 

          𝑑! = (𝑥! − 𝑥!)! + (𝑧! − 𝑧!)! =
1 − 𝑝!𝑣!!

(𝑔𝑝)!
+
𝑣!!

𝑔!
 cosh!(𝑔𝑡)    .    20  

 
 
Evaluating the criterion of orthogonality mentioned above, 

	

𝑟!! + 𝑟!! − 𝑑! =
1

(𝑔𝑝)! +
𝑣!!

𝑔!   sinh
! 𝑔𝑡
 

!!"#$! !" !!

−
1− 𝑝!𝑣!!

(𝑔𝑝)! +
𝑣!!

𝑔!  cosh
! 𝑔𝑡 = 0 , 21  

 
now indeed proves that any ray and a wavefront are perpendicular under the 
given conditions. This holds for arbitrary, fixed traveltimes 𝑡. 
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REFLECTED WAVE 
 
 Let us assume there is a horizontal reflector at depth 𝑧!. The P-wave 
velocity in the reflector’s overburden can be described by a constant-
gradient function 𝑣 𝑧 = 𝑣! + 𝑔𝑧 as before. The S-wave velocity in the 
reflector’s overburden can be described by another constant-gradient 
function 𝑤 𝑧 = 𝑤! + ℎ𝑧 with, in general, 𝑤 𝑧 < 𝑣 𝑧 . A receiver is 
located at point 𝑥! , 𝑧!  with 𝑧! ≥ 0, see Fig. 5 for details. 

	

 
 
 
Fig. 5. Direct wave and reflected wave for a reflector at depth 𝑧! and a receiver at 
𝑥! , 𝑧! , for instance in a borehole. The reflection point is given by 𝑥! , 𝑧! . The P-wave 

velocity in the reflector’s overburden is annotated by 𝑣 𝑧 , the S-wave velocity by 𝑤 𝑧 . 
Both are constant-gradient velocity functions. 
 
 
 We can now calculate 𝑥 𝑝, 𝑧!  and 𝑡 𝑝, 𝑧!  in a similar way to eqs. 
(5) and (6), of course provided that the ray ever hits the reflector at all (this 
will not be the case for all 𝑝). However, as there are two ray branches, one 
downgoing and one upgoing, we have to adjust the sign and use two 
integrals as outlined earlier. In general, 𝑥 for converted waves can be 
calculated as follows: 
 

            𝑥!" 𝑝, 𝑧! =
𝑝𝑣

1 − 𝑝𝑣 !

!!

!

 𝑑𝑧 −
𝑝𝑤

1 − 𝑝𝑤 !

!!

!!

 𝑑𝑧    .               22  

 
In order to calculate 𝑥 for a PP reflection, we can simply use 𝑣 𝑧  instead of 
𝑤 𝑧  for the second integral, as the mode conversion happens at the reflector 
at depth 𝑧!. The ray parameter 𝑝 remains constant, independent of the type 
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of reflected wave (Snell’s law). This type of integral has already been solved 
earlier, that means we can readily write down the solutions: 

	

            
𝑥!" 𝑝, 𝑧! =

1
𝑔𝑝

1 − 𝑝!𝑣!! − 1 − 𝑝!𝑣! 𝑧! +

1
ℎ𝑝

1 − 𝑝!𝑤! 𝑧! − 1 − 𝑝!𝑤! 𝑧!
                23  

 
for a PS reflected wave, and for a PP reflected wave we obtain 
	

𝑥!! 𝑝, 𝑧! =
1
𝑔𝑝

1 − 𝑝!𝑣!! + 1 − 𝑝!𝑣! 𝑧! − 2  1 − 𝑝!𝑣! 𝑧!   . 24  

 
In a similar way, the traveltime for PS reflections can be calculated by 
	

          𝑡!" 𝑝, 𝑧! =
1

𝑣  1 − 𝑝𝑣 !

!!

!

 𝑑𝑧 −
1

𝑤  1 − 𝑝𝑤 !

!!

!!

