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ABSTRACT 
 
Lan, H.T., Chen, S.M., Chi, H.Z., Pei, J.Y., Lin, W. and Shen, J.G., 2020. A viscoelastic 
representation of seismic wave attenuation and dispersion caused by wave-induced fluid 
flow in fractured porous media. Journal of Seismic Exploration, 29: 587-601. 
 
 Analyzing and understanding the seismic response from fractured reservoirs is vital 
to reservoirs characterization and the production optimization of hydrocarbons. Fractured 
reservoirs can be modeled as fractured porous media. When seismic waves propagate in 
fractured porous media, fluid exchange occurs between the fractures and the pore space. 
As a consequence, the seismic waves are subject to attenuation and dispersion, the media 
behave viscoelasticity, and the components of the effective stiffness tensor involved in 
the stress-strain relation become complex-valued and frequency dependent. In order to 
compute synthetic seismograms in the time domain with the purpose of studying seismic 
response of the media, an efficient approach is to approximate the stiffnesses by suitable 
viscoelastic models and then solve viscoelastic differential equations. In this paper, based 
on the Chapman's model of fractured porous media, we use the Zener model to 
approximate each component of the effective stiffness tensor, and use the Christoffel 
equation to obtain the seismic attenuation and velocity dispersion curves and their 
corresponding Zener model best fits. We focused on three models, each with two 
different fracture sizes and filled with different fluids. Our results indicate that the Zener 
model provides a good representation for Chapman's model of fractured porous media. 
 
KEY WORDS: velocity dispersion, wave attenuation, fractured porous media,  
     Zener model. 
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INTRODUCTION 
 
 Many previous works have reported that hydrocarbon-saturated 
reservoir zones often exhibit anomalously high seismic attenuation 
(Klimentos, 1995; Dasgupta and Clark, 1998; Dasios et al., 2001; Rapoport 
et al., 2004). Associated with attenuation is velocity dispersion, which has 
been observed in the exploration seismic frequency band in laboratory 
experiments and field data (Batzle et al., 2001; Sun et al., 2009). Although 
the mechanisms that cause attenuation and dispersion have not been defined 
clearly, resent studies show the most important cause is the wave-induced 
fluid flow (WIFF) between mesoscopic-scale (much larger than the typical 
pore size but much smaller than the seismic wavelength) heterogeneities 
(e.g., White, 1975; White et al.,1975; Müller and Gurevich, 2004; Pride et 
al., 2004; Carcione and Picotti, 2006; Müller et al., 2008, 2010). 
 
 High attenuation, velocity dispersion, and frequency-dependent 
anisotropy of seismic waves have been observed in real field seismic data 
from fractured reservoirs (e.g., Parra, 2000; Chesnokov, 2001; Liu et al., 
2003). It is commonly accepted that the most significant et al cause of 
inducing these characteristics of seismic waves in such media is WIFF 
between the aligned mesoscale (i.e., in the order of centimeters to meters) 
fractures and the background porous media at seismic frequencies (e.g. 
Chapman, 2003, 2009; Maultzsch et al., 2003; Baird et al., 2013; Carcione, 
2014; Ba et al., 2015). These characteristics of seismic waves contain 
information about the fractures and fluids present in the reservoir and can 
provide some new insights for seismic characterization of fractured 
reservoirs, thus, they have attracted great attention (e.g., Chapman, 2003, 
2009; Galvin and Gurevich, 2007; Gurevich et al., 2009). 
  
 Chapman (2003) proposed a poroelastic equivalent medium model in 
which grain scale and fracture scale fluid flow are considered, and derived 
the complex-valued, frequency-dependent effective elastic stiffness tensor 
of the fractured porous media. To overcome the low porosity restriction in 
Chapman's model, Chapman et al. (2003) developed a modified version of 
this model that successfully simulated both the frequency-dependent shear 
wave anisotropy observations from multicomponent VSP and the 
microseismic data sets acquired from fractured gas reservoirs. Maultzsch et 
al. (2003) and Al-Harrasi et al. (2011) inverted fracture density and fracture 
size of fractured reservoirs based on this model, the inverted fracture length 
matched geological observations very well. These studies show that the 
modeling of frequency-dependent anisotropy based on the Chapman's model 
can improve the seismic characterization of fracture sets in fractured 
reservoirs. 
 
