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ABSTRACT 
 
Gao, G.C., Huang, J.Q. and Li, Z.C., 2021. Least-squares reverse time migration of pure 
qp-wave in anisotropic media using low-rank finite difference. Journal of Seismic 
Exploration, 30: 121-146. 
 
 The pseudo-acoustic least-squares reverse time migration (PA-LSRTM) is often 
used for imaging of anisotropic media. Due to acoustic approximation, it, however, 
shows severe instability in the forward simulation, strong quasi-SV (qSV) wave residual 
in the demigration record, and terrible numerical dispersion in tilted transversely 
isotropic (TTI) media. The low-rank finite-difference (LFD) approach can effectively 
overcome these problems, but existing research only focuses on forward modeling, and 
no examples are found in LSRTM. For the first time in this paper, we derive the pure qP-
wave linearized forward modeling and migration operators in TTI media with the help of 
LFD. Then, we implement pure qP-wave least-squares reverse time migration (LFD-
LSRTM) in the inversion scheme. To improve the inversion efficiency, the plane-wave 
encoding technique is used, and to increase its robustness, the prestack parameterization 
is adopted. Finally, we obtain the prestack plane-wave least-squares reverse time 
migration (LFD-Pre-PLSRTM). Examples demonstrate that our method provides 
significant advantages in imaging TTI media, yielding satisfactory results with less 
expensive computation and more stable convergence compared to PA-LSRTM. More 
importantly, the proposed method can successfully avoid troubles caused by the acoustic 
approximation, and reasonably allow errors in the parameter model and noise in the data, 
making it possible to deal with real data. 
 
KEY WORDS: anisotropy, least-squares migration, pure qP-wave,  
    low-rank finite difference, inversion. 
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INTRODUCTION 
 

 Least-squares reverse time migration (LSRTM) has already become a 
useful imaging method in the seismic exploration due to its superiority in 
the spatial resolution. The conventional LSRTM is always under an 
isotropic assumption, so it inevitably produces the degraded image in an 
anisotropic medium, manifesting as increased imaging error, reduced 
resolution, severe migration noise, and even divergent iteration when the 
anisotropy is strong. Since the anisotropy is widely observed in the 
subsurface, many methods were developed to address it, including elliptical 
approximation, weak-anisotropy approximation, and acoustic approximation. 
The most commonly used pseudo-acoustic wave equation derived from the 
acoustic approximation (Alkhalifah, 1998) dramatically simplifies the 
anisotropic wave equation. However, the pseudo-acoustic wave equation 
cannot completely avoid qSV-wave, and the qSV-wave residuals always 
couple with the desired qP-wave when performing migration or demigration 
(i.e., linearized forward modeling). Another issue is computation stability, 
especially in the region with strong anisotropy. Therefore, LSRTM, based 
on the pseudo-acoustic wave equation, is still challenging. To effectively 
image in anisotropic media, it is critical to obtain pure qP-wave accurately 
and stably. 
 
 The theory of least-squares migration (LSM) was first established by 
Tarantola (1984) in exploration seismology. It aims to find the optimal 
reflectivity model in an iterative way. Theoretically, such an inversion 
imaging method can greatly improve the imaging quality in terms of 
resolution and signal-to-noise ratio (SNR) compared to the conventional 
migration imaging method. Dai and Schuster (2009) first realized LSM 
based on reverse time migration (RTM), known as least-squares reverse 
time migration (LSRTM). To increase computational efficiency and 
expedite convergence, they adopted the multisource optimization technique. 
Since then, LSRTM has been extensively investigated between academia 
and industry (Tang, 2009; Wong et al., 2010; Dai et al., 2011; Wong et al., 
2011; Dai et al., 2012; Dong et al., 2012), thanks to its rigorous theory and 
competitive imaging results. To adapt to different types of earth media, 
investigators have proposed elastic LSRTM (Chen and Sacchi, 2017; Duan 
et al., 2017; Feng and Schuster, 2017; Gu et al., 2017), visco-acoustic 
LSRTM (Dutta and Schuster, 2014; Sun et al., 2016; Guo and Mcmechan, 
2018), and anisotropic LSRTM (Huang et al., 2016; Huang et al., 2017; Qu 
et al., 2017; Yang et al., 2019). Meanwhile, many optimization techniques 
are employed further to improve LSRTM, such as plane-wave prestack 
parameterization to reduce the dependency on the accuracy of the velocity 
model (Dai and Schuster, 2013), and the inclusion of the information of 
multiples to supplement subsurface illumination (Wong et al., 2015). 
Besides, different optimization schemes can be used, including the steepest 
descent method, conjugate gradient method, parabolic fitting method, and 
L-BFGS method (Nocedal, 1980; Hou and Symes, 2016), and different 
definitions can be formulated, such as L2 norm, hybrid L1/L2 norm, and 
cross-correlation (Zhang et al., 2015; Gu et al., 2017). 



 123 

 However, to our knowledge, few studies on LSRTM in anisotropic 
media are conducted, and most of them focus on VTI media rather than TTI 
media (Huang et al., 2016; Huang et al., 2017; Qu et al., 2017; Yang et al., 
2019). Two major difficulties hamper the implementation and application of 
LSRTM in anisotropic media. 
 