 𝑑𝑧     ,         25  

 
and we can again use 𝑣 𝑧  instead of 𝑤 𝑧  if we would like to obtain the 
solution for PP reflections. Evaluating the integrals as before, we get 
	

𝑡!" 𝑝, 𝑧! =
1
𝑔  ln

𝑣 𝑧!   1− 𝑝!𝑣!! + 1

𝑣!  1− 𝑝!𝑣! 𝑧! + 1
−
1
ℎ  ln

𝑤 𝑧!   1− 𝑝!𝑤! 𝑧! + 1
𝑤 𝑧!   1− 𝑝!𝑤! 𝑧! + 1

       26  

 
for a PS reflected wave, and for a PP reflected wave the traveltime is given 
by 

𝑡!! 𝑝, 𝑧! =
1
𝑔
 ln
𝑣! 𝑧!   1 − 𝑝!𝑣!! + 1   1 − 𝑝!𝑣! 𝑧! + 1

𝑣!𝑣 𝑧!   1 − 𝑝!𝑣! 𝑧! + 1
!      .  27  

 
By setting 𝑧! = 0, i.e., 𝑣 𝑧! → 𝑣! and 𝑤 𝑧! → 𝑤!, we can simulate a 
receiver at the surface. The previous formulas then simplify and read 
	

𝑥!" 𝑝 =
1
𝑔𝑝 1− 𝑝!𝑣!! − 1− 𝑝!𝑣! 𝑧! +

1
ℎ𝑝 1− 𝑝!𝑤!! − 1− 𝑝!𝑤! 𝑧! , 	

	
	 	 	 	 	 	 	 	 	 	 	    (28) 
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𝑥!! 𝑝 =
2
𝑔𝑝

1 − 𝑝!𝑣!! − 1 − 𝑝!𝑣! 𝑧!       ,                                       29  

𝑡!" 𝑝 =
1
𝑔  ln

𝑣 𝑧!   1− 𝑝!𝑣!! + 1

𝑣!  1− 𝑝!𝑣! 𝑧! + 1
−
1
ℎ  ln

𝑤!  1− 𝑝!𝑤! 𝑧! + 1

𝑤 𝑧!   1− 𝑝!𝑤!! + 1
   ,             30  

𝑡!! 𝑝 =
2
𝑔
ln
𝑣 𝑧!   1 − 𝑝!𝑣!! + 1

𝑣!  1 − 𝑝!𝑣! 𝑧! + 1
         .                                                31  

 
 An interesting check of these formulas is considering a gradual move 
towards a constant-velocity medium, i.e., we let the gradients approach zero. 
Unfortunately, considering for instance the limit of eq. (29) as 𝑔 approaches 
zero leads to an indeterminate form of the type “0/0”. We can, however, use 
L’Hospital’s rule for functions 𝑦 𝑔  and 𝑧 𝑔 , which states lim!→! 𝑦 𝑔 /
𝑧 𝑔 = lim!→! 𝑦! 𝑔 /𝑧! 𝑔  if the limit of the latter actually exists 
(Bronshtein et al., 2015). Applying the rule to 𝑥!! 𝑝  and calculating the 
derivatives of the numerator and denominator with respect to 𝑔 shows that 

           𝑥!! =
2𝑝𝑣!𝑧!
1 − 𝑝!𝑣!!

                                                                                      32  

 
as 𝑔 approaches zero. In a similar way, we can calculate the limit of 𝑡!! 𝑝  
as 𝑔 approaches zero which yields 

            𝑡!! =
2𝑧!

𝑣!  1 − 𝑝!𝑣!!
      .                                                                          33  

 
Now, solving eq. (32) for 𝑝! yields 

            𝑝! =
𝑥!

𝑣!!  𝑥! + 4𝑧!
       ,                                                                          34  

 
and inserting the latter into eq. (33) leads to 
	

            𝑡!! 𝑥 =
(2𝑧!)!

𝑣!!
+
𝑥!

𝑣!!
= 𝑡!! +

𝑥!