 Fractured reservoirs can be represented as fractured porous media. 
Understanding the seismic response of such media is important for reservoir 
characterization and the production optimization of hydrocarbons. The 
components of effective elastic stiffness tensor of such media are 
complex-valued and frequency-dependent induced by the WIFF mechanism, 
which means that energy dissipation, and the convolution integrals need to 
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be solved in the wave equations for seismic wavefield simulation in such 
media in the time domain. To circumvent the difficulty, a good approach is 
to approximate the stiffnesses by suitable viscoelastic models and solve 
viscoelastic differential equations using the memory-variable approach. One 
of the most popular viscoelastic models is the Zener model, which has been 
used to model wave attenuation and velocity dispersion caused by 
mesoscopic loss mechanisms in double-porosity media or patchy saturated 
rocks (Liu et al., 2009; Quintal et al., 2009; Picotti et al., 2010, 2012). Liu et 
al. (2009) modeled attenuation caused by mesoscopic-scale WIFF in 
double-porosity media using a combination of Zener elements. Quintal et al. 
(2009) used the Zener model to approximate White 1D interlayer-flow 
model (White et al.,1975; Carcione and Picotti, 2006) and performed 
numerical simulations of wave propagation in the equivalent viscoelastic 
media. Picotti et al. (2010) used the Zener model to approximate the wave 
attenuation and dispersion from different models of poroelastic media such 
as White’s (1975) model and Johnson’s (2001) model. Picotti et al. (2012) 
approximated the complex dilatational moduli of patchy saturated rocks 
with a fractal patch distribution and computed synthetic seismograms to 
analyze the sensitivity of the seismic response when injecting carbon 
dioxide into a depleted gas reservoir. 
 
 In this study, based on the Chapman's model, we approximate the 
complex-valued and frequency-dependent effective stiffness tensor 
components using the Zener models and solve the dispersion equation 
defined by the Christoffel equation to calculate the best-fitting wave 
attenuation and velocity dispersion curves. This work is expected to lay the 
foundation for seismic wavefield simulation in fractured porous media 
represented by the Chapman's model. 
 
 
THEORY AND METHODS 
 
Theoretical model 
 
 In this work, we use Chapman's model to describe fractured porous 
media. The expression for the effective stiffness tensor effC takes the form  
 
    

(0) (1) (2) (3)eff
p c fε εΦ= − − −C C C C C   ,                   (1) 

 
where (0)C  is the isotropic elastic tensor of the matrix and can be 
constructed using the Lamé parameters of matrix grain λ  and µ ; (1)C , 
(2)C , and (3)C  are the additional contributions from pores, microcracks, and 

fractures, respectively, and which are functions of λ  and µ , the fluid 
properties, the relaxation time mτ  (which is related to the squirt flow), the 
fracture radius fa , and the frequency ω ; pΦ  is the porosity; cε  is the 
crack density; and fε  is the fracture density. The precise expression for 
each component of the stiffness tensor is described in Chapman (2003). 
However, the application of Chapman's model is restricted to low-porosity 
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media because the derivation of this model follows the interaction energy 
approach to find the elastic constants, and this means that in practice, λ  
and µ  will have to be fitted to achieve agreement with the background 
velocities . Therefore, for the cases of high porosity, the use of λ  and µ  
to calculate the effect of fractures can result in substantial errors. To 
circumvent this problem, Chapman et al. (2003) proposed a slightly 
modified version of the original model that provides an alternative 
parameterization for the Lamé parameters. These parameters, 0λ  and 0µ , 
can be derived from the seismic velocities Vp

0 and Vs
0 of the unfractured 

porous rock. 0λ  and 0µ  are defined as 
 
        0 0 2 0 0 2 0( ) ;            ( ) 2s pV Vµ ρ λ ρ µ= = − ,                 (2) 
 
where ρ  is the density of the saturated rock. Additionally, the isotropic 
tensor 0 ( , )C Λ ϒ  needs to be defined in such a way that the measured 
isotropic velocities are obtained by applying the pore and crack corrections 
at a certain frequency f0. Λ  and ϒ  are the new Lamé parameters, which 
are defined as 
 