 One difficulty with PA-LSRTM is its heavy dependency on model 
parameter errors, in addition to expensive computational cost and slow 
convergence rate. In the presence of strong anisotropy, this problem will 
become particularly severe such that the iteration is likely to fail to converge 
(Huang et al., 2016). Therefore, to ensure the success of LSRTM in 
anisotropic media, the errors of model parameters (including velocity and 
anisotropic parameters) have to be relatively small, limiting its application. 
Dai and Schuster (2013) introduced the prestack parameterization in the 
plane-wave domain to improve the robustness of LSRTM to velocity errors. 
Liu et al. (2013) used the extended offset domain and the space shift 
imaging condition to adapt to glaring velocity errors. Hou and Symes (2016) 
further speeded up the convergence by applying the weighted conjugate 
gradient algorithm. In VTI media, Huang et al. (2016) developed an 
accelerated PA-LSRTM using the plane-wave encoding method, but the 
strong sensitivity to model parameters errors remains to be solved. 
 
 Another difficulty is the evident qSV-wave artefacts. When using the 
pseudo-acoustic wave equation in anisotropic media, the residual qSV-
waves always appear, accompanied by numerical dispersion caused by a 
low qSV-wave velocity. In the case of TTI media, simulation becomes 
unstable, especially in areas where the tilt abruptly changes (Zhang et al., 
2011), so that the amplitude of some seismic waves is too large to recognize 
the true seismic wave. LSM, based on the pseudo-acoustic wave equation, 
suffers from the qSV-wave artefacts (Huang et al., 2017), making the 
iteration progress unstable. Mathematically, twice square operations on the 
qP-wave dispersion relation (i.e., phase velocity) produce one extraneous 
root: the qSV-wave artefact (Chu et al., 2013; Xu and Zhou, 2014). In VTI 
media, after the acoustic approximation (Alkhalifah, 1998), the extraneous 
root is the group velocity curve of qSV-wave, manifesting as a diamond-
shaped wavefront. In order to accurately simulate pure qP-wave in TTI 
media, Zhan et al. (2012, 2013) further simplified the phase velocity 
formula and derived the pure qP-wave governing equation without qSV-
wave interference. However, it is difficult to numerically solve this 
decoupled equation expressed by pseudo-differential operators in the time-
space domain. Alternatively, Song et al. (2016) used the function fitting to 
approximate the root term of the qP-wave phase velocity, but large errors in 
some phase angle intervals still exist, and the method is hard to be extended 
to TTI media. 
 
 To overcome the limitations of the pseudo-acoustic wave equation, 
Song and Alkhalifah (2013) used the low-rank approximation approach 
(Fomel et al., 2010, 2013) to handle the mixed domain operator in 
orthorhombic media. Without approximating the qP-wave dispersion 
relation, this method successfully avoids the qSV-wave artifacts and 
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accurately keeps the kinematical features of seismic waves. By combining 
low-rank approximation with finite-difference representation, Song et al. 
(2013) designed a low-rank finite difference (LFD) scheme, and 
demonstrated that their method couldefficiently yield accurate wavefields in 
TTI media. Therefore, to implement the anisotropic LSRTM, the flexible 
and efficient LFD method is preferred to derive pure qP-wave linearized 
forward modeling and migration operators in anisotropic media. 
 
 Although the LFD approach has been used in the forward modeling 
(Song et al., 2013), it is as yet undiscussed in LSRTM. In this study, we 
apply the LFD approach into the wavefield forward and reverse 
extrapolation in TTI media and develop pure qP-wave prestack plane-wave 
LSRTM (LFD-Pre-PLSRTM). Specifically, we first derive pure qP-wave 
linearized forward modeling and migration operators based on LFD. Such 
operators can avoid problems related to the pseudo-acoustic wave equation 
and improve the accuracy and stability of the wavefield in anisotropic media 
(Huang et al., 2017). Then, in the framework of least-squares migration, we 
implement pure qP-wave LFD-LSRTM in TTI media. Although the 
wavefield extrapolator of LFD is quite efficient, the computational cost of 
LSRTM is still relatively high, especially for the 3D problem. As a result, 
we introduce the prestack plane-wave strategy into LSRTM, which also can 
reduce the dependency on the model parameter errors and increase the 
tolerance to the data noise. 
   
 This paper is organized as follows. First, we briefly review the 
wavefield extrapolator with a low-rank finite difference (LFD) approach. 
Then, pure qP-wave linearized forward modeling and migration operators 
are derived. Next, pure qP-wave LFD-Pre-PLSRTM is developed together 
with the prestack plane-wave strategy. Finally, two numerical examples 
illustrate that the proposed method can image the complex TTI media 
accurately and efficiently, even with model parameter errors and data noise. 
 
 
THEORY 
 
Wavefield extrapolator in anisotropic media using LFD 
 
 Before introducing LFD, we begin with the low-rank approximation 
(Song and Alkhalifah, 2013). 
 
 When velocity and anisotropic parameters vary in space, wavefield 
extrapolation in time can be approximately characterized by a phase 
operator in the mixed space-wavenumber domain, which can be written as 
  
          ( ) ( ) ( ), ,i v tp t t e p t± Δ+Δ = k xk k      ,                                                    (1) 

where 𝑡 is time, ∆𝑡 denotes small time step, 𝐱 = 𝑥, 𝑦, 𝑧  is space vector, 
𝐤 = 𝑘! , 𝑘! , 𝑘!  is wave vector, 𝑝 𝐤, 𝑡  is the Fourier transform of pure qP-
wave 𝑝 𝐱, 𝑡 , 𝑣 𝐱  is the wave velocity, and 𝑖 is the imaginary unit.  
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 Using the inverse Fourier transform for eq. (1), the well-known 
second-order time-marching scheme can be derived as 
 

( ) ( ) ( ) ( )( ), , 2 , cos dip t t p t t p t v t e
+∞ − ⋅

−∞
+Δ + −Δ = Δ∫ k xx x x k x k

   ,      (2) 
 
where the mixed domain operator cos 𝐤 𝑣 𝐱 ∆𝑡  actually describes the 
propagation behavior of the pure qP-wave. 
  