𝑣!!
      ,                                           35  

 
with 𝑡! = 2𝑧!/𝑣! being the vertical two-way traveltime, which is the 
famous hyperbolic traveltime formula for a flat reflector at depth 𝑧! with a 
constant-velocity overburden (see, e.g., Yilmaz, 2001). 
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 The position 𝑥! of the reflection point for a given offset (or receiver 
position at the surface) 𝑥 and reflector depth 𝑧! can be obtained by solving 
eq. (28) or (29), respectively, for 𝑝 and then using eq. (5) and the velocity 
𝑣 𝑧!  to calculate 𝑥!. Obviously, in case of PP reflections 𝑥! is constant and 
always equals half the offset, independent of the reflector depth ! !. 
However, in case of PS reflections the position of 𝑥! changes with reflector 
depth 𝑧!. Unfortunately, there is no closed analytical solution when solving 
eq. (28) for 𝑝, i.e., we can only solve the equation numerically for specific 
problems. 
 
 Let us assume 𝑣! = 1000 m/s, 𝑔 = 0.6 𝑠!! and 𝑤 𝑧 = 𝑣 𝑧 / 3, 
i.e., the P-wave to S-wave velocity ratio is 3. Furthermore, the source-
receiver offset is fixed at 𝑥 = 1500 m. In this case, we can numerically 
calculate the position of 𝑥! as function of 𝑧!. We can also compute the ray 
take-off angle at the source, the incidence angle at the reflector, or the 
traveltime as function of 𝑧!. Fig. 6 shows the results. 
 

 
 
Fig. 4. Ray take-off angle at the source (a), ray incidence angle at the reflector (b), total 
traveltime (c) and location 𝑥! of the reflection point (d) as function of 𝑧! for both PP and 
PS reflections, assuming 𝑣! = 1000 m/s, 𝑔 = 0.6 s!!, 𝑤 𝑧 = 𝑣 𝑧 / 3 and offset 
𝑥 =  1500 m. The reflector depth 𝑧! varies between 800 m and 8000 m in this example. 
Note that 𝑧! is plotted on the vertical axis despite being the independent variable as it is 
more natural and makes these plots easier to understand. 
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 The take-off angle at the source is always larger for PS reflected 
waves than for PP reflected waves. As the reflector depth approaches 
infinity, both take-off angles approach zero. The incidence angles at the 
reflector are larger than the take-off angles at the source because the rays 
bend away from the vertical. Again, the incidence angle for PS reflected 
waves is larger than for PP reflected waves. Actually, for a real reflector in 
the shallow we would probably be beyond the critical angle. The traveltimes 
for PP and PS reflected waves diverge because with increasing depth the 
downgoing P-part is almost identical but we spend more time traveling back 
up to the surface with the slower S-wave velocity. As expected, the location 
of the reflection point is obviously constant for the PP reflection and equals 
half the receiver offset, i.e., 750 m in this case. The reflection point for the 
PS reflection varies with receiver depth and approaches 950 m as the depth 
𝑧! increases. This change in the position of reflection points has 
implications on the binning process of PS-converted waves where typically 
no common-midpoint (CMP) binning is performed but common-conversion 
point (CCP) binning. The position 𝑥! of the CCP for 𝑧! → ∞ and a fixed P-
wave to S-wave velocity ratio is usually called asymptotic conversion point 
(ACP) in the literature (e.g., Yilmaz, 2001). Slawinski and Slawinski (1999) 
show how considerations presented in this section can affect amplitude-
versus-angle (AVA) analyses. 
 
 
NONVERTICAL CONSTANT-GRADIENT VELOCITY FIELDS 
 
 The calculations presented so far only hold for vertical velocity 
gradients and a source at position 𝑥, 𝑧 = 0, 0 . However, the results can 
easily be generalized to nonvertical constant-gradient velocity fields and 
alternative source positions. Shifting the source position is, mathematically, 
simply introducing a translation of the coordinate system. Nonvertical 
constant gradients require a rotation of the coordinate system such that the 
direction of the velocity gradient equals the rotated depth axis 𝑧!. 
Furthermore, we have to make sure that the initial slowness vector at the 
source has no 𝑦!-component in the rotated system. Honoring these 
conditions should provide a rotated coordinate system in which rays 
propagate only in the 𝑥!-𝑧! plane and standard formulas as derived here can 
be used. Upon successful calculations the results then have to be 
transformed back to the unrotated coordinate system. Details and the 
required rotation matrices can be found in publications by, for instance, Kim 
and Lee (1997) or Baig et al. (2001). 
	