   
Λ = λ0 +Φc,p (λ

0 ,µ0 , f0 );        ϒ=µ0 +Φc,p (λ
0 ,µ0 , f0 ) ,        (3) 

 
where the function ,c pΦ  is the perturbation due to the presence of 
microcracks and pores. Although the Λ  and ϒ  have no physical meaning, 
they can be calculated using observed seismic velocities 0

pV  and 0
sV . We 

rewrite eq. (1) as 
 

(0) (1) 0 0( ) ( , ) ( , , )eff
pω λ µ ω= Λ ϒ −ΦC C C  

  (2) 0 0 (3) 0 0( , , ) ( , , )c fε λ µ ω ε λ µ ω− −C C   ,        (4)          
 

where ω  is the angular frequency. 
 
 In our model, we consider two different scales of fluid flow: the grain 
scale fluid flow associated with the relaxation time mτ  and the mesoscopic 
fracture scale fluid flow associated with the larger timescale constant fτ . 
The two timescale constants are related to one another by 

        

f
f m

a
τ τ

ζ
=

    
,                                   (5) 

where fa  is the average fracture radius and ζ  is the average grain size. 
Because the fractures have a greater ratio of volume to surface area than that 
of the microcracks, it takes a longer period of time for the required amount 
of fluid to move through an element of the surface area in order to equalize 
the induced pressure. 
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 Chapman et al. (2003) suggested that the original model can be further 
simplified by setting the crack density cε  to zero for rocks in which the 
spherical porosity pΦ  is larger than the crack porosity. This will be the 
case for most practical applications (Maultzsch et al., 2003); following this 
logic, we focus our efforts on the fracture effects and ignore the microcrack 
effects. Eqs. (4) and (5) show that fracture length (twice the fracture radius) 
and fracture density are two important parameters that affect the properties 
of fractured porous media. The relaxation time of fluid flow between the 
fracture and pore is proportional to the fracture length, so the fracture length 
will affect the frequency band where the dispersion and attenuation occur. 
The higher the fracture density is, the larger the total space of the fracture 
connected with the pore is, and the greater the fluid exchange between the 
fracture and the pore is, resulting in stronger wave dispersion and 
attenuation. 
 
 In Chapman's model, the fluid mass exchange between fractures and 
pores is governed by the finite fluid-pressure difference in fracture and 
equant pore space. A consequence of the fluid-pressure relaxation process is 
that the attenuation of P- and S-waves will scale with 1ω−  and ω  at low 
and high frequency limits, respectively. 
 
 
Zener model representations 
 
 The Zener model, or the standard linear solid model discussed by 
Mavko et al.(2009), defines a complex modulus: 
 

             

!M (ω) =
M

∞
(M 0 + i

ω
ωc

M
∞
M 0 )

M
∞
+ i ω
ωc

M
∞
M 0

,                       (6) 

with unrelaxed and relaxed moduli M∞  and 0M , and the characteristic 
frequency cω associates to the maximum possible attenuation in a given 
scenario. The quality factor is 

                    

 

        

Q −1 =
Im( !M )
Re( !M )

=
M

∞
−M 0

M
∞
M 0

1
ω
ωc

+
ωc
ω

.

                    

(7)

 
  
 It can be seen that the asymptotic behavior of attenuation at high 
frequencies is 1 1Q ω− −∝  and at low frequencies is 1Q ω− ∝ . This is the 
same as the asymptotic behavior of attenuation of Chapman's model. Thus, 
it is logical to represent the wave attenuation and dispersion effects 
described by Chapman's model using the Zener viscoelastic model. 
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 Every component of the effective stiffness tensor need to be 
approximated with the Zener model (Carcione, 2014). A Zener element can 
be expressed as 

              
C(ω) =CR

1+ iωτε
1+ iωτσ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  ,                          (8) 

where RC  is the relaxed modulus, and ετ  and στ  are relaxation times: 
 

              
τε =

τ 0

Q0

Q0
2 +1+1( );          τσ = τε − 2τ 0

Q0

 ,           (9) 

 
where 0τ  is a relaxation time such that 01 τ is the center frequency of the 
relaxation peak and 0Q  is the minimum quality factor. We use the seismic 
quality factor matrix Q , as introduced by Carcione (2000), to obtain 0τ  
and 0Q  for each element of the effective stiffness tensor for the media 
described in Chapman's model. The elements ijQ  of the matrix Q  are 
expressed in terms of the components of the complex stiffness matrix C!  
where Cij! =Cij

R + iCij
I  and 

                    Qij =
Cij
R

C ij
I

 ,                             (10) 

where R
ijC  and I

ijC  denote the real and imaginary components of each 
matrix element. In this study, Cij!  is replaced by the component ijklC  of the 
effective stiffness tensor effC  of the Chapman's model, as defined in eq. (4). 
 