 We call the mixed domain operator the pure qP-wave propagator 
matrix, and define it as 
 
           ( ) ( )( ), cos v t= ΔW x k k x      .                                                                (3) 
 
 According to the low-rank approximation (Fomel et al., 2010, 2013), 
the propagator matrix (3) can be efficiently decomposed into the following 
three parts: 
           ( ) ( ) ( )1 2

1 1
, , ,

M N

m mn n
m n

a
= =

≈∑∑W x k W x k W x k       ,                                          (4) 

 
where 𝐖!  and 𝐖!  are referred to be the submatrices of the propagator 
matrix 𝐖. 𝐖! is constructed by 𝑀 linearly independent column vectors in 
𝐖, and 𝐖! is comprised of 𝑁 linearly independent row vectors in 𝐖. The 
weighted coefficient 𝑎!"  connecting 𝐖!  and 𝐖!  constitutes a coefficient 
matrix, which actually determines the effectiveness of decomposition. 
 
 As a result, the wavefield extrapolation in time given in the eq. (2) 
can be sped up by the low-rank approximation (4), leading to 
 

 ( ) ( ) ( ) ( ) ( )( )1 2
1 1

, , 2 , , , d
M N

i
m mn n

m n
p t t p t t a p t e

+∞ − ⋅

−∞
= =

⎛ ⎞
+Δ + −Δ ≈ ⎜ ⎟

⎝ ⎠
∑ ∑ ∫ k xx x W x k W x k x k  , (5) 

 
which requires 𝑁 inverse Fourier transforms at each time extrapolation, 
thereby directly influencing the computational cost.  
 
 To further reduce the computational cost, Song et al. (2013) gave a 
new finite-difference scheme to solve the eq. (5), which is called the LFD 
method. Then, the calculation of wavefield 𝑝 𝐱, 𝑡 + ∆𝑡  can be rewritten as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

, , , , ,
L

l L R s
l

p t t p t t p t p t f tδ
=

+Δ + −Δ = + + −⎡ ⎤⎣ ⎦∑x x G x ξ x x x x     ,      (6) 

 
where 𝑓 𝑡  is the time function of the source wavelet, 𝐱!  is the source 
position, 𝛿 𝐱  is Dirac function, and 𝐱! = 𝑥 − 𝜉!!∆𝑥, 𝑦 − 𝜉!

!∆𝑦, 𝑧 − 𝜉!!∆𝑧 , 
𝐱! = 𝑥 + 𝜉!!∆𝑥, 𝑦 + 𝜉!

!∆𝑦, 𝑧 + 𝜉!!∆𝑧 ; 𝛏! = 𝜉!! , 𝜉!
! , 𝜉!!  is an integer 

vector including zero vector, which denotes the position of the 𝑙 th point in 
the LFD stencil, and 𝐆 𝑥, 𝛏!  stores each LFD weighted coefficients in this 
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stencil; 𝐿 is the size of LFD stencil, which depends entirely upon the order 
of  LFD to be adopted. 
  
 Even in TTI media, it only requires to know the propagator matrix 𝐖 
and then calculate the corresponding LFD coefficient 𝐆, and there is no 
need to derive the complex explicit wave equation for the pure qP-wave. 
According to the eq. (3), the propagator matrix 𝐖 can be obtained as long as 
dispersion relation 𝜔 = 𝐤 𝑣 𝐱  is known. Using the LFD method, it is 
possible to directly solve the exact dispersion relation instead of the one 
under acoustic approximation (Alkhalifah, 1998). The accurate dispersion 
relation of the pure qP-wave in TTI media can be expressed as 
  

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1ˆ ˆ ˆ ˆ ˆ ˆ4
2 2

qP

h s h v s z h s h v s z v s nmo s h zv v k v v k v v k v v k v v v v k k

ω =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + − − − + − −⎣ ⎦⎣ ⎦ ⎣ ⎦

 ,  (7)  

where 𝑣!  is the qP-wave phase velocity in the isotropic plane (i.e., 
symmetry plane), 𝑣! is the qP-wave phase velocity along the symmetry axis, 
𝑣! is the qS-wave phase velocity along the symmetry axis, 𝑣!"# is the qP-
wave normal moveout (NMO) velocity,  𝜀 and 𝛿 are Thomsen parameters 

characterizing anisotropy (Thomsen, 1986). 𝑘! = 𝑘!! + 𝑘!! and 𝑘! are the 

horizontal and vertical wavenumbers expressed in a rotated coordinate 
system aligned with the symmetry axis based on the following 
transformation: 

            

ˆ cos cos sin cos sin
ˆ sin cos 0
ˆ cos sin sin sin cos

x x

y y

zz

k k
k k

kk

φ θ φ θ θ

φ φ

φ θ φ θ θ

⎛ ⎞ −⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠      

,                          (7) 

where 𝜃 is the tilt angle of the TTI symmetry axis relative to the vertical 
axis, 𝜙 is the azimuth of the TTI symmetry axis which is an angle between 
the projection of the TTI symmetry axis on xy-plane and x-axis. 
 