 
RADIALLY SYMMETRIC EARTH 
 
 When the problems discussed here are scaled up and we consider the 
whole Earth or the Earth’s mantle, we have to take into account that the 
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Earth is a sphere. Actually, on a global scale the Earth’s velocity field can be 
described by a radially symmetric function fairly well, i.e., 𝑣 = 𝑣 𝑟  where 
𝑟 is the radius. Obviously, under such circumstances it makes more sense to 
use a spherical rather than a Cartesian coordinate system. The concepts 
presented in this paper remain the same, the mathematics changes though. 
Instead of the horizontal distance 𝑥, we now deal with the angular distance 𝛥 
which, for a source and a receiver at the surface of the sphere, is given by 
	

              Δ 𝑝 = 2
𝑝𝑣 𝑟

𝑟! − 𝑝!𝑣! 𝑟

!!

!!"#

 
𝑑𝑟
𝑟

    ,                                                   36  

 
and the corresponding traveltime by 
	

              𝑡 𝑝 = 2
𝑟!

𝑣 𝑟   𝑟! − 𝑝!𝑣! 𝑟

!!

!!"#

 
𝑑𝑟
𝑟
      ,                                        37  

 
with 𝑝 = 𝑟 sin 𝛼 /𝑣 𝑟  being the ray parameter, 𝑟! the Earth’s radius, and 
𝑟!"# the radius at the point the ray bottoms out (see Fig. 7 and, e.g., Aki and 
Richards, 2002). Note that the ray parameter here has a different unit 
compared to the ray parameter for a flat Earth, although typically the same 
symbol is used in the literature and the spherical- and flat-Earth ray 
parameters are not distinguished explicitly. 

	

 
 
 
Fig. 5. A ray in a radially symmetric spherical Earth where velocity increases with depth. 
The angular distance between the source 𝑆 and receiver 𝑅 is called 𝛥. The parameter 𝑟! is 
the Earth’s radius, 𝑟min is the minimal radius at the point the ray bottoms out. It 
corresponds to 𝑧max for a flat Earth. The angle 𝛼 is the angle between the radial direction 
and the local direction of the ray. Obviously, 𝛼 = 90∘ when 𝑟 = 𝑟min. 
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 The equations for a spherical Earth can be obtained when replacing 
𝑥 𝑝  by 𝑟! Δ 𝑝 , 𝑧 by 𝑟! ln 𝑟!/𝑟 , 𝑣 𝑧  by 𝑟!  𝑣 𝑟 /𝑟, and 𝑝 by 𝑝/𝑟!. The 
solutions for spherical Earth problems can therefore be obtained 
immediately from the solutions for a flat Earth by above mentioned change 
of variables (see, e.g., Aki and Richards, 2002, for details). This is also 
known as the “Earth-flattening transformation” in the literature (e.g., 
Shearer, 2009). The situation in general is well known among the 
seismological community and typically studied in detail in Seismology 
courses. The above statement also holds in the special case presented in this 
paper where the velocity field is described by a constant-gradient function. 
In the case of a radially symmetric sphere, the gradient would then be 
defined with respect to the radius 𝑟 rather than depth 𝑧. 
 
 
SUMMARY AND CONCLUSIONS 
 
 Although rays and simple types of media such as constant-gradient 
Earth models seem outdated when looking at today’s complex imaging 
problems and full-wavefield methods, they still provide great insight into 
fundamental concepts and facilitate our understanding of wave phenomena. 
In this light I presented a tutorial on rays in constant-gradient velocity fields, 
derived the fundamental equations and their mathematical solutions and 
pointed out basic applications and relationships such as the famous normal-
moveout equation that remain important even in today’s times of advanced 
processing and imaging. Furthermore, I presented a few simple graphical 
examples that each reader will be able to reproduce. This tutorial therefore 
complements text books and earlier publications by providing a compact but 
comprehensive overview of the subject at hand. 
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APPENDIX A  
 
DISTANCE AND TRAVELTIME FUNCTIONS OF DIRECT WAVES 
 
 Distance and traveltime of the direct wave in a constant-gradient 
velocity field can be obtained analytically by integrating eqs. (4): 

	

𝑥 𝑝, 𝑧 =
𝑝𝑣

1− 𝑝𝑣 !