 In this method, we can approximate each component of the effective 
stiffness tensor of Chapman's model using the Zener mechanical model. 
Then we can obtain the wave attenuation and velocity dispersion curves and 
the corresponding Zener model best fits by solving the dispersion equation 
defined by the Christoffel equation (Carcione, 1995, 2014). 
 
 
Velocity and attenuation 
 
 With the purpose of obtaining the wave attenuation and velocity 
dispersion curves and their corresponding best-fitting Zener models, we 
insert the effective stiffness tensor effC  and its corresponding Zener 
viscoelastic approximation stiffness tensor into the Christoffel equation and 
rewrite the dispersion equation as (Carcione, 2014): 
 
               ( )T 2det 0Vρ⋅ ⋅ − =L C L I ,                    (11) 
where  
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0 0 0
0 0 0
0 0 0

x z y

y z x

z y x

l l l
l l l

l l l

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

L ,                (12) 

 
where L is the direction cosine matrix, and the direction cosines xl , yl , and 
zl  define the propagation directions (Carcione, 2014): 

 

                1 1 2 2 3 3
ˆ ˆ ˆ ˆ ,l l l+ +k = e e e                         (13) 

 
V  is the complex velocity, and C  is the complex stiffness tensor and here 
it represents effC or Zener viscoelastic approximation stiffness tensor. 
Solving the dispersion relation [eq. (9)], three roots of the complex velocity 
V  can be obtained which correspond to three propagating modes: the 
quasi-compressional (qp) wave, the quasi-shear (qsv) wave, and the pure 
shear (sh) wave. 
 
 The phase velocity can be expressed in terms of the complex velocity; 
in its vector form, it is expressed as (Carcione, 1995, 2014): 

                

1
1 ˆReph V

−
⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

V k
  

.                      (14) 

 
The quality factor is defined as 

                
Q = Re(V

2 )
Im(V 2 ) ,                               (15) 

 
where Re and Im denote the real and imaginary parts. 
 
 
EXAMPLES 
 
 To demonstrate the effectiveness of our method, we present the results 
from three fractured porous media models, which are saturated by brine, oil 
and gas, respectively. Moreover, in each model, a set of vertical aligned 
fractures embeds in a porous background media, and two fracture scales 
(fracture lengths of 10 cm and 3 m) are considered respectively, 
corresponding to centimeter-scale and meter-scale, and the fracture density 
of the two-scale fractures is 0.1. The properties of the unfractured porous 
media used in these models are given in Table 1. In these examples, we 
have investigated the effects of the fracture lengths and the pore fluid type 
on the wave attenuation, the velocity dispersion, and the Zener model fits. 
The Chapman’s model is largely insensitive to the fracture density, which 
only affects the amplitude of dispersion and attenuation and the strength of 
the anisotropy. 



 
 
 
 594 

Table 1. The properties of unfractured porous media. (References in Chapman et al., 
2003). 

 
 
 
 Assuming that the orientation of the surveying line has an azimuth of 0°, 
we set the azimuth of the fracture normal to 45°. We consider two directions 
of wave propagation: one set of waves that propagate at a polar incidence 
angle of 30° and an azimuth of 45° (case 1) and one set of waves that 
propagate at a polar incidence angle of 30° and an azimuth of 90° (case 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The Zener model fits for a brine-saturated media, including the (a) real parts of 
the stiffness tensor components, (b) imaginary parts of the stiffness tensor components, 
(c) quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocities, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, the fracture length is 10 cm. 
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Fig. 2. The Zener model fits for a brine-saturated media, including the (a) real parts of 
the stiffness tensor components, (b) imaginary parts of the stiffness tensor components, 
(c) quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocity, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, the fracture length is 3 m. 
 