 For brevity, the wavefield extrapolation given by the equation (6) can 
be expressed in matrix notations as 
  
          =d Am      ,                                                                                       (8) 

where 𝐦 denotes discretized velocity and anisotropic parameters in the 
model space; 𝐝 is the seismic data in the data space; 𝐀 represents a full-
wave forward modeling operator implemented by the LFD method, which 
describes the process mapping the model space into the data space.  
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Pure qP-wave linearized forward modeling and migration operators 
using LFD 
 
 Given the reference models (including the qP-wave phase slowness 
𝑠!! and anisotropic parameters), the coefficient matrix 𝐆! in the LFD stencil 
is determined. According to the eq. (6), the reference wavefield 𝑝! 𝐱, 𝑡 +
∆𝑡  can be given by 
  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0
1

, , , , ,
L

l L R s
l

p t t p t t p t p t f tδ
=

+Δ = − −Δ + + + −⎡ ⎤⎣ ⎦∑x x G x ξ x x x x .  (9) 

Defining the true slowness perturbation model (i.e., reflectivity model) as 

         ( )
2 2 2

0
2 2
0 0

p p p

p p

s s s
s s
− Δ

= =m x
     

,                                                             (10) 

where 𝑠!  stands for the true slowness model, ∆𝑠!  is the perturbation 
slowness model. Based on the seismic wave perturbation theory and Born 
approximation, we can derive the wavefield forward extrapolation formula  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
0

1

,
, , , , ,

L

s s l s L s R
l

p t
p t t p t t p t p t

t=

∂
+Δ = − −Δ + + + ⋅⎡ ⎤⎣ ⎦ ∂∑

x
x x G x ξ x x m x , 

                                                                                                               (11) 

where 𝑝! is the perturbation wavefield.  
 
 In a compact form, the linearized forward modeling operator (11) can 
be formulated as 
 
           cal =d Lm ,                                                                                      (12) 
 
where 𝐦 is the imaging result of each iteration in LSRTM, 𝐝!"#  is the 
calculated seismic data using linearized forward modeling operator 𝐋. 
 
 As a result, migration operator can be derived from linearized 
forward modeling operator by the adjoint-state method (Plessix, 2006), and 
the adjoint wavefield 𝑝∗ can be reconstructed as 
  

          
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *
0

1

*

, , , , ,

, , ;

L

l L R
l

g g s

p t t p t t G p t p t

p t d tδ
=

⎡ ⎤− Δ = − +Δ + +⎣ ⎦

= −

∑x x x ξ x x

x x x x x
 ,   (13) 

where 𝑑 𝐱! , 𝑡; 𝐱!  is the seismic data observed by a receiver at  𝐱! due to a 
source excitation at 𝐱!. On the contrary to the source wavefiel 𝑝! shown in 
the eq. (9), the receiver wavefield 𝑝∗ is the back extrapolation in time. Note 
that calculations of both wavefields adopt the identical LFD coefficient 
matrix 𝐆!. 
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Finally, by applying the imaging condition that is a zero-lag cross-
correlation between the second-order time partial derivative of the source 
wavefield and receiver wavefield, the imaging result 𝐦 𝐱; 𝐱!  is expressed 
as 
 

      ( ) ( ) ( )
2

02 *
0 2

,
; ,s pt

p t
s p t

t
∂

= ⋅ ⋅
∂∫
x

m x x x .                                          (14) 

 
 
Equally, the imaging process denoted by (13) and (14) can be compactly 
expressed as: 
 
          T obs

mig =m L d ,                                                                                  (15) 
 
where 𝐋! is the migration operator, and 𝐦!"# is the imaging result for a 
single shot data. In RTM, 𝐝!"# represents the observed data, whereas in the 
LSRTM, 𝐝!"# is usually the residual between the observed data and the 
calculated data and 𝐦!"# is the gradient model to update the image in each 
iteration. 
 
 
 
Pure qP-wave LFD-LSRTM and prestack plane-wave strategy 
 
 For the standard LSRTM, the objective function in the shot domain 
can be written as  
 

          
2

2
1

1( ) min
2

sN
obs

i i
i

J
=

= − →∑m Lm d ,                                               (16) 

 
where 𝑁! is the total number of shot gathers, ∗ ! stands for the 𝐿! norm, 
and 𝐦 is the final reflectivity model.  
 
 The implementation of the pure qP-wave LFD-LSRTM can be 
depicted by the flowchart shown in Fig. 1. In contrast to the acoustic wave 
LSRTM in isotropic media, our method mainly differs in the steps denoted 
by red boxes, where the linearized forward modeling and migration 
operators use the LFD method. Therefore, we call our method LFD-
LSRTM, which can deal with the pure qP-wave in TTI media. 
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Fig. 1. The flowchart of the numerical implementation of the pure qP-wave LFD-
LSRTM. 
 

 To further improve the practicality and efficiency, we introduce the 
prestack plane-wave strategy into the pure qP-wave LFD-LSRTM method, 
which is referred to be LFD-Pre-PLSRTM. The strategy contains two 
techniques: the plane-wave encoding and the prestack parameterization in 
the plane-wave domain.  
 
 On the one hand, the plane-wave encoding technique can be 
expressed as 
 

          ( ) ( ) ( ), ; , ;
s

g g s s
x

d x t p d x t x t p xδ= ∗ − ⋅∑
    

,                               (17) 

where 𝑑 𝑥! , 𝑡; 𝑥!  is the shot-domain data, 𝑑 𝑥! , 𝑡; 𝑝  is the plane-wave-
domain data, also known as the plane-wave gather, 𝛿 𝑡 − 𝑝 ∙ 𝑥!  is the time-
shift function, ∗ denotes the convolution operation, 𝑝 ∙ 𝑥! is the time shift 
that is a linear function of the source position 𝑥!. 𝑝 is the ray parameter 
which is defined as 

           
sinp
v
θ

=
   

,                                                                                   (18) 

 
where 𝜃 is the incident angle of the plane wave relative to the vertical axis, 
and 𝑣  is the velocity near the surface. By choosing 𝑁!  different ray 
parameters 𝑝, 𝑁! plane-wave gathers with different incident angles can be 
obtained. 
 