!

!

 𝑑𝑧! =
𝑝  𝑣! + 𝑔𝑧!

1− 𝑝!(𝑣! + 𝑔𝑧′)!

!

!

 𝑑𝑧!

= −
1
𝑔𝑝
  1− 𝑝!(𝑣! + 𝑔𝑧′)! 

!

!

=
1
𝑔𝑝

1− 𝑝!𝑣!! − 1− 𝑝!𝑣! 𝑧

       𝐴 − 1  

and 

𝑡 𝑝, 𝑧 =
1

𝑣! + 𝑔𝑧!   1− 𝑝! 𝑣! + 𝑔𝑧! !

!

!

 𝑑𝑧! =
1
𝑔  ln

𝑣! + 𝑔𝑧!

1− 𝑝! 𝑣! + 𝑔𝑧! ! + 1
 
!

!

=
1
𝑔  ln

𝑣 𝑧   1− 𝑝!𝑣!! + 1

𝑣!  1− 𝑝!𝑣! 𝑧 + 1
        ,                                                                    (𝐴 − 2)

   

 
using, for instance, integral tables of Bronshtein et al. (2015) to solve the 
integrals. 
 
 
 
APPENDIX B 
 
TRAVELTIME FUNCTION OF DIVING WAVES 
 
Given are the two equations for direct waves 

𝑥 𝑝 = !
!"

1 − 𝑝!𝑣!!    and  

𝑡 𝑝 =
2
𝑔
 ln

1 − 𝑝!𝑣!! + 1
𝑝𝑣!

 =
2
𝑔
 ln

1
𝑝!𝑣!!

− 1 +
1
𝑝𝑣!

 , 

see eqs. (9) and (10) above. Solving the equation 𝑥 𝑝  for 𝑝 leads to 
	

               𝑝 = ±
2

𝑥!𝑔! + 4𝑣!!
        .                                                                 𝐵 − 1  



	546 

 As we are looking for wave propagation in positive 𝑥-direction, 
i.e., 0 ≤ 𝛼! ≤ 𝜋/2, we can ignore the negative sign and choose 𝑝 =
2/ 𝑥!𝑔! + 4𝑣!!. Eliminating 𝑝 from 𝑡 𝑝  leads to 

	

𝑡 𝑥 =
2
𝑔
 ln

𝑥!𝑔! + 4𝑣!!

4𝑣!!
− 1+

𝑥!𝑔! + 4𝑣!!

2𝑣!
 

=
2
𝑔  ln

𝑥𝑔
2𝑣!

+
𝑥𝑔
2𝑣!

!
+ 1  =

2
𝑔  ln 𝜉 + 𝜉! + 1   with 𝜉 =

𝑥𝑔
2𝑣!

     .

 

                     (B-	2) 
	

As ln 𝜉 + 𝜉! + 1  = arsinh 𝜉  (see, e.g., Bronshtein et al., 2015), we 
finally obtain 

             𝑡 𝑥 =
2
𝑔
 arsinh

𝑥𝑔
2𝑣!

       ,                                                                𝐵 − 3  

 
which is the traveltime-distance function (11) shown above. 

	

	

APPENDIX C 
 
WAVEFRONT CIRCLES 
 
 Obtaining the circle equation for wavefronts in constant-gradient 
velocity fields involves quite a lot of algebraic manipulations, i.e., the details 
are typically skipped in textbooks. Here, one way of deriving eq. (18) is 
presented that is based on eliminating the variable 𝑝 from eqs. (5) and (6). 
Van Melle (1948) derives the circle equation for wavefronts, for instance, 
purely based on geometrical considerations. 
	
	 Squaring eq. (5) and multiplying with 𝑔! leads to 
 

𝑔!𝑥! =
1
𝑝!
  1 − 𝑝!𝑣!! + 1 − 𝑝!𝑣!! − 2 1 − 𝑝!𝑣!!  1 − 𝑝!𝑣!!