 
 
 Figs. 1 and 2 show the results for the brine saturation model. These 
results demonstrate that the Zener model provides a good approximation for 
each stiffness component and each wave type. While we only consider two 
orientations of wave propagation, the quality of the fits between the Zener 
model and our calculations for the stiffness tensor components, the phase 
velocities, and the quality factors indicates that these quantities can be 
approximated by the Zener model for waves propagating in any direction in 
fractured porous media. The quasi-shear wave has a greater degree of 
velocity dispersion and attenuation than the quasi-compressional wave, and 
the pure-shear wave exhibits no velocity dispersion or attenuation because 
this wave, which has no compressional component, does not compress the 
fractures. The differences between Figs. 1 and 2 demonstrate that, in a 
brine-saturated medium, the relaxation peaks move towards low frequencies 
for increasing fracture size, while the peak values have hardly any change. 
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 Figs. 3 and 4 represent the model results for the oil-saturated medium. 
In this case, because of the higher viscosity of oil, the relaxation peaks occur 
at lower frequencies and have greater values compared with those of the 
brine-saturated medium. For instance, when the fracture size is 10 cm, the 
relaxation peaks occur at about 40 Hz for brine-saturated medium (Fig. 1b) 
and at about 2 Hz for oil-saturated medium (Fig. 3b); the maximum inverse 
quality factor of the quasi-shear wave is nearly 0.08 (Fig. 1d) and 0.1 (Fig. 
3d), respectively. When the fracture length in the oil-saturation model is 3 m 
(Fig. 4), the fractured porous media become unrelaxed, and the fluid has no 
time to move between pores and fractures during a wave cycle, as a result, 
all the seismic waves have little velocity dispersion and attenuation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The Zener model fits for an oil-saturated media, including the (a) real parts of the 
stiffness tensor components, (b) imaginary parts of the stiffness tensor components, (c) 
quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocity, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, and the fracture length is 10 
cm. 
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Fig. 4.  The Zener model fits for an oil-saturated media, including the (a) real parts of 
the stiffness tensor components,  (b) imaginary parts of the stiffness tensor components, 
(c) quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocity, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, and the fracture length is 3 
m. 
 
 
 
 Figs. 5 and 6 represent the model results for the gas-saturated medium. 
Again, the Zener model provides a good approximation for each stiffness 
tensor component and each wave type. In the gas-saturated medium, the 
relaxation peaks occur at a relatively high frequency ( f >1000 Hz) when the 
fracture length is 10 cm and at lower frequencies (between 40 and 50 Hz) 
when the fracture length is 3 m. The attenuation of the quasi-compressional 
wave and the quasi-shear wave is at its highest in the gas-saturated medium. 
These results demonstrate that wave attenuation and velocity dispersion are 
sensitive to pore fluid and fracture length and can be fitted very well by 
using the Zener model in each example. 
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Fig. 5. The Zener model fits for a gas-saturated media, including the (a) real parts of the 
stiffness tensor components, (b) imaginary parts of the stiffness tensor components, (c) 
quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocity, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, and the fracture length is 10 
cm. 
 
 
CONCLUSIONS 
 
 We have investigated the viscoelastic approximations of the effective 
stiffness tensor components in Chapman's model by using Zener model. Our 
work indicates that, while the approximations are not mathematically 
perfect, they can be used in numerical simulations of the seismic response in 
fractured porous media represented by Chapman's model in time domain. 
Possible future applications of these numerical simulations include 
modeling field data from specific fractured reservoir configurations, 
characterizing fractures with full wavefield inversions, and analyzing and 
predicting variations in complicated 3D fractured porous media models as 
sampled by simulated 4D seismic surveys. 
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Fig. 6. The Zener model fits for a gas-saturated media, including the  (a) real parts of 
the stiffness tensor components,  (b) imaginary parts of the stiffness tensor components, 
(c) quasi-P wave phase velocity (Vqp), quasi-shear wave phase velocity (Vqsv) and 
pure-shear (Vsh) wave phase velocity, and (d) inverse quality factor of the quasi-P 
(1/Qqp), inverse quality factor of quasi-shear (1/Qqsv), and inverse quality factor of 
pure-shear (1/Qsh) waves. The symbols represent the results for these quantities, as 
calculated with the effective stiffness tensor components, while solid lines represent the 
Zener model fits. The azimuth of the fracture normal is 45°, and the fracture length is 3 
m. 
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