 Using the same encoding function, the plane-wave source wavefield 
is also constructed.  Generally, 𝑁! point sources are encoded into 𝑁! plane-
wave sources (𝑁! ≪  𝑁! ). Here, we call LFD-LSRTM in plane-wave 
domain LFD-PLSRTM. 

Input data: dobs

Scattering wave: Lm(k)

RTM
m(0)=LTdobsInput models: 𝑣"#, 𝜀, 𝛿, 𝜃

Gradient:
g(k) =LT(Lm(k)-dobs)

Modifying gradient z(k)
and step length α(k)

Residual: Lm(k)-dobs

Update image:
m(k+1)=m(k)+α(k) z(k)

Min?

Forward extrapolation

Backward extrapolation

Imaging condition

Born approximation

Yes

No

OK!
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 On the other hand, the prestack parameterization technique helps 
LFD-LSRTM greatly enhance the imaging robustness even in the presence 
of errors in the reference models or/and noise in the seismic data. In each 
iteration, 𝑁! independent gradient models are individually stored, and 𝑁! 
independent reflectivity models are separately updated. Obviously, the 
prestack parameterization technique would need slightly extra memory that 
is proportional to 𝑁!, but this technique enables our method to be feasible 
for the field data. We call LFD-PLSRTM with the prestack parameterization 
technique LFD-Pre-PLSRTM. 
 
 Last, Table 1 lists the computation time and I/O cost for LFD-
LSRTM, LFD-PLSRTM, and LFD-Pre-PLSRTM, respectively. We can 
summarize that (1) the computation time of LFD-PLSRTM and LFD-Pre-
PLSRTM is evidently less than that of LFD-LSRTM, which is attributed to 
the fact of 𝑁! ≪  𝑁!; (2) the I/O cost of LFD-Pre-PLSRTM is higher than 
LSRTM and PLSRTM because of the prestack parameterization technique. 
 
  
Table 1. Computation time and I/O cost of LFD-LSRTM. LFD-PLSRTM and LFD-Pre-
PLSRTM for 2D fixed-spread acquisition geometry. 
 

Method Computation time (s) I/O cost (×4byte) 

LFD-
LSRTM 

𝑁!"#$×𝑁! 
× 2×𝑇!"# + 𝑇!"#  

𝑛𝑔×𝑛𝑡 + 3×𝑛𝑥×𝑛𝑧  
+ 𝑛𝑡×𝑛𝑥×𝑛𝑧 + 6×𝑛𝑥×𝑛𝑧  

Shot gather + wavefield + forward wavefield + 
(2 × image + 2 × gradient + 2 × update) 

LFD-
PLSRTM 

𝑁!"#$×𝑁! 
× 2×𝑇!"# + 𝑇!"#  

𝑛𝑔×𝑛𝑡 + 3×𝑛𝑥×𝑛𝑧  
+ 𝑛𝑡×𝑛𝑥×𝑛𝑧 + 6×𝑛𝑥×𝑛𝑧  

Shot gather + wavefield + forward wavefield + 
(2 × image + 2 × gradient + 2 × model) 

LFD-Pre-
PLSRTM 

𝑁!"#$×𝑁! 
× 2×𝑇!"# + 𝑇!"#  

𝑛𝑔×𝑛𝑡 + 3×𝑛𝑥×𝑛𝑧  
+ 𝑛𝑡×𝑛𝑥×𝑛𝑧 + 6×𝑛𝑥×𝑛𝑧 ×𝑁! 

Shot gather + wavefield + forward wavefield + 
(2 × image + 2 × gradient + 2 × model) ×𝑁! 

 

NB: 𝑁!"#$—number of iteration, 𝑁!—number of shot gather, 𝑁!—number of plane-wave 
gather, 𝑇!"#—time of linearized forward modeling for one shot gather, 𝑇!"#—time 
RTM for one shot gather, 𝑛𝑥 and 𝑛𝑧—2D model size, 𝑛𝑡—number of time samples for 
each trace, 𝑛𝑔—number of traces or receivers for each shot gather. 
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NUMERICAL EXAMPPLES 
 

 Two synthetic examples are used to illustrate the performance of the 
proposed method. 
 
  
Salt model 
 
Model parameters  
 
 Figs. 2a-d display the true P-wave velocity, migration velocity, and 
anisotropy parameters for the salt model, respectively. The salt model is 
discretized with a grid of 676 × 201 with a spatial interval of 10 m. Its 
velocity ranges from 1500 m/s to 4482 m/s. Fig. 2e gives the slowness 
perturbation model defined by the eq. (10). 
 
  

 
 
Fig. 2. The Salt model: (a) true P-wave velocity model (unit: m/s), (b) P-wave migration 
velocity model (unit: m/s), (c) 𝜀 model, (d) 𝛿 model, and (e) true reflectivity model 
(slowness perturbation model). 
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 Considering the numerical dispersion condition, a 20 Hz Ricker 
wavelet is used as the source time function. Regarding the acquisition 
system, 338 shots are evenly deployed at a depth of 20 m with a 20 m 
spacing, and the first shot is located at the leftmost end of the model. For 
each shot, 676 receivers are used to record wavefields within a split-spread 
aperture of 6.75 km. The recoding length of each seismogram is 5 s with a 
time sampling interval of 1 ms. In the light of the model configuration and 
model parameters shown in Figs. 2b-d, LFD coefficient matrix 𝐆 can be 
calculated.  
 
 
Analysis of shot gather  
 
 The observed shot gather is shown in Fig. 3a. Since it is synthesized 
by the linearized forward modeling method, the obtained shot gather is the 
scattered wavefields which contain no direct waves. It can be seen that the 
coherent events are clear without numerical dispersions. The shot gather 
using the traditional pseudo-acoustic wave equation is displayed in Fig. 3b. 
By comparison, we find that shot gathers using two different linearized 
forward modeling methods have consistent traveltimes, indicating that 
linearized forward modeling operator using the LFD method can effectively 
simulate wavefield in the VTI media. 
 