= −𝑣!! − 𝑣!! +
2
𝑝!

1 − 1 − 𝑝!𝑣!!  1 − 𝑝!𝑣!!   ,
         𝐶 − 1  
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where, for simplicity, the abbreviation 𝑣! = 𝑣 𝑧  is used. By reorganizing 
the terms, we obtain 
	

           
𝑔!𝑥! + 𝑣!! + 𝑣!!

2𝑣!𝑣!
=

1
𝑝!𝑣!𝑣!

1 − 1 − 𝑝!𝑣!!  1 − 𝑝!𝑣!!     .       𝐶 − 2  

 
Now looking at eq. (6) again, we can also write it as 
	

𝑔𝑡 = ln
𝑣! 1 − 𝑝!𝑣!! + 1

𝑣! 1 − 𝑝!𝑣!! + 1
= ln

1 − 𝑝!𝑣!! + 1
𝑝𝑣!

− ln
1 − 𝑝!𝑣!! + 1

𝑝𝑣!

= cosh!!
1
𝑝𝑣!

− cosh!!
1
𝑝𝑣!

     ,                                                   (𝐶 − 3)

 

 
where cosh!! is the area hyperbolic cosine (or inverse hyperbolic cosine). 

The latter step is not obvious. However, ln !!!!!!!!
!"

 can be written as 

ln !
!"
− 1 !

!"
+ 1 + !

!"
 which according to the theorem 

ln 𝜉 − 1 𝜉 + 1 + 𝜉 = cosh!! 𝜉  (see, e.g., Bronshtein et al., 2015) 
equals cosh!! !

!"
. 

 
Using the theorem 
 
            cosh!! 𝜉! − cosh!! 𝜉! = cosh!! 𝜉! 𝜉! − 𝜉!! − 1 𝜉!! − 1   
 
(see again, e.g., Bronshtein et al., 2015) eq. (C-3) can be further simplified 
to read 

            𝑔𝑡 = cosh!!
1

𝑝!𝑣!𝑣!
1 − 1 − 𝑝!𝑣!!  1 − 𝑝!𝑣!!       .            𝐶 − 4  

 
Using eq. (C.2), the argument of the area hyperbolic cosine can now be 
replaced and thereby 𝑝 is eliminated: 

	

           𝑔𝑡 = cosh!!
𝑔!𝑥! + 𝑣!! + 𝑣!!

2𝑣!𝑣!
      .                                                   𝐶 − 5  
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Taking the hyperbolic cosine of this equation and substituting 𝑣! = 𝑣! + 𝑔𝑧 
leads to 

	

              cosh 𝑔𝑡 =
𝑔!𝑥! + 𝑣!! + (𝑣! + 𝑔𝑧)!

2𝑣! 𝑣! + 𝑔𝑧
       .                                      𝐶 − 6  

 
Multiplying this equation by 2𝑣! 𝑣! + 𝑔𝑧 , adding 𝑣!! 1 − cosh 𝑔𝑡

!
/𝑔! 

to both sides of the equation, and rearranging the terms leads to 

	

𝑥! + 𝑧! +
2𝑣!𝑧
𝑔

1 − cosh 𝑔𝑡 +
𝑣!!

𝑔!
1 − cosh 𝑔𝑡

!
=

2𝑣!!

𝑔!
cosh 𝑔𝑡 − 1 +

𝑣!!

𝑔!
1 − cosh 𝑔𝑡 !.

   

                     
(C −7) 
 
 Simplifying the terms and using the identity cosh! 𝑔𝑡 − 1 =
sinh! 𝑔𝑡  finally leads to 
	

          𝑥! + 𝑧 +
𝑣!
𝑔

1 − cosh 𝑔𝑡
!
=

𝑣!
𝑔
 sinh 𝑔𝑡

!
   ,                      𝐶 −  8  

 
which is eq. (18) for the wavefront circle shown above. The operations 
performed here are valid under the original assumptions being made (e.g., 
𝑔 > 0, 𝑥 > 0, and 𝑣! > 0). 
 