  

 

 

Fig. 3. The linearized forward modeling record using (a) LFD method in VTI media, (b) 
pseudo-acoustic wave equation in VTI media. The red arrow denotes the near-offset 
position at CDP 320, and blue arrow denotes the far-offset position at CDP 30. 
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 To observe results in a more detailed way, Fig. 4 shows single-trace 
records at the near and far offsets, respectively. The near offset is located at 
CDP 320 (red arrow in Fig. 3a)  and far offset at  CDP 30  (blue arrow in 
Fig. 3a). Fig. 4a gives the near-offset single-trace records using the LFD 
method (red line) and traditional pseudo-acoustic wave equation method 
(blue line). Two single-trace records basically coincide with each other, 
which verifies that results at the near offset using the LFD method are 
correct. Likewise, Fig. 4b corresponding to results at the far offset gives a 
similar demonstration. In addition, through calculating spectra of the single-
trace records in Fig. 3, Fig. 4e shows nearly the same spectra for two 
different methods for a given medium. This demonstrates the validity of the 
LFD linearized forward modeling operator. 
 
  

 
 
Fig. 4. Comparison of single-trace records in the time and frequency domain, 
respectively. The single-trace record in VTI media at  (a) CDP 320 and  (b) CDP 30.  
(c) Spectra of single-trace records in Fig. 3. 
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Fig. 5. The plane-wave gathers with ray parameter 𝑝 as  (a) -0.27 s/km,  (b) 0 s/km and 
(c) 0.27 s/km. 
 

 To apply the prestack plane-wave strategy, 338 shot gathers are 
transformed into 31 plane-wave gathers with ray parameter 𝑝  linearly 
increasing from -0.27 s/km to 0.27 s/km, according to the eq. (17). 
Correspondingly, the incident angle of plane wave ranges from -23° to 23°. 
This strategy enables to reduce the data size to about one-tenth, thereby 
largely saving memory space, significantly decreasing I/O cost and 
computational time. Fig. 5 shows three plane-wave gathers with different 
ray parameters 𝑝 which are -0.27 s/km, 0 s/km, and 0.27 s/km, separately. 
The obtained plane-wave gather very resembles the stacked section, 
especially for the plane-wave gather with 𝑝 = 0!s/km  in which the 
structures near the surface can be roughly identified (Fig. 5b). The deep 
layers or complex structures, however, are difficult to be recognized in the 
plane-wave gather, so migration methods are needed to recover the reflected 
energy and converge the diffracted energy. 
 
  
Comparison of imaging results 
 
 Figs. 6a and b are the results of LFD-LSRTM after 1 and 30 iterations, 
respectively. Similar to the image of RTM, Fig. 6a suffers from the severe 
low-frequency noise, especially for the near-surface region and the top and 
bottom of the salt body. Moreover, strong energy appears at the source 
positions, and the deep layer shows poor continuity and relatively weak 
imaging energy. After 30 iterations, LFD-LSRTM however yields an 
excellent imaging result (Fig. 6b). Specifically, the low-frequency noise is 
successfully removed, the source effect disappears, and energy in the 
middle-deep layer is well enhanced, making amplitudes of the entire image 
more balanced. This confirms that the quality of the inversion imaging is 
obviously better than the migration imaging. Meanwhile, Fig. 6c gives the 
result of PA-LSRTM after 30 iterations. By comparison, LFD-LSRTM 
shows a high agreement with PA-LSRTM, verifying that the proposed 
method is reasonable.  
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Fig. 6. Shot-domain LFD-LSRTM image after (a) 1 iteration and (b) 30 iterations.  
(c) Shot-domain PA-LSRTM image after 30 iterations. 
 

 
 
Fig. 7. Plane-wave domain inversion images after 30 iterations using (a) LFD-PLSRTM 
method, (b) PA-PLSRTM method, (c) LFD-Pre-PLSRTM method and (d) PA-Pre-
PLSRTM method. 
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 Fig. 7 compares the imaging results of four different plane-wave 
LSRTM methods. The greatest advantage of the plane-wave LSRTM is that 
it reduces its computational cost to one-tenth of that in the shot domain but 
yields a satisfactory imaging result (comparing Figs. 7a and 7c with Fig. 6b, 
or comparing Figs. 7b and 7d with Fig. 6c). It can be seen that LSRTM with 
the prestack plane-wave strategy shows a higher convergence rate, so for the 
same number of iterations, the method with prestack plane-wave strategy 
has a higher image quality than the method with the plane-wave strategy. 
 
 
 Moreover, Table 2 summarizes the CPU computational time and I/O 
cost of one iteration of different methods. By comparison, LFD-Pre-
PLSRTM spends the least computational time to achieve an acceptable 
result but with similar I/O cost. 
 
 
Table 2. CPU computational time and I/O cost for one iteration of different methods 
when using a single node on the same workstation. 
 

          Methods LFD-
LSRTM 

LFD-
PLSRTM 

LFD-Pre-
PLSRTM 

PA-
LSRTM 

PA-
PLSRTM 

PA-Pre-
PLSRTM 

Computational 
time (hours) 

15.773 1.533 1.495 48.446 4.725 4.677 

I/O cost  (GB) 2.549 2.527 2.695 2.785 2.802 2.965 

 
 

Tests with noise data 
 
 In the previous results, the data is free of noise. Unfortunately, the 
data is always contaminated by stochastic or/and coherent noise in real cases. 
To test the effectiveness of LFD-Pre-PLSRTM in the presence of the noise, 
three different levels of stochastic noise are added into the above 31 plane-
wave gathers to produce the data set with S/N of  2, 1, and 0.5, respectively 
(see Figs. 8a-c). For comparison, LFD-PLSRTM is also investigated. 
  
 The imaging results using the data with the above three S/N ratios are 
shown in Fig. 9, where Figs. 9a-c use LFD-PLSRTM and Figs. 9d-f use 
LFD-Pre-PLSRTM. With the decrease of S/N, the imaging quality of both 
methods becomes worse, because the presence of stochastic artefacts 
reduces the S/N and resolution of the imaging results. However, complex 
geological bodies such as salt body and faults, and the bottom flat interface 
are still clearly imaged and well identified.  
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Fig. 8. The plane-wave gather with (a) S/N = 2, (b) S/N = 1 and (c) S/N = 0.5. 

 

 
 
Fig. 9. The plane-wave domain LFD inversion images after 30 iterations. LFD-PLSRTM 
image using data with (a) S/N = 2, (b) S/N = 1, and (c) S/N = 0.5. LFD-Pre-PLSRTM 
image using data with (d) S/N = 2, (e) S/N = 1, and (f ) S/N = 0.5. 
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Marmousi2 model 
 
 To further test the adaptability of the proposed method in complex 
structures, the Marmousi2 model is investigated. 
 
 
Model parameters  
 
 The modified Marmousi2 model is shown in Fig. 10. Fig. 10a 
corresponds to the true P-wave velocity model. Note that there is a low-
speed anomaly at (3 km, 1.1 km), making the numerical implementation 
very susceptible to the numerical dispersion. Fig. 10b is the migration 
velocity. Figs. 10c and 10d are 𝜀 and 𝛿 models, respectively. 
  
 The model consists of 1361× 351 grid points with a 12.5 m horizontal 
grid interval and a 10 m vertical grid interval. The velocity varies from 1028 
m/s to 4700 m/s. Considering the stability condition and computational 
efficiency, the time sampling interval is 1 ms and the recording length is 7 s. 
Combining these model parameters with the choice of 8th-order LFD stencil, 
the LFD coefficient matrix can be calculated. 
 
 The synthetic data has a total of 681shot gathers with a shot interval 
of 25 m at a depth of 20 m, which are generated by a Ricker wavelet with a 
dominant frequency of 18 Hz. The first shot excites at the leftmost end of 
the model, and each shot is recorded by 1361 receivers with a receiver 
interval of 12.5 m. 
 
  

 
 
Fig. 10. The modified Marmousi2 model:  (a) true P-wave velocity model (unit: m/s),  
(b) P-wave migration velocity model (unit: m/s),  (c) 𝜀 model, and  (d) 𝛿 model. 
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Analysis of shot gather  
 
 Fig. 11a is one shot record calculated by the LFD linearized forward 
modeling operator. At the same shot position, Fig. 11b gives the shot record 
simulated by the traditional pseudo-acoustic wave linearized forward 
modeling operator. 
  

 

 

Fig. 11. The linearized forward modeling record using (a) LFD method in VTI media, (b) 
pseudo-acoustic wave equation in VTI media. 
 
 
 In the same way, 681 shot gathers are transformed into 35 plane-wave 
gathers with ray parameters evenly changing from  -0.2 s/km to 0.2 s/km. 
Fig. 12 displays the linearized wavefield snapshot at 0.6 s in the plane-wave 
domain. To illustrate the validity of our method, the snapshot obtained from 
the traditional pseudo-acoustic wave equation is also given. It can be clearly 
seen that there is serious noise due to qSV-wave artefacts and instability, as 
indicated by the red arrows (see Fig. 12a), while the result of our method 
shows no noise and stays stable (see Fig. 12b).  
 
 

 
 
 
Fig. 12. Comparison of linearized wavefield snapshots at 0.6 s generated from 
(a) traditional pseudo-acoustic wave equation, (b) LFD linearized forward modeling. 



 140 

Comparison of imaging results 
 
 Figs. 13a-d compares the imaging results without noise in the data. 
For this complex model, four methods all obtain acceptable results: three 
significant faults, anticline, unconformity, and steep layers in the deep are 
clearly imaged. Comparing Figs. 13a with 13b (or Figs. 13c with 13d), 
whether PA or LFD method is applied, the prestack plane-wave strategy 
provides a higher image quality than the plane-wave strategy, which can be 
further verified by the convergence curves in Fig. 14. Comparing Figs. 13a 
with 13c (or Figs. 13b with 13d), the imaging results are almost the same, 
which indicates that the proposed method is capable of handling the 
sophisticated model imaging. In order to check the adaptability of the 
proposed approach to the noisy data, Figs. 13e and 13f give the results of 
LFD-PLSRTM and LFD-Pre-PLSRTM when the S/N of the data is 1. We 
can find that the image S/N is degraded, but the main geological targets are 
still accurately positioned. In contrast to LFD-PLSRTM, LFD-Pre-PLSRTM 
shows a better image (Figs. 13e and 13f ). In particular, near the anticline's 
right limb (indicated by the red circle), the image of LFD-PLSRTM is 
blurred, while LFD-Pre-PLSRTM shows an image as clear as one without 
the effect of the noise (Fig. 13d), indicating that LFD-Pre-PLSRTM is still 
feasible for the data containing reasonable noise.  
 

 
Fig. 13. The inversion images after 30 iterations without noise in data using (a) PA-
PLSRTM method, (b) PA-Pre-PLSRTM method, (c) LFD-PLSRTM method and 
(d) LFD-Pre-PLSRTM method. The inversion images after 30 iterations in the case of 
S/N = 1 in the data using (e) LFD-PLSRTM method and (f ) LFD-Pre-PLSRTM method. 
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 Fig. 14 displays the convergence curves associated with the results 
shown in Fig. 13. It can be seen that when the data is absent from the noise, 
Pre-PLSRTM is significantly better than PLSRTM regardless of the 
inversion imaging method used. 
 
 

 
 
Fig. 14. The curves of the normalized data residual versus the iteration number that 
correspond to imaging results shown in Fig. 13.  
 
 
Sensitivity to model parameter errors 
 
 To test the robustness of LFD-Pre-PLSRTM to the model parameter 
errors, we investigate the effects of errors in terms of the velocity model, 
Epsilon model, Delta model, and tilt angle model, respectively, based on the 
control variable method. For better comparison, LFD-PLSRTM is discussed 
as well.  
 
(1) Velocity errors 
 
 The results of LFD-Pre-PLSRTM are shown in Fig. 15, which 
corresponds to the velocity model errors of 0%, 2%, 5%, and 8%, 
respectively. As the velocity model error increases, the image gradually 
becomes blurred. When the velocity model error is up to 8% (Fig. 15d), 
faults and anticline cannot be clearly recognized because diffracted energy 
fails to be correctly positioned, and high-dip layers in the deep obviously 
become smeared and weakened. Besides, imaging positions appear a 
significant deviation along the vertical direction, and this deviation 
increases with the depth, manifesting as an uneven pull-up. Consequently, 
the velocity error has a considerable influence on the final imaging quality.  
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Fig. 15.  LFD-Pre-PLSRTM images when using velocity model with errors of  (a) 0%,  
(b) 2%, (c) 5% and (d) 8%. 
 
 
(2) 𝜀 and 𝛿 errors 
 
 Furthermore, we test the 𝜀 with errors of 0%, 8%, 18%, and 28%, and 
𝛿  with errors of 0%, 8%, 28%, and 48%, respectively. Since 𝜀  and 𝛿 
parameters affect seismic wave velocity in different manners, they should 
have different sensitivity to the imaging results. Here we no longer show the 
imaging results, but give data residual convergence curves in Fig. 16. LFD-
Pre-PLSRTM has some sensitivity to 𝜀 errors but not strong, because the 
convergence rate decreases slightly with the increase of 𝜀 errors (Fig. 16a), 
and even when 𝜀 errors increase to 28%, the data residual can still converge 
towards a relatively small value (about 25%). It is evident that 𝛿 errors have 
fewer impacts on the convergence than 𝜀 errors (Fig. 16b), due to the fact 
that the convergence for 𝛿 errors of 48% is comparable to that for 𝜀 errors of 
28%. 
 
(3) Tilt angle errors 
 
 Figs. 17a-d exhibit the imaging results using tilt angle of 80° (true 
model), 60°, 30°, and 0°, respectively. When the tilt angle model has errors, 
complex structures like steep faults and anticline are wrongly positioned 
events. Also, the image appears strong migration artefacts near the surface. 
As tilt angle errors increase, these problems become more dominant such 
that typical structures are hard to be imaged. This illustrates that LFD-Pre-
PLSRTM is profoundly sensitive to tilt angle errors. 
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Fig. 16. The curves of the normalized data residual versus the iteration number for LFD-
Pre-PLSRTM, when there are errors in (a) 𝜀 model and (b) 𝛿 model. 
 
 

 
 
Fig. 17 LFD-Pre-PLSRTM images after 30 iterations by using tilt angle model with a 
value of (a) 80° (true value), (b) 60°, (c) 30°, and (d) 0°. 
 
 
 
CONCLUSION 
 
 In this paper, we extend the LFD algorithm from forward modeling to 
LSRTM, and implement an efficient and stable pure qP-wave LSRTM in 
anisotropic media. We first derive the pure qP-wave linearized forward 
modeling and migration operators in TTI media without qSV-wave artefacts. 
Based on the least-squares migration scheme, we develop LSRTM, which 
enables us to perform pure qP-wave imaging in TTI media effectively. With 
the help of the prestack plane-wave technique, both efficiency and 
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robustness of the proposed method are greatly improved. Finally, two 
synthetic examples demonstrate the feasibility and applicability of our 
approach in complex anisotropic media. 
 
(1) The derived pure qP-wave linearized forward modeling and migration 
operators can not only wholly avoid qSV-wave artefacts, but also provide 
the accurate source and receiver wavefields, which ensures the effective 
implementation of LSRTM in anisotropic media; 
 
(2) Compared to PA-LSRTM, the proposed LSRTM based on LFD shows a 
higher efficiency in the wavefield extrapolation, no limitations on model 
parameters, and no qSV-wave residuals in the demigration; 
 
(3) The pure qP-wave LSRTM optimized by the prestack plane-wave 
technique, one the one hand, can significantly reduce the I/O expense and 
significantly increase the computational efficiency, on the other hand, can 
effectively improve the robustness of the noise in the data and the errors in 
the parameter model; 
 
(4) The sensitivity tests of the parameter model error suggest that our 
method is most sensitive to the velocity model error and the tilt angle model 
error, moderately susceptible to the 𝜀 model error, and insensitive to the 𝛿 
model error. Therefore, the 𝛿 model is the most difficult one to obtain in 
multi-parameter inversion. 
 
 Although the proposed method has shown significant advantages in 
imaging the pure qP-wave in TTI media, some aspects remain further 
improved, such as boundary condition and objective function. Therefore, 
future work will focus on the PML boundary condition based on the low-
rank complex matrix decomposition, the inversion process independent on 
the source wavelet function, and the objective function formulated by the 
cross-correlation. 
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